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Combining Multiple Visual Processing Streams for 
Locating and Classifying Objects 

ILos Alamos National Laboratory 
Los Alamos, New Mexico, USA 
paiton@lanl.gov, jsg@lanl.gov 

Abstract-Automated, invariant object detection has proven a 
substantial challenge to the artificial intelligence research 
community. In computer vision, many different benchmarks have 
been established using whole image classification based on 
datasets that are too small to eliminate statistical artifacts. As an 
alternative, we used a new dataset consisting of -66GB of 
compressed high-definition aerial video, which we employed for 
both object classification and localization. Our algorithm mimics 
the processing pathways seen in the primate visual cortex by 
independently evaluating color/texture, shape/form, and motion. 
We then combine the data using a clustering technique to 
produce a final output in the form of labeled bounding boxes 
around the objects of interest in the video. The output format 
required a degree of localization that is not seen in whole-image 
classification problems. Our results are evaluated qualitatively 
and quantitatively using a scoring metric that assessed the 
overlap between our detections and the ground-truth. 

Keywords- NeoVision2; computer vision; visual . cortex; 
viewpoint in variance; localization; classification; motion energy; 
optic flow; online k-means; lateral interactions; object detection 

I. INTRODUCTION 

The primate visual cortex has inspired computer vIsion 
models with state of the art performance in object identification 
tasks [1-6]. These models were primarily tested using whole­
image classification on still image datasets [8,9], which 
contained statistical biases resulting from their small size. 
Although new datasets attempt to address these issues [7], the 
generality of previous results have been called into question 
[10-12]. It is desirable to compare performance evaluations on 
a well-annotated dataset that lacks the biases found in standard 
image sets. DARPA has provided a set that we believe is a step 
towards this goal for its NeoVision2 grand challenge. The set is 
a high-definition video sequence recorded from a helicopter 
that flew over the greater Los Angeles, California area with a 
ground sampling distance of 25-40 pixels/meter. The set is 
divided up into two parts: a training portion which contains 131 
sequences totaling 47 minutes of video and a testing portion 
containing 125 sequences totaling 45 minutes of video. The 
objective of the challenge was to identify, localize, and label 
objects of interest within the video. Detections are recorded in 
the form of bounding boxes, with an associated confidence 
value for the object label. The objects we focused on were 
Cars, Planes, People, and Cyclists. A total of ten categories 
were labeled in ground truth data, annotated by human 
analysts. 
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As with many other computer vision models, we chose to 
base our algorithms on the only known system that has solved 
the problem: the visual cortex. The primate visual cortex 
utilizes different processing streams in order to evaluate 
motion, form, color, and texture. These streams are then 
combined to create a perception of the visual scene [13] . We 
emulate this process by independently evaluating texture/color 
cues, object shape, and motion. We then combine the data into 
a single coherent output using a clustering algorithm. 

II. TEXTURE AND COLOR - PETA-SCALE ARTIFICIAL 
NEURAL NETWORK (P ANN) 

Semi-supervised Object Detection using Sparse Generative 
Cortical Models 

Observations of sparse patterns of neuronal activation in the 
visual cortex have led to models based on sparse image-patch 
representations using adaptive, over-complete image feature 
dictionaries learned from data [6,14]. These models are 
generative, allowing reconstruction of the input image, and are 
compatible with hierarchical models of cortex (extending 
standard HMAX approaches [5]). They can also drive many­
category classification of image patches for object detection 
within a large image frame. 

For the NeoVision2 challenge, we modified PANN, our 
high-performance model [15] to learn a sparsifying over­
complete color/texture feature dictionary for the dataset (see 
Fig. 1a). Our retinal model down-samples the input frame to 
remove video compression artifacts and reduce computational 
expense. Our primary visual cortex (VI) S-cell layer uses our 
learned dictionary to build a local sparse representation 
(corresponding to a cortical column), using a greedy matching 
pursuit algorithm. Our S-cell columns are very sparse, with 
typically <5% of local feature detectors active in any given 
column. However, they still allow for good reconstruction of 
the input image, in distinction to standard HMAX approaches 
(see Fig. 1 b,c). Our VI C-celliayer applies a local max pooling 
operation, producing a translation-tolerant representation of 
image patches. Even after pooling, the C-cell columns are quite 
sparse. Note that our model does not use frame differencing 
.This allows_us to detect objects that are stationary within the 
frame. 



Figure I. From left to right: (a) Learned over-complete color/texture 
dictionary for the hel icopter dataset. Our dictionary captures orientation edge 
structures and non-oriented color features. (b) Example image patch from a 

training sequence. (c) Reconstruction of image patch using local sparse 
representations over the learned dictionary. 

For our object detection and classification step, we used a 
multi-category generative model based on k-means clustering 
of the sparse C-cell column responses. We trained this model in 
a semi-supervised way, allowing the image background to 
divide up into unlabeled categories that, on inspection, appear 
strongly correlated with naturally occurring background scene 
object categories, including tree foliage, grass, pavement, 
water, and beach (see Fig 2). Setting the number of background 
categories is a meta-learning task and we typically used 30 
background categories. We then augmented this set of 
background categories with the target categories learned using 
the same sparsitying dictionaries for labeled image patches (i.e. 
we used supervised learning for target categories). The final 
image patch classifier algorithm is a Euclidean (L2) minimum 
distance classifier in this multi-category space of category 
mean vectors. This multi-category classifier is a small 
component of the overall computation time (which is 
dominated by the formation of sparse representations in VI S­
cell columns, and produces whole scene visualizations that 
provide additional contextual cues for object classification (e.g. 
allows correlation of cars with roads or boats with water). The 
utilization of these clues is discussed later. 

Figure 2. (a) Final car detections (purple boxes) for a training sequence. (b) 
Internal model of the frame, detecting cars (white pixels) as well as lane 

markings (yellow), grass (purple), bushes (orange), and road (blues). 
Detection of background features can be used to enhance detection of targets. 

III. FORM AND SHAPE - PETA VISION 

Lateral Interactions based on Object-Distractor Difference 
(ODD) kernels 

ODD kernels are intended to represent lateral interactions 
between cortical neurons located at the same cortical layer. 
Rather than learning a dictionary of features whose complexity 
increases as one travels up a cortical hierarchy, our 
implementation of lateral interactions uses a very simple set of 
features, corresponding to edge detectors spanning eight 
orientations between 0 and 180 degrees. The activation of these 

feature detectors is modulated by extensive lateral interactions 
based on co-occurrence of edges [16]. 

The technology underlying ODD kernels was developed in 
PetaVision, a massively parallel neural simulation toolbox for 
conducting high-performance simulations of large networks. 
The model was motivated and guided by a psychophysical 
object detection task employing computer-generated images. 
As depicted in Fig. 3, ODD kernels act to suppress edge 
features belonging to the background clutter while preserving 
edge features belonging to the target object. 

Figure 3. Representative example of ODD lateral-interaction kernels applied 
to computer-generated images. (a) The original image. (b) The processed 
image. Long, smooth contours tend to be preserved while short contour 

segments are suppressed. 

For the above task, ODD lateral interaction kernels were 
trained by computing the co-occurrence matrix as a function of 
the distance and relative orientation between all pairs of edge 
features belonging to the target object and subtracting the co­
occurrence matrix computed between all pairs of edges 
belonging to the background clutter. This difference was then 
normalized by the sum of the two co-occurrence matrices so 
that the elements of the ODD kernel were always between -I 
and +1. Fig. 4 shows co-occurrence matrices and the resulting 
ODD kernel. 

Figure 4. ODD Kernels trained to preserve smooth contours against 
background clutter. (a) Co-occurrence matrix obtained from all pairs of edges 

belonging to 10,000 target objects. (b) Co-occurrence matrix for edge pairs 
belonging to background clutter. (c) ODD kernel computed from the 
normalized difference between target and background co-occurrrence 

matrices. 

The effective result from PetaVision was a preservation of 
edges associated with objects of interest. The algorithm was 
trained using ground-truth bounding boxes supplied by 
DARPA and distractor patches pulled from the image. ODD 
kernels were applied using standard convolution techniques to 
calculate lateral support for each feature. New ODD kernels 
were trained after each convolution to further reduce undesired 
edges and account for changes in the co-occurrence statistics. 
Fig. 5 shows that the number of active neurons decreased by 
two orders of magnitude with just four iterations of the kernels. 



Figure 5. ODD Cyclist-distractor kernels applied to the NeoVision2 Tower 
dataset. "num active" indicates the number of active neurons in each snap 
shot. The tower dataset is from a still-camera, unlike the helicopter dataset 

which is explored in the rest of this document. 

IV. MOTION-PETAMoTION 

Most models of the mammalian motion-processing stream 
are based on motion-energy filters that mathematically describe 
the response properties of direction-sensitive VI neurons but 
lack a clear physiological interpretation. Here, we implemented 
a more physiological model of VI direction-selective cells that 
uses connection weights, realistic conduction delays, and 
separate excitatory and inhibitory channels [18]. Our neural 
network model exhibits similar responses to the mathematically 
defined motion-energy filters, but admits a more direct 
interpretation in terms of the underlying physiology and 
anatomy. The model, termed PetaMotion, was implemented 
using the PetaVision, toolbox previously described. Fig. 6 
shows a simplified diagram of the neural processing pathway. 

Our VI neurons derived their spatiotemporal filter 
properties from their synaptic input weights, tuned such that the 
center frequency of the temporal band «(0/0) divided by the 
center frequency of the spatial frequency band «(Oxo) give the 
velocity matched by the VI cell. We implemented the spatial 
filter using a Gaussian-shaped excitatory connection 
surrounded by inhibitory Gaussian shaped flanks. To generate 
the temporal tuning properties of our V 1 model, we used 
variable delays on retinal output (for simplicity, the LGN was 
omitted). The weights were calculated as 3D difference of 
Gaussians in X, Y, and time (1), where time refers to delayed 
retinal output (Fig. 7). We tune the response to a given 
velocity, equal to a displacement in X per time step by rotating 
with respect to the X and T axes. The Fourier transform of the 
VI filter weights gives two Gaussian shaped regions oriented 
along a line whose slope is equal to the tuned velocity. 

-~ -5 -~ 1 -~ --5 -~ 1 -~ -5 -~ 
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x' = X cos 8 -t sin 8 ; t' = t cos 8 +x sin 8 (1) 

The VI neuronal output was fed into a neural network 
implementation of the cortical area MT to calculate pattern 
motion utilizing the connection weights between the retina and 

simple cells [19]. The algorithm was MPI accelerated, with 
each frame broken into 8 regions that operated in parallel. 

Figure 6. V I cells act as spatio-temporal filters that respond to a specific 
optic flow velocity and direction. MT cells use the outputs of several V I 

complex cells, tuned to different speeds and directions, to measure pattern 
velocity. 

Figure 7. VI simple cell weights plotted on the X, Y and T axes. (The time 
(T)-axis corresponds to delayed retinal output.) (I) Weight values plotted vs. Y 
and T. (II) Weights plotted on X-Y for time = O. (III) Weights plotted on X-Y 

for time = -2 . (IV) Weights plotted on X-Y for time = -4. 

V. COLLECTIVE OUTPUT 

PANN's primary output was in the form of rasterized PNG 
images where the pixel values represented the different 
categories. PetaMotion and PetaVision both created neuron 
activity files. For each frame in the video sequence, PANN 
gave a single output, while PetaMotion and PetaVision gave 
outputs per object of interest. The final step was to combine 
this information into a coherent and intelligible output. 

This was accomplished using an adaptation of the 
DBSCAN algorithm [17]. The three primary inputs were 
formatted as points in a matrix that was the size of the video 
frame. Our algorithm formed clusters based on hits that were 
within a close proximity and of the same label. We then found 



the minimum volume enclosing ellipsoid to get the appropriate 
size and orientation of the bounding box. Motion detections, 
which did not have a label, would modify confidence values. 
We also used . of labels 

Figure 8. An example of the clustering algorithm output. (a) Original image 
with bounding box overlayed. (b) Bounding box output within a blank frame. 
(c) Example of clustering for the bounding box. The light blue lines are from 

PetaVision and the red dots are from PANN. 

VI. RESULTS AND DISCUSSION 

Our algorithm was scored using qualitative measures as 
well as the DARPA established scoring metric. Their metric 
followed the equation: 

GCt ) no (O 
Overlap_Ratio= ~ 

Gj uO j (2) 

Where Gj(t) denotes the ith ground-truth object in frame t 
and D/t) denotes the ith detected object in frame t. From (2) you 
can conclude that the overall score will have a range from 
minus infinity to 1, where 0 is having no detections at all. This 
equation heavily penalizes for false detections (see Fig. 9). 

In 1,994 frames, our algorithm scored a -3.38 in the Car 
category. In this category we had 2613 false negatives and 
16733 false positives at 20% confidence. Our true positive rate 
was 0.39 and the number of false positives per frame was 8.39. 

Figure 9. Example output. Every car has a detection on it with one false 
positive. Although this is a very desirable outcome, it did not score well due to 

the false positive. 

VII. CONCUSION 

In this paper we outline a method for detecting and 
localizing objects in areal video. The original incentive for the 
project was the DARPA NeoVision2 grand challenge. There 
were several other teams who participated in the challenge, 
who will hopefully soon publish comparable results. 

Our neuromorphic algorithms emulated the visual 
processing streams found in the primate cortex. These streams 
emphasize texture/color, form and motion. We then combined 
the data stream outputs using a known clustering algorithm. 

from PANN to modify the confidence. For example, it is 
unlikely to see a car surrounded by sand, so car hits with sand 
background were given a lower confidence. 
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