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Background: The density of the nucleus has been important in explaining the nuclear depen-
dence of the quark distributions, also known as the EMC effect, as well as the presence of high-
momentum nucleons arising from short-range correlations (SRCs). Recent measurements of both of
these effects on light nuclei have shown a clear deviation from simple density-dependent models.

Purpose: A better understanding of the nuclear quark distributions and short-range correlations
requires a careful examination of the experimental data on these effects to constrain models that
attempt to describe these phenomena.

Methods: We present a detailed analysis of the nuclear dependence of the EMC effect and
the contribution of SRCs in nuclei, comparing to predictions and simple scaling models based on
different pictures of the underlying physics. We also make a direct, quantitative comparison of
the two effects to further examine the connection between these two observables related to nuclear
structure.

Results: We find that, with the inclusion of the new data on light nuclei, neither of these observ-
ables can be well explained by common assumptions for the nuclear dependence. The anomalous
behavior of both effects in light nuclei is consistent with the idea the the EMC effect is driven
by either the presence of high-density configurations in nuclei or the large virtuality of the high-
momentum nucleons associated with these configurations.

Conclusions: The unexpected nuclear dependence in the measurements of the EMC effect and
SRC contributions appear to suggest that the local environment of the struck nucleon is the most
relevant quantity for explaining these results. The common behavior suggests a connection between
the two seemingly disparate phenomena, but the data do not yet allow for a clear preference between
models which aim to explain this connection.

PACS numbers: 25.30Fj, 13.60Hb

INTRODUCTION

The nucleus is a system of strongly-interacting pro-
tons and neutrons. The characteristic scale for the nu-
cleon momentum is the Fermi momentum, kF ≈ 200–
270 MeV/c, a consequence of the interaction of the nu-
cleon with the mean field of the nucleus. The strongly
repulsive feature of the nucleon-nucleon (NN) interac-
tion at short distances prevents two nucleons from be-
coming very close to each other and this loss of config-
uration space demands the existence of high-momentum
components in the nuclear ground state wavefunction.
These can not be described in the context of mean field
models and are commonly called short-range correlations
(SRCs). Inelastic electron scattering was suggested long
ago [1] to be a source of qualitative information on SRCs,
yet they remain on of the least-well characterized aspects
of the structure of stable nuclei.

Knockout reactions studied in inclusive and exlusive
electron scattering [2–9] have isolated SRCs by probing
the high-momentum tail of the nuclear momentum dis-
tribution in nucleon knock-out reactions. The high mo-
mentum tail is assumed to be the result of short-range

hard interactions between nucleons [2, 10, 11], allowing
a study short-distance structure via reactions with high-
momentum nucleons. The strength of SRCs in the nu-
cleus has long been assumed to scale with nuclear density,
a proxy for the probability of two nucleons interacting at
short distances.

Typical parameterizations of the repulsive core of the
NN interaction [12–14] show a sharp rise in the poten-
tial well below 1 fm. Because the nucleon has an RMS
radius of roughly 0.85 fm [15], nucleons can have signif-
icant overlap. In heavy nuclei, the typical inter-nucleon
separation is 1.6 fm, suggesting that the nucleons have
some overlap most of the time, and this short-range in-
teraction may cause a modification of the structure of
the nucleon. There is a long history of searches for
this kind of “medium modification” of nucleon struc-
ture through measurements of the in-medium nucleon
form factors [16–18] or modification of the quasielastic
response in nuclei [19–23]. Overlap of the nucleons may
also allow for direct quark exchange, providing a new
mechanism for modifying quark momentum distributions
in the nucleus. Thus, one may expect quark momentum
distributions in nuclei, like SRCs, to have a dependence
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on the average nuclear density.

This was first observed by the EMC collaboration [24]
and is commonly referred to as the EMC effect. It was
discovered that the per nucleon cross section in the DIS
regime was different for iron and the deuteron. Because
the binding energy of nuclei is extremely small com-
pared to the energy scales in the deep-inelastic scattering
used to probe the quark distributions, the early assump-
tion was that the parton distribution functions (pdfs) of
the nucleus would be a simple sum of the proton and
neutron pdfs, except at the largest values of the quark
momentum fraction (Bjorken-x) where the Fermi mo-
tion of the nucleus becomes important. Since the DIS
cross sections depend on the quark distributions, the dif-
ference in the measured cross sections for iron and the
deuteron indicated a suppression of quark pfs in nuclei
for 0.3 < x < 0.7, and the size of this effect was seen to
scale with the nuclear density.

Thus, the density of the nucleus has often been taken
as the driving parameter of both the A dependence of
the nuclear pdfs and the presence of short-distance con-
figurations in nuclei which give rise to high-momentum
nucleons. This relationship was recently quantified [25],
via a linear correlation between the SRCs in the tail of
the nucleon momentum distribution and the size of the
EMC effect. This is consistent with the idea that both
effects scale with nuclear density, and provides a direct
connection that does not rely on the evaluation of the
nuclear densities.

In addition to the density-driven picture, other ex-
planations of the EMC effect have been proposed as
well [26, 27]. While the measurements performed in the
’80s and ’90s were well described by a density-dependent
fit [28], the weak A dependence for these nuclei could be
equally well described in other approaches. For example,
some works have explained the effect in terms of average
virtuality (ν = p2−m2

N) of the nucleons [10, 29, 30], con-
necting it more closely to the momentum distributions.
Given the limited precision of the EMC effect measure-
ments and the fact that its proposed governing quantities
all grow smoothly but slowly for heavy nuclei, it is diffi-
cult to make a clear determination of which approaches
best described the A dependence of the EMC effect.

Recent measurements focusing on light nuclei [7,
31] have observed a clear breakdown of the density-
dependent picture for both the EMC effect and the
strength of short-range correlations in nuclei. In this
work, we provide a detailed analysis of the nuclear depen-
dence of these two quantities, focusing on comparisons
to model-inspired assumptions. We present an extended
version of the analysis presented in Refs. [25, 32], in-
cluding these new data which violate the simple density-
dependent scaling observed for heavier nuclei. For both
the analysis of the A dependence and the direct compar-
ison of the EMC and SRC data, we examine in more de-
tail the meaning of the observables associated with these

effects. As the underlying dynamics behind the examina-
tion of the direct correlation differ, additional corrections
may be required when comparing the observables that are
typically associated with the EMC effect or presence of
SRCs.

NUCLEAR DEPENDENCE OF THE EMC

EFFECT

Deep Inelastic Scattering (DIS) provides access to the
quark distributions in nuclei via measurements of inclu-
sive cross sections. This cross section for electron or
muon scattering from a nucleus can be written as

dσ

dxdQ2
=

4πα2E′2

xQ4

E′

E

[

F2 cos2
θ

2
+

2ν

M
F1 sin2 θ

2

]

, (1)

where F1 and F2 depend on x and Q2. In the quark-
parton model, information about the quark distribution
functions is encoded in the inelastic F1 and F2 structure
functions. In the Bjorken limit (Q2 and ν → ∞, fixed
ν

Q2 ), we have,

F1(x) =
1

2

∑

q

e2
qq(x), F2(x) = 2xF1, (2)

where q(x) is the quark distribution function and eq is
the quark charge for a given flavor (u, d, s).

The per-nucleon ratio of the F2 structure functions
between an isoscalar nucleus and the deuteron is then
a direct measure of the modification of quark distribu-
tions in nuclei. Experimentally, this ratio is defined
REMC = (FA

2 /A)/(FD
2 /2). The deuteron structure func-

tion in the denominator is taken to approximate the sum
of free proton and neutron structure functions. In almost
all measurements of the EMC effect, an additional as-
sumption is made that the ratio of longitudinal to trans-
verse cross sections, R = σL/σT , is A-independent such
that the unseparated ratio of cross sections corresponds
directly to the F2 ratio, i.e., σA/σD = FA

2 /FD
2 . For

non-isoscalar nuclei an additional correction is typically
applied to account for the difference in DIS cross sections
between protons and neutrons.

Figure 1 shows a measurement of the EMC ratio for
carbon from Ref. [31]. The region from x = 0.3 to 0.7
shows the depletion in the cross section ratio character-
istic of all nuclei. The increase of the cross section ratio
at large x is attributed to the greater Fermi momentum
in the heavy nucleus as compared to the deuteron. The
shape of the EMC ratio appears to be universal, inde-
pendent of nucleus, while the magnitude of the high-x
suppression generally increases with A.

The origin of the EMC effect has been a topic of in-
tense theoretical discussion since its original observation.
There have been many explanations proposed, and these
can be broadly broken down into two categories. Some
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FIG. 1: (color online) EMC ratio, (σA/A)/(σD/2), for car-
bon [31].

approaches include only “traditional” nuclear physics ef-
fects, using convolution models which include binding ef-
fects, detailed models of the nucleon momentum distri-
bution, or pion-exchange contributions. Other calcula-
tions invoke more exotic explanations such as re-scaling
of quark distributions in the nuclear environment, con-
tributions of six or nine quark bags, or modification of
the internal structure of the nucleons such as “nucleon
swelling” or suppression of point-like nucleon configura-
tions. Several review articles give an overview of models
of the EMC effect, see for example [26, 27, 33].

Despite this abundance of models, there is no firm
consensus as to the origin of the EMC effect. The ob-
served suppression of the F2 structure function between
0.3 < x < 0.7 is relatively straightforward to reproduce
in a variety of approaches. A study of the effect as a func-
tion of A should allow for more stringent tests of these
models and provide important clues as to its fundamental
origin.

In the following, we discuss some previous approaches
to examining the nuclear dependence of the EMC effect.
We use the data from SLAC E139 [28] and the recent data
on light nuclei from Jefferson Lab E03-103 [31]. SLAC
E139 sampled a range of nuclei from A = 4 to 197, al-
lowing a large lever arm for studying the nuclear depen-
dence. Jefferson Lab experiment E03-103 adds 3He and
additional precise data on 4He, 9Be, and 12C.

We use the definition of the “size” of the EMC effect
as introduced in [31], i.e., we define the magnitude of the
EMC effect to be |dREMC/dx|, the value of the slope
of a linear fit to the cross-section ratio for 0.35 < x <
0.7. These limits were chosen to give a range of high
precision data whose behavior was linear. The slope was
also extracted over other ranges in x and the nuclear
dependence of the slopes did not vary significantly. This
definition reduces the sensitivity to normalization errors,
which would otherwise be significant if one were to assess
the nuclear dependence at a fixed value of x, especially for

light nuclei. The impact of normalization uncertainties
for the deuteron measurements (common to all ratios in a
given experiment) are also reduced in this approach. This
procedure makes use of the fact that the EMC effect has a
universal shape for x > 0.3, exhibited by all experimental
data.

Table I lists the EMC slopes extracted from the two
data sets used in the analysis presented in this paper.
We do not include data from earlier measurements due to
their relatively poor precision and/or limited x-coverage.

TABLE I: Combined EMC results from JLab E03-103 [31]
and SLAC E139 [28] (averaged over Q2). For JLab data,
|dREMC/dx| was extracted in the 0.35 ≤ x ≤ 0.7 range.
SLAC data, whose binning was different, were fit over 0.36 ≤
x ≤ 0.68. For both cases, stastical and point-to-point system-
atic uncertainties were applied to each x-bin and the normal-
ization uncertainties (including the 1% normalization uncer-
tainty on deuterium common to all ratios for the SLAC data)
were applied to the extracted slope.

A JLab SLAC Combined
3He 0.070±0.028 – 0.070±0.028
4He 0.198±0.027 0.191±0.061 0.197±0.025
Be 0.271±0.030 0.208±0.038 0.247±0.023
C 0.280±0.029 0.318±0.041 0.292±0.023
Al – 0.325±0.034 0.325±0.034

40Ca – 0.350±0.047 0.350±0.047
Fe – 0.388±0.032 0.388±0.033
Ag – 0.496±0.051 0.496±0.052
Au – 0.409±0.039 0.409±0.040

An effect not yet discussed is that of Coulomb distor-
tion [34]. The influence of the Coulomb field of the nu-
cleus on the incident or scattered lepton is a higher order
QED effect, but is not typically included in the radiative
corrections procedures. Since the size of the effect (and
the associated correction) depends on Z, it is potentially
important when considering the nuclear dependence of
the EMC effect. In addition, the EMC effect is taken
directly from the cross section ratio instead of the struc-
ture function ratio, thus assuming no nuclear dependence
in R = σL

σT
. Coulomb distortions introduce kinematical

corrections and consequently have a direct effect on the
extraction of R. An indication of nuclear dependence
in R was observed recently [35] after applying Coulomb
corrections to SLAC E139 and E140 [36] data.

The JLab data have been corrected for both Coulomb
distortion and non-isoscalar effects. For the SLAC data,
Coulomb distortion was not included, but is estimated to
be negligible for nuclei lighter than 12C and at most a 2%
effect on the 197Au EMC slope. These changes do not sig-
nificantly affect the nuclear dependencies studied below.
The JLab and SLAC data sets were analyzed using differ-
ent prescriptions to correct non-isoscalar nuclei. In the
case of SLAC data, a simple, x-dependent parametriza-
tion was employed based on high Q2 data for FD

2 /F p
2 .
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A more sophisticated correction was applied to the JLab
data, using a smeared ratio of free proton and neutron
cross sections [31]. Reanalysis of the SLAC data using the
updated isoscalar corrections yields slightly higher EMC
slopes for the very heavy nuclei, but does not impact the
overall conclusions of this analysis. A detailed compari-
son of these effects for both the SLAC data and the heavy
target data from JLab E03-103 are in progress [37, 38].
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FIG. 2: (color online) Magnitude of the EMC effect, defined
as |dREMC/dx| vs. the mean nucleon separation energy, 〈ǫ〉.
The empty circle shows zero expected EMC effect for the
deuteron (not a measured quanity). The separation energies
are calculated using spectral functions from [39, 40].

Initial efforts to describe the EMC effect within a con-
volution model were unsuccessful. However, any attempt
to explain the EMC effect must include the role of the
convolution, which, while small, hs a similar trend, grow-
ing with A. Ideally, one could remove teh convolution
contribution to the A dependence which we should to
study. We have not done this as it would have a mini-
mal impact on the A dependence, while introducing an
unwanted model dependence.

Since the convolution picture approach is unable to
give a significant suppression at large x, it was proposed
that the inclusion of binding effects was required to pro-
vide a more complete description. Ref. [41] gives an ex-
cellent overview of early calculations of the EMC effect
in the binding approach. One can examine the depen-
dence of EMC effect on the binding energy per nucleon,
EA/A. However, this does not describe the data well
as the binding energy peaks near A = 56 and decreases
for both heavier and lighter nuclei. Additionally, one
can look at minimum separation energy, which is what is
required to remove a nucleon from the outer shell. How-
ever, electron scattering samples all the nucleons, leading
us to look at a different energy quantity.

The heart of the binding model describes nucle-
ons bound in a nucleus with some non–zero three-
momentum, and as a consequence of the nuclear bind-
ing, an energy modified from its usual on–shell value,

i.e., EN 6=
√

p2
N + m2

N . The bound nucleon has a re-
moval or separation energy ǫ, with its total energy given
by EN = mN +ǫ (ignoring the kinetic energy of the recoil-
ing nucleus). In practice the average separation energy
is often determined using the Koltun sum rule [42],

〈ǫ〉 +
〈p2〉

2mN
= 2

EA

A
, (3)

where p is the nucleon three-momentum and EA/A is
the binding energy per nucleon. The modification to the
nucleon energy results in a value of x = Q2/2pN ·q shifted
by ≈ 〈ǫ〉/mN . This approach was rather successful in
reproducing the shape of the EMC effect at large x [43,
44].

In this context, the EMC effect comes about due to the
fact that the nucleon is off-shell, but the binding effect
results in a simple rescaling of the relevant kinematic
variable (x) and does not imply an inherent modification
of the nucleon structure in the nucleus.

Figure 2 shows the extracted EMC ratio as a function
of the average nucleon separation energy, 〈ǫ〉 from [45].
In this figure, the separation energy was calculated from
spectral functions used and described in [39, 40]; the
spectral functions in this calculation include contribu-
tions from both mean–field and correlated (high momen-
tum) components of the nuclear wave function. While
the separation energy is an inherently model–dependent
quantity, we have investigated alternate descriptions and
found agreement to usually better than 5 MeV. This cal-
culation is shown in Fig. 2, providing the most complete
set of nuclei and the best description of the data. While
qualitatively the size of the EMC effect correlates very
well with the average separation energy, this description
does not work for all nuclei. Nuclear binding models have
failed to gain traction in the past, usually due to the omis-
sion of the so-called “flux factor” (incorrect treatment of
wave-function normalization), exclusion of pions [29], and
failure to describe the Drell-Yan data. included somhow
whenever nuclear binding is discussed”

It has been argued that the average separation energy
should be replaced with binding energy per-nucleon in
the rescaling of x described above [46, 47]. Since the
binding energy is significantly smaller than the average
separation energy (∼ 9 MeV vs. 51 MeV for iron) the re-
sulting kinematic shift is much too small to fully account
for the EMC effect. Nonetheless, we have examined the
correlation between the size of the EMC effect and bind-
ing energy, EA/A, and found that a linear fit yields a
poor χ2

ν value and a poor description of the data.
It is unlikely that the modification of the nucleon

pdfs in the nucleus can be explained by binding effects
alone, and aspects of medium modification must be in-
cluded [29, 39, 48].

The E139 analysis [28] examined the nuclear depen-
dence of the EMC effect in terms of an ad-hoc logarith-
mic A-dependence and the average nuclear density. In
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FIG. 3: (color online) Magnitude of the EMC effect vs. A.

Fig. 3 we show the EMC data vs. A. There is no par-
ticular expectation that the EMC effect should correlate
logarithmically with A, although, as was seen in [28], the
assumption works remarkably well for large A. However,
as one moves away from large A, there is a significant
deviation for A = 3. Alternatively, an A dependent fit
could be constructed from the values of A < 12, but this
would then fail at larger A. When including light nuclei,
examining the EMC effect versus ln(A− 1) may be more
appropriate as it gives the correct limit for A = 2. How-
ever, while this improves the quality of the fit somewhat
for light nuclei, it still does not provide an acceptable
description of the full data set.

FIG. 4: (color online) Magnitude of the EMC effect vs. A−1/3

as well as a linear fit for A ≥ 12.

Exact nuclear matter calculations [49] can be applied
to finite nuclei within the local density approximation
(LDA)[50, 51]. This provides an estimate of the A de-
pendence for effects that depend on the nuclear density
and is based on general charactaristics of the nuclear den-
sity distributions. For nuclei with A>12 the nuclear den-

sity distribution ρ(r) has a common shape and has been
found to be relatively constant in the nuclear interior.
Contributions to the lepton scattering cross section from
this portion of the nucleus should then scale with A. The
nuclear surface is also characterized by a nearly univer-
sal shape, ρ(r − R), where R is the half-density radius

R = r◦A
1

3 , such that contributions from the surface grow
as R2, or A2/3. It then follows that the cross section per
nucleon should scale like A−1/3. For small-A nuclei the
nuclear response is dominated by surface effects while for
large-A nuclei the nuclear response is dominated by the
constant density region. It has been argued that the re-
sponse function (per nucleon) for nuclear matter can be
extrapolated as a linear function of A−1/3 to A−1/3 = 0
in the deep inelastic scattering region [51].

In Figure 4 the extracted EMC slope is plotted versus
A−1/3. Somewhat surprisingly, this yields one of the bet-
ter correlations with the data, even for very light nuclei.
This is not expected, since the prediction of the A−1/3

behavior is based on the assumption of an A-independent
“surface” density distribution and a scaling with A of the
volume/surface ratio. The assumption that the shape of
the “surface” density is universal is certainly not valid
for A ≤ 12, and it is not clear that the division into a
surface region and a high-density core is at all applicable
to 3He or 4He.
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FIG. 5: (color online) Magnitude of the EMC effect vs. aver-
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The LDA yields a simple A dependence based on the
assumption that the EMC effect scales with density.
Since this is not expected to work for light nuclei, one can
instead use the average nuclear density based on calcula-
tions or electron-scattering measurements of the nuclear
mass (or charge) density. Figure 5 shows the size of the
EMC effect as a function of the average nuclear density.
For light nuclei (A ≤ 12), the average density is evaluated
using density distributions extracted within Green Func-
tion Monte Carlo (GFMC) calculations [52, 53], while
for heavier nuclei it is derived from electron scattering
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extractions of the charge density [54]. This is in con-
trast to Ref. [28], in which the average density was cal-
culated assuming a uniform sphere with radius equal to
the RMS charge radius of the relevant nucleus, although
for A ≥ 12, this yields the same qualitative behavior as
is seen in Fig. 5.
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FIG. 6: (color online) Magnitude of the EMC effect vs. scaled
nuclear density, which is the average nuclear density, scaled
by (A−1)/A to give the contribution of A−1 nucleons (solid
circles). The solid triangles and hollow squares show the cal-
culated average 2N overlap from Eq. 5 (See text for details).
Points offset on the x-axis for clarity.

The average nuclear density yields a poor description
of the data for light nuclei. In Ref. [31], a scaled nuclear
density was taken, where the average density is scaled
by a factor (A − 1)/A. This was applied as a simple
correction aimed at measuring the greater density seen
by the struck nucleon due to the nuclear environment.
We show the results against the scaled density in Fig. 6.
The size of the EMC effect correlates very well with the
scaled nuclear density, with the exception of 9Be and the
poor extrapolation to the deuteron. The former was first
explained [31] as being due to the cluster–like structure of
9Be, whose wave function includes a sizable component
in which the nucleus can be thought of as two α clusters
associated with a single neutron [55–57]. If the EMC
effect is governed by the local rather than the average
nuclear density, then it is not unreasonable that the size
of the effect in 9Be would similar in magnitude to that
in 4He.

As mentioned earlier, nucleons can have a significant
amount of overlap in the nucleus before they come close
enough to feel the repulsive core. If we can quantify this
overlap, it could be a reasonable measure of the local
density. One way to estimate this effect is by taking the 2-
body density distributions from GFMC calculations [52,
53] which provide the distribution of the relative nucleon
separation between pp, np, and nn configurations. If we
integrate the normalized ρpp

2 (r) up to r = 1.7 fm, we
find the probability that a proton is within 1.7 fm (twice

the RMS radius of a nucleon) of another proton. Thus,
we define a measure of the relative pair overlap between
nucleons by taking

ONN =

∫ ∞

0

W (r)ρNN
2 (r)d3r (4)

as the overlap for the nn, np, and pp pairs, where W (r)
is a cutoff function used to evaluate the contribution at
short distances. If W (r) is a step function that cuts off
at r = R0, then Opn represents the average probability
that a given pn pair has a separation of R0 or less. A
proton, then, has an average overlap parameter Op =
(Z−1)Opp +NOpn, which for a step function with R0 →
∞ yields (A − 1), the total number of neighbor nucleons
for the studied proton. To obtain the effective 2N overlap
for a given reaction, we take a cross section weighted
average of Op and On:

〈ON 〉 = (ZσpOp + NσnOn)/(Zσp + Nσn). (5)

We show the effective 2N overlap for two calculations
in Fig. 6. The solid triangles are for a step function with
R0 = 1.7 fm and σn/σp = 0.5, although the result is
very insensitive to the exact value of σn/σp. Because
the amount of overlap between nucleons decreases with
the separation, W (r) can be chosen to enhance the effect
when the nucleons are extremely close together. The
hollow squares are the result when we take W (r) to be a
gaussian centered at r = 0 with a width of 1 fm. In both
cases, there is an overall normalization factor applied in
order to compare to the A dependence of the EMC slopes.
Both of these simple calculations of overlap yield a good
qualitative reproduction of the behavior for light nuclei
and which is not very sensitive to the choice of the cutoff
function or the exact scale of the cutoff parameter.

To test more definitively the notion that the EMC ef-
fect depends on “local density”, additional data on light
nuclei, especially those with significant cluster structure,
are required. Such studies are planned as part of the pro-
gram after the Jefferson Lab 12 GeV Upgrade [58]. For
all of the light nuclei, an average overlap parameter can
be obtained from the ab initio GFMC calculations. This
provides realistic input of the distribution of nucleons in
these nuclei, although the quantitative evaluation of the
overlap parameter does depend on the somewhat arbi-
trary choice of the cutoff function in Eq. (4). One could
also use measurements of short-range correlations in nu-
clei as an observable which is also sensitive to the relative
contribution from short-distance configurations in nuclei.
This is one possible interpretation of the correlation ob-
served between SRC measurements and the EMC effect,
and we will present this in detail after examining the A
dependence of the short-range correlation measurements.
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NUCLEAR DEPENDENCE OF SHORT RANGE

CORRELATIONS

Much as DIS isolates scattering from quasi-free quarks,
quasielastic scattering isolates incoherent scattering from
the protons and neutrons in the nucleus. This allows a
study the momentum distributions of the bound nucle-
ons [59]. Inclusive electron scattering can be used to
isolate contributions from high-momentum nucleons in
SRCs by going to x > 1 kinematics [2, 11, 59].

In the QE regime, we can decompose the cross section
into contributions from single-nucleon scattering (mean-
field independent particle contributions) and scattering
from 2-nucleon, 3-nucleon, etc... correlations [2] via:

σ(x, Q2) =

A
∑

j=1

A
1

j
aj(A)σj(x, Q2) (6)

where σj(x, Q2) = 0 at x > j and the aj(A)’s are pro-
portional to the probabilities of finding a nucleon in a j–
nucleon correlation. In the case of the electron–deuteron
cross section, σ2 will be dominated by contributions from
2N correlations for x >1.4, where the nucleon momentum
is well above kF and the mean field contribution has died
off. In this case, a2 can be closely related to the number
of 2N correlations in the nucleus (per nucleon) relative
to that of the deuteron. Hence Eq. (6) expresses the
fact that in the region j < x < j + 1 the contribution
of j−nucleon SRC dominates. This result is in reason-
able agreement with numerical calculations of the nuclear
spectral functions [60, 61].

FIG. 7: (color online) Per nucleon cross section ratios for
3He and 12C measured at JLab [7] with a 5.766 GeV electron
beam at a scattering angle of 18◦. In the region dominated
by 2N SRCs (denoted by a straight line fit, corresponding to
the high momentum tail) the ratios becomes independent of
x. The ratio grows with mass number A. The dip around
x=1 is the result of A > 2 nuclei having wider quasielastic
peaks, due to higher fermi momenta.

Equation (6) suggests scaling relations between scat-
tering off the lightest nuclei (A = 2, for example) and

heavier nuclei:

σA(x, Q2)/A

σD(x, Q2)/2
= a2(A) |1.4<

∼x≤2 (7)

The scaling of the cross section ratios has been estab-
lished, first at SLAC [2] and at Jefferson Lab [3, 4, 7].
The most recent experiment at Jefferson Lab measured
this scaling precisely in the 2N correlation region for a
range of nuclei with selected data shown in Figure 7.

In extracting the relative contributions of 2N-SRCs in
the inclusive cross section ratios at x > 1, it has typically
been assumed that the electron is scattering from a pair
of nucleons with large relative momentum but zero to-
tal momentum, such that the cross section for scattering
from a neutron-proton pair in a nucleus is identical to the
cross section for scattering from a deuteron. In this case,
the elementary electron–nucleon cross sections as well as
any off-shell effects cancel out in taking the ratio. Final
state interactions are also assumed to cancel out in the
cross section ratios [2, 11].

Earlier analyses [2–4] assumed that the SRCs would
be isospin-independent, with equal probability for pp, np,
and nn pairs to have hard interactions and generate high-
momentum nucleons. This necessitated an ”isoscalar cor-
rection” to account for the excess of nn (or pp) pairs in
non-isoscalar nuclei as well as the difference between the
e−p and e−n elastic cross sections. More recently, mea-
surements of two-nucleon knockout showed that these
correlations are dominated by np pairs [6, 62] due to
the fact that the bulk of the high-momentum nucleons
are generated via the tensor part of the N–N interaction
rather than the short-range repulsive core [63, 64]. The
most recent experiment [7] to precisely measure SRCs on
a range of nuclei did not apply this isoscalar correction,
and presents results for previous measurements with this
correction removed.

TABLE II: Existing measurements of SRC ratios, R2N all
corrected for c.m. motion of the pair. The second-to-last
column combines all the measurements, and the last column
shows the ratio a2, obtained without applying the c.m. mo-
tion correction. No isoscalar corrections are applied. SLAC
and CLAS results do not have Coulomb corrections applied,
estimated to be up to ∼5% for the CLAS data on Fe and up
to ∼10% for the SLAC data on Au.

E02-019 SLAC CLAS R2N -ALL a2-ALL
3He 1.93±0.10 1.8±0.3 – 1.92±0.09 2.13±0.04
4He 3.02±0.17 2.8±0.4 2.80±0.28 2.94±0.14 3.57±0.09
Be 3.37±0.17 – – 3.37±0.17 3.91±0.12
C 4.00±0.24 4.2±0.5 3.50±0.35 3.89±0.18 4.65±0.14
Al – 4.4±0.6 – 4.40±0.60 5.30±0.60
Fe – 4.3±0.8 3.90±0.37 3.97±0.34 4.75±0.29
Cu 4.33±0.28 – – 4.33±0.28 5.21±0.20
Au 4.26±0.29 4.0±0.6 – 4.21±0.26 5.13±0.21
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The per nucleon cross section ratio at large x provides
a direct measure of the contribution of high-momentum
nucleons relative to the deuteron. However, this is not
equal to the relative number of SRCs, since in A > 2 nu-
clei, the correlated pair experiences motion in the mean
field created by the rest of the nucleons. If the pair has a
non-zero center-of-mass momentum, the momentum dis-
tribution of the pair will be smeared out which will flatten
the top of the QE peak, lowering the low-momentum part
of the distribution, but enhancing the high-momentum
tail of the distribution. For example, a nucleon in iron
is ≈4 times more likely to be part of an SRC than a
nucleon in a deuteron (see Tab. II). However, the raw
cross section ratio tells us that there are 4.75 times as
many high momentum nucleons in iron as there are in
the deuteron. This 20% enhancement [61] is the result of
the c.m. motion of the correlated pair smearing out the
high momentum tail in iron. The effect is illustrated in
Fig. 8.
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FIG. 8: (color online) Momentum distribution for the
deuteron as well as the momentum distribution of the
deuteron convoluted with the c.m. motion of the pair in
iron [61].

A correction for this effect was first applied in Ref. [7],
where analyses of previous experiments were also up-
dated. Table II shows R2N , the relative probability for
a nucleon to be part of an SRC in a nucleus compared
to the deuteron for each experiment (results taken from
Ref. [7]), as well as an average value. We also show a2, the
result without the correction for the c.m. motion. The
meanings of the two quantities are subtly different. The
raw ratio, a2, represents the relative strength of the high-
momentum tail, i.e. the total contribution from high
momentum nucleons relative to deuterium. On the other
hand, c.m. motion corrected R2N represents the relative
number of SRCs (per nucleon) in the nucleus, relative to
the deuteron. The distinction will be important in com-
parison of the EMC effect and SRCs in the next section.

For the purposes of this discussion, we combine the
results of the JLab [7], CLAS [4] and SLAC [2] measure-

FIG. 9: (color online) R2N versus A(top) and against A−1/3

(bottom).

ments. The combined data set provides a large collection
of nuclei to examine the A dependence of the extracted
SRC contributions. We use R2N as the measure of SRC
contributions, as we are examining the behavior of the
number of SRC pairs relative to the deuteron.

Figure 9 shows the A dependence of R2N . The top
panel shows R2N vs. A, while the bottom panel shows
R2N as a function of A−1/3, the behavior expected in the
LDA [50, 51]. While R2N is a relatively smooth function
of either A or A−1/3, there is not a simple, linear relation
suggesting a proportionality to either ln(A) or A−1/3. As
with the EMC effect, the prediction of scaling with A−1/3

is only an approximation which is not expected to be
valid for very light nuclei.

For nuclei with similar form for ρ(r), we expect to
see scaling of the SRCs, that is, denser nuclei are more
likely to have short range configurations. Figure 10 shows
R2N as a function of average nuclear density, discussed in
the previous section. It is clear that the simple density-
dependent model does not track the behavior of the light
nuclei, whose large deviations that are reminiscent those
shown by the EMC effect [31].

Figure 10 also shows calculation of the effective 2N
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FIG. 10: (color online) R2N versus average nuclear density
(solid circles). The solid triangles and hollow squares show
the calculated 2N overlap from Eq. 5. Points offset on the
x-axis for clarity.

overlap from Eq. 5. Because the SRC measurements are
designed to estimate the contribution from nucleons in
short-range configurations, one would expect that them
to be sensitive to the average overlap of nucleons. As
can be seen, the calculated estimates of the effective 2N
overlap are in very good agreement with the measured
SRC contributions. This suggests that the SRC data may
represent a good measure of the average overlap, allowing
us to extend the comparison of the EMC effect to the
average overlap to heavy nuclei, where we do not have
calculations of the two-nucleon correlation functions.

DETAILED COMPARISON OF SRC AND EMC

RESULTS

As discussed in the introduction, there have been pre-
vious comparisons of the nuclear dependence of the EMC
and the contributions from SRCs in nuclei [25]. Given the
data available at the time, the correlation seen between
the two effects could be explained by a common density-
dependent scaling. However, the new data on the EMC
effect [31] and SRCs [7], directly compared in Fig. 11,
rule out this simple explanation. For the EMC effect, it
was suggested that if that the local environment of the
struck nucleon drives the modification of the quark dis-
tributions, then the strong contribution of α-like clusters
would make 9Be behave like a much denser nucleus. The
nearly identical behavior of 9Be in the SRC extraction [7]
supports this idea, as the SRC measurements directly
probe the short-distance structure. However, even with
these new data and their unexpected trend, the relation-
ship shown in [25] still appears to be valid. This begs
a careful re-examination of this linear correlation in an
attempt to better understand its underlying cause.

First, we note that the initial comparison of the EMC

FIG. 11: (color online) Size of the EMC effect (|dREMC/dx|
as well as the relative measure of SRCs (R2N -1) are shown as
a function of average nuclear density. R2N was scaled by an
arbitrary factor.

effect and SRCs used extractions of the SRCs which in-
cluded an isoscalar correction for nuclei with unequal
numbers of protons and neutrons and did not apply cor-
rections for CM motion of the correlated pair. It has
been shown that SRCs are made-up of predominantly np
pairs due to the tensor interaction [6, 63, 64], making the
isoscalar correction unnecessary. The question of the CM
motion correction is somewhat more complicated in the
context of the direct comparison of the EMC and SRC re-
sults. Whether or not this correction should be applied
in this analysis depends on exactly what correlation is
being examined, and so we focus now on the different
explanations for this correlation.

The fact that 9Be so obviously violates the density
dependence for both effects in the same way suggests
that an altered density dependence, such as “local den-
sity” (LD) may give us a good description of both effects.
One should then compare the size of the EMC effect to
R2N , which represents the relative probability that a nu-
cleon will be part of a very short-distance configuration
(a deuteron-like SRC). While high-momentum nucleons
are primarily generated by np pairs, all short-distance
NN pairs contribute to high local density. In the “local
density” picture, we would expect that the EMC effect
should scale with the number of possible NN pairs in the
nucleus, Ntot = A(A − 1)/2, while the SRC contribution
is sensitive to only the possible np pairs, Niso = NZ.
Thus, we scale the SRC ratio by a factor Ntot/Niso to
account for the difference in the pair counting for the
EMC and SRC data.

A different hypothesis to explain the linear relationship
between the two effects was proposed by Weinstein et
al [25], suggesting that the EMC effect is driven by the
virtuality of the high-momentum nucleon [10, 30]. In
this case, it is the relative probability for a nucleon to
have high momentum (> kF ) that should drive the EMC
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FIG. 12: (color online) Comparison of EMC slopes and SRC
observables from world’s data where both observables are
available for the same nuclei. The top plot shows the EMC
slope vs. a2-1, testing the high virtuality interpretation. The
bottom plot shows the EMC slope vs. R2N -1, testing the local
density interpretation (as discussed in the text). EMC(D) and
EMC(N) are the fit values for the EMC effect corresponding
to the deuteron and free nucleon.

effect, and thus the uncorrected a2 SRC ratio is a more
direct indicator of the underlying explanation.

We now make two comparisons to examine the rela-
tionship between the EMC effect and SRCs using these
two different underlying assumptions. To test the high
virtuality (HV) hypothesis, we use a2, the uncorrected ra-
tio of A/D cross sections. We compare a2 directly to the
size of the EMC effect, as both are expected to be driven
by the abundance of high momentum nucleons relative
to the deuteron. To test the LD hypothesis, we correct
a2 for the CM motion of the correlated pair to get R2N -
the number of at-rest 2N SRC pairs in a nucleus relative
to the deuteron. We scale it by a factor of Ntot/Niso to
reflect the fact that there more total nucleon pairs that
contribute to the EMC effect than there are np pairs that
form SRCs.

The data as well as the linear fits for both approaches
are shown in Fig. 12. A two-parameter linear fit is per-

formed for the two approaches without any constraint for
the deuteron. Thus, we can examine the fit to test both
the linear correlation of the observables and the extrap-
olation to the expected deuteron value. The intercept of
the fit is expected to be zero, since both the EMC effect
and SRC contributions are taken relative to the deuteron.

Both approaches yield reasonable results, but we have
to delve into the details to understand the impact of the
small differences. While the LD fit has a better χ2

ν value,
the fractional errors of the points of the x-axis are larger
due to the additional model-dependent uncertainties aris-
ing from the c.m. motion correction [7]. The uncertain-
ties applied for this A-dependent correction are some-
what conservative and any error made in this correction
is likely to have a smooth A dependence, so treating these
as uncorrelated errors will artificially lower the χ2

ν value.
If we repeat the LD fit in Fig. 12 neglecting this extra
model-dependent uncertainty (i.e. taking the same frac-
tional uncertainty on R2N as we use for a2), the reduced
χ2

ν value increases to from 0.73 to 0.88, as compared to
1.08 for the HV fit. Overall, the LD fit appears to do a
better job: the extrapolation of the fit to the deuteron
gives essentially zero, as it should, and it has a smaller
χ2 value. However, neither of these differences is enough
to rule out the HV hypothesis.

Next, we remove the intercept as a free parameter
(leaving only the slope), and thus constrain the fit by
forcing it to go through zero. The χ2

ν of this fit should test
both the linearity and the consistency with the deuteron,
allowing for a more quantitative comparison of the re-
sults. This approach more closely reflects the analysis of
[25], where a one-parameter fit along with a deuteron con-
straint is employed. Their analysis is comparable to our
HV analysis, in that they used a2 as the measure of SRCs
and the raw EMC effect slope. However, they used the
older extractions of a2 [4] which applied the isoscalar cor-
rection that we now know is not appropriate. Addition-
ally, these extractions also involved a largely theoretical
correction to go from A/3He ratios to A/2H ratios, which
may be inconsistent with their inclusion of the isoscalar
correction [11].

Our results for the constrained fit can be seen in
Fig. 13. The gap in the χ2

ν values for the two approaches
grows, with 1.3 for HV and 0.61 (0.73 when taking frac-
tional uncertainties from HV case) for LD fits. While the
LD interpretation yields a better description of the data,
χ2

ν = 1.30 for the HV fit corresponds to a 25% confidence
level, so the data are consistent with either hypothesis.

While this is a useful way to compare the relative qual-
ity of fits for the LD and HV inspired foundations, it
yields an unrealistic estimate for the uncertainties on
the fit. Including a deuteron constraint point neglects
the fact that there are significant correlated uncertain-
ties in all of the EMC or SRC points from a single ex-
periment, since all of the values are measured relative to
the deuteron. Therefore, the statistical and systematic
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FIG. 13: (color online) EMC slopes vs a2-1 (top) and R2N -1
(bottom). The fit is constrained to yield zero for the deuteron.

uncertainties in the deuteron data generate an overall
normalization of the values for all other nuclei from that
measurement which is neglected entirely in this approach.
In addition, by putting in a deuteron constraint point
with no uncertainty, the linear fit will have extremely
small uncertainties for all nuclei close to the deuteron,
and would thus yield an uncertainty on the EMC slope
that is significantly smaller than any existing measure-
ment for light nuclei.

We can evaluate the impact of this and make a
more realistic estimate of the fit uncertainties by adding
a deuteron constraint point which includes a reason-
able estimate of the uncertainty associated with the
deuteron measurements in the experiments. We take
|dREMC/dx| = 0 ± 0.01, and a2 = R2N = 1 ± 0.015,
where the error bars were estimated based on deuterium
cross section uncertainties from Refs. [31] and [7]. The
fits are shown in Fig. 14, and the uncertainties in the
slope are roughly a factor of three larger than in the fit
that forces EMC(D)=0.

The relevant results from the fits are summarized in
Table III. As mentioned in the discussion of the EMC ef-
fect data, the analyses done for JLab E03013 and SLAC

FIG. 14: (color online) EMC slopes vs a2-1 (top) and R2N -
1 (bottom). The fit includes a constraint point with fi-
nite uncertainties for the deuteron (|dREMC/dx|=0±0.01;
a2=R2N=1±0.015).

E139 used different isoscalar and Coulomb distortion cor-
rections. We have repeated the above comparisons of the
EMC and SRC measurements after estimating the im-
pact of these differences and while the numerical results
change slightly (by ≈10% of the uncertainty), they do
not affect the trends or the conclusions.

POTENTIAL IMPACT OF THE CONNECTION

The close connection between the measurements of the
EMC effect and the relative contribution from short-
range configurations in nuclei suggests that the modifi-
cation of the nuclear quark distributions may be related
to these short-range structures. However, as seen in the
previous section, the connection can be made by both the
HV and LD descriptions. Future measurements should
allow us to better differentiate between these, but at the
moment, we cannot make a definitive conclusion as to
the exact nature of this connection.

In addition to helping to elucidate the origin of the
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TABLE III: Summary of linear fits of EMC effect vs R2N

or a2, and extrapolations to the slopes of the EMC effect
for the deuteron, EMC(D), and IMC effect for the deuteron,
IMC(D).”-0” denotes a 1-parameter fit, forcing the line to
go through zero, corresponding to no EMC effect for the
deuteron. “-D” denotes a two parameter fit including a re-
alistic deuteron constraint described in the text. Number in
parentheses of the χ2

ν column includes the result of fitting
with smaller fractional errors from a2.

As Published χ2

ν EMC(D) IMC(D)

HV (Fig. 12) 1.08 -0.0503±0.037 0.1010±0.037
HV - 0 (Fig. 13) 1.30 – 0.0854±0.004
HV - D (Fig. 14) 1.27 -0.0035±0.010 0.0864±0.010

LD (Fig. 12) 0.73 (0.88) 0.0036±0.031 0.0582±0.031
LD - 0 (Fig. 13) 0.61 (0.73) – 0.0589±0.003
LD - D (Fig. 14) 0.61 (0.73) 0.0003±0.010 0.0589±0.010

EMC effect, a better understanding of this connection
will also impact other attempts to understand nuclear
effects based on this relation. In particular, a better un-
derstanding of nuclear effects in the deuteron is critical
to have a more reliable extraction of the free neutron
structure function. In addition, details of the structure
functions in light nuclei are important for measurements
which use light nuclei in place of nucleon targets, e.g.
the use of polarized 3He as a substitute for a polarized
neutron target.

A key aspect of the initial analysis comparing the EMC
effect and SRCs [25] was the extrapolation of the EMC ef-
fect to the free nucleon, which allows the extraction of the
nuclear effects in the deuteron. The authors of ref. [25]
use the fit to extract the IMC (in-medium correction)

effect, defined as σA/A
(σp+σn)/2 , by taking the EMC slope

based on the ratio to the deuteron and adding the slope
associated with the IMC for the deuteron, σd/(σp + σn),
given by the extrapolation of the EMC/SRC linear corre-
lation. Given the IMC for the deuteron, they extract the
sum of free proton and neutron structure functions and,
subsequently, F2n(x). They obtain an IMC slope for the
deuteron of 0.079±0.006 where, as discussed above, the
small error is a consequence of using the known values for
the deuteron as a constraint while neglecting the corre-
lated uncertainties in the measurements. The equivalent
global analysis from their later work, including the new
data from Ref. [7], yields 0.084±0.004 [32]. In both cases,
they use a fit of the EMC sloe to a2 which is not quite
consistent with either our LD or HV comparisons.

We repeat this extraction to obtain the IMC slope for
the deuteron, using our fits from Figs. 12-14 and taking
the difference of the EMC slope extrapolated to the free
nucleon (a2=R2N=0) and that for the deuteron. Note
that this is equivalent to the slope parameter, b, of the
fits, and taking dRIMC(D) = b accounts for the corre-

lated errors in the EMC slopes for the deuteron and free
nucleon. Similarly, one can obtain the IMC slope for
A > 2 via dRIMC(A) = dREMC(A) + dRIMC(D).

For both the LD and HV fits, we focus on the uncer-
tainties from fits where the deuteron constraint is ap-
plied, but where uncertainties associated with the con-
straint are taken into account (Fig. 14). These are larger
then the quoted uncertainties of the previous global fits
which do not account for the correlated uncertainties in
the EMC and SRC ratios for different nuclei. The HV
approach yields slopes that are close to the earlier analy-
ses, for fits where a constraint for the deuteron is applied.
The LD fits all yield a smaller IMC slope for the deuteron,
suggesting smaller nuclear effects. A reanalysis [32] of the
deuteron IMC effect with different data sets found its
value varied from 0.079 to 0.106, with the largest differ-
ence associated with the use of R2N rather than a2 from
the SRC measurements. In the same work, the value for
the IMC effect is always larger than our results based
on local density because they assume that only the high-
momentum nucleons associated with the SRCs contribute
to the EMC effect, while low-momentum short-distance
pairs are included in our local density analysis through
the factor Ntot/Niso.

The use of the SRC observables to extrapolate mea-
surements of the EMC effect to the free nucleon gener-
ates a large range of potential results, with IMC slopes for
the deuteron from 0.059 to 0.101, even under the assump-
tion that the correlation is perfectly linear all the way to
A = 2. However, this range is significantly narrowed if
one can determine whether the underlying connection is
related to the density or the virtuality associated with
the short-distance configurations. With further studies,
this may be possible. If so, the nuclear effects as extrap-
olated from measurements can be compared with direct
calculations of the nuclear effects in the deuteron. A re-
cent study of the model dependence of nuclear effects
in the deuteron [65], based on convolution calculations
and off-shell effects, produced a range of results for the
neutron structure function. For on-shell extractions it is
relatively narrow, and a direct comparison to the IMC for
the deuteron based on extrapolation from heavier nuclei
can provide a constraint on off-shell effects.

However, one must be careful in using this approach to
obtain the free neutron structure function, especially at
large x values. As discussed in Ref. [65], extrapolations
of the EMC effect to the deuteron neglect Fermi motion,
which is the dominant effect at x > 0.6 and is sensi-
tive to the difference between proton and neutron struc-
ture functions at smaller x values. The Fermi motion
effects have a significant Q2 dependence in this high-x
region [66, 67], limiting the reliability of such extrapola-
tions. This may explain the change in the x dependence
of the quark d(x)/u(x) ratio between the IMC-based ex-
traction [68] and the results of all the deuteron calcu-
lations examined in that work. Thus, it is necessary to
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improve our understanding of the connection between the
EMC effect and the presence of SRCs, to better constrain
the extrapolation, and to explicitly account for the both
effects of Fermi motion and additional nuclear effects, as
done in Ref. [40], when going to large x values.

Additionally, Fermi motion could also impact those
extractions of neutron structure functions that rely on
a comparison of deep-inelastic scattering from 3He and
3H [69, 70]. It was shown in Ref. [69] that the differ-
ence between the nuclear effects in 3He and 3H, defined
as σA/(Z × σp + N × σn), is extremely small, with the
super-ratio of the 3He and 3H nuclear effects typically
less then 1% from unity, with a spread of 1% when vary-
ing (variety of factors). In fact, almost all of this effect
comes from the different x dependences of F2n and F2p, so
even the simple convolution calculation of Fermi smear-
ing yields a larger enhancement for the neutron, which
falls off more rapidly with x.

Both the local-density and the high-virtuality expla-
nations for the correlation suggest the possibility that
the EMC effect will be different for protons and neutrons
in non-isoscalar nuclei such as 3H or 3He. Given the
strong dominance of np pairs [6] as the source of high-
momentum nucleons, the high-momentum tail of the 3He
momentum distribution would come from the single neu-
tron interacting with one of the two protons. This im-
plies that the neutron will be at very high momentum
twice as often as either of the protons, and thus have a
much higher average virtuality. Ref. [69] does account
for the difference in the calculated proton and neutron
momentum distributions, and thus includes the excess of
the high-momentum tail in the singly-occurring nucleon.
However, any effects beyond the convolution which are
related to the high-momentum nucleons (or high-density
configurations) will yield an additional difference in the
EMC effect for protons and neutrons in A = 3 nuclei.

If we assume that the EMC effect for the singly-
occurring nucleon is twice that of the doubly-occurring
nucleon, then we can estimate the different sizes of the
EMC effect in 3He and 3H. For x ≈ 0.7, where the pro-
ton cross section is three times the neutron cross section,
one finds that the EMC effect in 3H is 40% larger than
3He. This would likely enhance the difference between
3He and 3H, relative to the calculations of Ref. [69], al-
though whatever part of the EMC effect is explained by
just the convolution is accounted for in their result.

Realistic calculations of the nucleon momentum distri-
butions in 3He (Fig 2 in Ref. [11]) show that for 300-600
MeV/c, the range which accounts for the bulk of the SRC
contributions, the momentum distribution of a proton in
3He is roughly 1.6–1.8 times the momentum distribution
of a neutron. So, the effect is likely to be smaller than the
estimate from the simple assumption of total np domi-
nance. The local density picture also gives a difference
if the singly-occurring nucleon has a different probabil-
ity to be in a small-sized configuration than a double-

occurring nucleon. Based on GFMC calculations [52] of
the two-body densities in 3He, the np pair has approx-
imately 50% more contribution for nucleon separations
below 1 fm than the pp pair, again yielding an excess of
protons in high-density configurations.

SUMMARY AND CONCLUSIONS

We examined the A dependence of both the EMC ef-
fect and presence of short-range correlations in nuclei and
find that the traditional models of a simple density or
A dependence fail with the inclusion of the new data
on light nuclei. Both observables show similar behavior,
suggesting a common origin. We examine the correlation
between the two observables under two different assump-
tions for the underlying physics. In the first, we assume
that the EMC effect is driven by the presence of high-
momentum nucleons in the nucleus, which is directly ex-
tracted in the inclusive measurements at x > 1. In the
second, we assume that the EMC effect scales with the
average local density, and thus correlates with the num-
ber of SRCs extracted from the x > 1 measurements.
We find that under both assumptions, the data are con-
sistent with a linear correlation between the two effects,
with the local density comparison yielding a smaller χ2

ν

value.
These results support the local density explanation

proposed in Ref. [31], but are still consistent with the
explanation in terms of high virtuality [25]. In the end, a
more definitive determination of the underlying physics
will require further data. A large step in this direction
will be taken at JLab after the 12 GeV upgrade. A large
repertoire of nuclear targets, including several light nuclei
with significant cluster structure, will be used to make
high precision measurements of the EMC effect [58] as
well as SRCs [71], which will further illuminate the na-
ture of the relationship between the two. In addition,
measurements probing the modification of nucleon form
factors [18, 72] and structure functions [73, 74] as a func-
tion of virtuality are planned that will cover a large range
of initial momentum, allowing for direct comparison to
models of the nuclear effects.
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