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Nuclear Safety in the Modern Era

Comprehensive Nuclear Test-Ban Treaty

• United States signed on September 24, 1996

• Ratification dependent on Science Based Stockpile
Stewardship Program to ensure safety and reliability of
nuclear weapons in active stockpile

Stockpile stewardship

• No full-scale nuclear weapons testing since 1992

• How does aging of nuclear material affect reliability of
nuclear weapons?

• NNSA mission: Maintain the safety, security, and
effectiveness of the nuclear deterrent without nuclear
testing

Major Effort at LANL

• DARHT: X-ray radiography for non-nuclear tests

• LANSCE: spallation neutrons

• pRAD: proton radiography

• TA-55: Pu operations
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Aging of Nuclear Material

Nuclear energy

• Stopping of fission fragments in UO2 = primary source
of heating

• Irradiations causes “fission spikes” → atomic
displacements

• Physical and chemical properties of fuel change over
time: reduced thermal conductivity, enhanced diffusion,
creep, and gas release

• Formation/resolution of fission gas bubbles

• UO2 pellets in fuel rods: porosity gradually destroyed
by fission tracks

Damage from Material Sputtering

• Insulators vs. conducting material

• Semiconductors and metals in microelectronic components

• Space science: Predicting lifetime of unshielded detectors in space
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Question: Effects of Fission on Surrounding Material?

Fission well studied

• Typically 2 fragments emitted

• A∼100, E∼100 MeV, v
c
∼ 10%, Range∼10 µm

Effect of fission fragments: aging

• Damage to the material

• Sputtering of matter near surface

Description of energy transfer?

• > 90% energy → electrons, rest nuclear collisions

• No complete QM description

• Competing models: Binary Collision Approximation,
“Thermal Spike”, “Coulomb Explosion”, shock waves?

• Different predictions: yield, angular distribution of
sputtered atoms

• Depth of fission fragments → sputtering

235U fission
fragments
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Inducing Fission with Ultracold Neutrons

Experimental evidence

• Many previous measurements of sputtered atoms per fission

• Significant disagreement in yield, distribution!

• Key to differentiating models

New Technique for understanding sputtering

• Induce fission using Ultracold Neutrons

• Excellent control of neutron energy

• Very sensitive probe of fission as
function of depth

LANL: Unique Position for work

• LANSCE: one of world’s brightest sources of UCN

• Expertise in fabrication and analysis of actinide targets
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Ultracold Neutrons

Class Energy Source
Fast > 1 MeV Fission reactions / Spallation
Slow eV – keV Moderation

Thermal 0.025 ev Thermal equilibrium
Cold µeV – meV Cold moderation

Ultracold ≤ 300 neV Downscattering

How cold is Ultracold?

• Temperature < 4 mK

• Velocity < 8 m/s

• Usain Bolt ∼ 12 m/s

UCN can be bottled

• Gravitational (V = mgh): 100 neV / meter

• Magnetic (V = −~µ · ~B): 60 neV / Tesla

• Material
(
V = 2π~2Nb

m

) 
58Ni : 335 neV
DLC : 250 neV
BeO : 250 neV

Cu : 170 neV
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UCN-induced Fission in Uranium

Uncharted energy regime

• 3 orders of magnitude lower than
ever explored

• Very high theoretical cross section
σ ∼ 1

v

• 300 neV UCN: 2.16× 105 barn
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Control depth of fission event

Range of UCN in uranium (µm)
DU NatU SEU LEU HEU VHEU

%235U 0.2 0.7 2 5 20 100
200 neV 118 66 312 13 4 0.8
300 neV 144 81 38 17 4.5 0.9
400 neV 191 101 45 20 5 1
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Program Goals

Characterize sputtered material. . .

• Yield per fission

• Mass distribution

• Energy distribution

• Angular distribution

as a function of. . .

• UCN-energy

• Material thickness

• Material surface preparation

• Alloys, material layers

• Expand to more actinides

Important Preliminary Questions

1 Can we induce fission with UCN?

2 Can we detect sputtered material?

3 Do we see a dependence on UCN energy?
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Ultracold Neutron Facility at LANSCE

COOLED POLYETHYLENE
MODERATOR

SD2 VOLUME

He-COOLED W
SPALLATION TARGET

BeGRAPHITE

PROTONS

FLAPP
ER 

VALVE

UCN Source

• 800 MeV proton beam + W target → spallation neutrons

• single scatter in SD2: CN→UCN + phonon

• High density at shield wall: 50 UCN/cc

• Pulsed beam: Low background

Experimental Area

• UCN bounce along guides, through Al window, into detection chamber

• 6 T magnet = near 100% polarization
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Detection system

Ion chamber

• Same detector used for normalization and fission
studies

• UCN ∼ 50% transmission into detector

Modes of operation

• Mode 1: Counting ultracold neutrons

• 3He + n → p + t
• 10B + n → α + 7Li

• Mode 2: Counting fission fragments

• Mode 3: Exposure (sputtering)

Mode 1a Mode 1b Mode 2 Mode 3
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1. Can we induce fission with UCN?

238U

• 2.25 cm diameter, 1 mm thick disk
of DU (∼ 0.2% 235U)

• Rate: 0.5± 0.3 fission/s

• = (1.3± 0.8)× 10−4 fission/UCN

235U

• 2.2 cm diameter, 1 mm thick disk of
HEU (> 80% 235U)

• Rate: 70.9± 0.8 fission/s

• = (1.90± 0.02)× 10−2 fission/UCN
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Varying UCN Energy

Simulated UCN energy spectrum
after magnet

Two primary methods for control

• Magnetic field (60 neV/T)

• Gravity (100 neV/m)

Gravity scan

• Adjust height of ion chamber

• Sensitive to geometry, guide quality

• Al window: 50 neV barrier

• 3He + n → p + t
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2. Do we see a dependence on UCN energy?

DU sample

• Electropolished, 2.25 cm
diameter, 1 mm thick disk

• Measured fission rate
decreases with UCN energy
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Preliminary

235U sample

• Thin sample: 30 µg heavily
oxidized 235U on tape

• Measured fission rate increases
as UCN energy increases
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Sputtering from UCN-induced fission

Exposure to Silicon wafer

• 1” diameter, 475 µm thick, polished wafer

• Exposed to 2.2 cm diameter, 1 mm thick
electropolished DU disk

• 3×107 total UCN in chamber

• 0.18 µg 238U collected on wafer

• Analyze with scanning probe microscopy

Exposure to Ni cylindrical foil

• 0.005” Ni foil, 1.15” diameter, 2.835” height

• UCN bottle: Ni material potential ∼ 300 neV

• Exposed to DU disk and 30 µg 235U thin
sample
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Can we detect sputtered material?

Expose to DU disk and HEU film

• Each sample exposed to
∼ 108 UCN

• Determine yield from α decay
rate in ion chamber

• Can distinguish α’s from 238U,
235U decay
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Angular distribution

• Mask vertical sections of foil

• Results from DU foil

• Distribution ∼ isotropic
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Next: Characterize Ejected Material In-Situ

Key questions:

• How much comes off?

• Size distribution vs. depth/surface quality?

• Kinetics vs. depth?

• Effect of surface preparation?
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Summary

First characterization of UCN-induced fission

• Previously no fission data at these energies

• Initial characterizations of UCN energy dependence, material
thickness

First observation of sputtering from UCN-induced fission

• Proof of principle demonstrated

• Analysis of sputtered rates, angular and size distribution underway

Future plans:

• Determine absolute cross sections

• Develop scheme for characterizing ejected material

• Explore effect of material thickness, surface preparation in more detail

• Develop path forward for plutonium and other actinides
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