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DETERMINING THE TRUE RESIDENCE TIME
DISTRIBUTION CURVE OF PHASE I SYSTEM

Summar

Previous engineering analyses of the Br82

tracer experiments failed to
account for the fact that the fluid was being recirculated during these
tests. Thus, the concentration vs. volume curves shown in the Run Segments
4 and 5 reports and elsewhere are not really the response of the system to
a pulse of tracer. These data are complicated by the fact that at later
times most of the tracer being measured was not the original pulse, but the
tracer on its second or third pass through the reservoir. When this
recirculation effect is subtracted out of the original concentration vs.
volume curves, the true residence time distribution (RTD) for the Phase I
system indicates that the "long tail" on these curves is not caused by
dispersion but results almost entirely from recirculation. The RTD curve
for this system cannot be modeled precisely using a one parameter model,
but can probably be described by a combination of hydrodynamic and
turbulent dispersion in a single fracture. Alternatively, flow through
multiple fractures could easily result in the RTD curvé; deESrmined during

Run Segments 4 and 5.
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Mathematical Analysis

The. response of a continuous flow-through vessel (or, ig our case, a

reservoir) to a pulse of inert tracer material is often used_to

-characterize the degree of backmixing in the system. This sdzca11ed E

curve may also be thought of as the exit age distribution: E(t)dt is the
fraction of fluid in the exit stream which has been in the system for a
length of time between t and t +dt. The two extreme cases of mixing are a
perfectly mixed system, which results in an exponentially-decaying E curve,
and plug flow with no backmixing (the E curve is the dirac delta function
in this case).

Since the E curve is actually the exit age distribution, it is easy to
show (Levenspiel, 1972) that the response of a system to an arbitrary inlet

concentration Cin(t) is

t
cout(t) =[ Cin(t-t’)E(t’)dt‘ (1)
0

Equation (1) is known as the convolution integral.

The normal situation in chemical reaction engineering is to use the
convolution integral to compute Cout(t) for a system for which E(t) has
been determined experimentally. Our problem is just the opposite: we seek

to compute E(t) from a tracer experiment in which we have measured C, and

Cout' Note that if cin were simply a pulse of tracer at time t = 0, then

Equation (1) predicts (correctly) that the response of the system (Cout)

~ would be the E curve itself. However, since we recirculated“the fluid in

these experiments, Cin(t) js actually a pulse at time t = 0, followed by
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cout(t)‘ '51nce cout(t) is measured in these experiments, we can use the
convolution integral to calculate E(t).

.The computer code TRACE calculates E(t) for a tracer exﬁ%riment where
the input is a pulse of tracer followed by the recirculated f%uid of
concentration Cout(t).. It is important to note that according to Equation
(1), E(t) may be calculated up to time t without knowing the E curve or the
concentrations at times greater than t. Thus, the computer code marches
forward in time, calculating the convolution integral at each time step,
using the input and output concentrations and the value of the E curve
found at the preceding times. The code also corrects for dilution with
make-up fluid at the surface and pore fluid in the reservoir.

To check the computer code TRACE, two analytical solutions were used:
a single continuous stirred tank reactor (CSTR) and 2 CSTR's in series.

The E curves for these idealized systems are known, and Equation (1) may be
solved analytically for Cout(t) for the case of completion recirculation.

The code takes the values of Cout(t) as input data and calculates the E

curve. Details of this analysis are given in the Appendix.

Analysis of the Phase I Tracer Experiments

The computer code can be used to analyze the Phase I Br82 tracer data
to obtain E(t) for the reservoir. In the analysis of this real system,
there are the added complications of ng; water loss and dilution with pore

=fluid. In order for the computer simulation to be accurate, the
‘concentrations must be normalized with respect to the total aﬁgunt of
tracer recovered, which in turn depends'on the water loss. For Experiment

217-A2 (5/9/80), even after correcting for 10% dilution with make-up fluid
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and 5% with pore fluid, the total recovery of tracer was still only 89%.
However, despite the fact that about 10% of the tracer loss cannot be
accounted for in this analysis, it is still felt that the E %urve generated
by the computer code TRACE is a reasonably accurate representation of the
RTD for the Phase I system.

Figure 1 compares the experimental data obtained in the May 9, 1980
Br82 tracer test (Experiment 217-A2) to the E curve generated from this
data in the present analysis. The E curve matches the concentration data
almost exactly up to a volume of about 125,000 gallons. The slight
discrepancy is due to the fact that the fiuid is being diluted with »5%
pore fluid before being measured at the surface. At volumes greater than
125,000 gallons, the outlet concentration is a combination of tracer in its
first pass through (the E curve) and tracer which has been recirculated two
or more times. At very large volumes, the measured output is almost

entirely made up of recirculated fluid.

Reservoir Modeling Using the New RTD Curve

Important conclusions with respect to reservoir modeling of the Phase
I system can be inferred from the RTD curve calculated in the preceding
section. First, the Tong tail on the concentration vs. volume tracer
curves need not be considered as it has been shown to be due to
recirculation of the fluid. As a result, the overall dispersion of the
System is less than has been suggested in the Run Segments 4 and 5 reports
and éﬁsewhere (i.e. Tester et al., 1982). Modeling of the Phase |

reservoir with a one-fracture, one-parameter model now seems more

justified, given the shape of the E curve in Figure 1.
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Figure 2 shows two attempts to model the Phase 1 system using one

parameter models. The axial dispersion model was calculated using an

- analytical -expression developed by Levenspiel and Smith (19529:

b
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E = 1 exp[-{l-e)zpe] , (2)
® 2 repe? 4¢
where § = V/V= volume divided by the integral mean volume. The optimum

value of Pe for the Phase I reservoir is 6.96, determined by using the

following relationship for the variance 062 governed by Equation (2).

2 2 8
o =z — 4 (3)
o Pe ;;Z
where
2 2
002 =0 2 WGy (4)
62_ szCi

It should be pointed out that Equations (2) and (3) are strictly applicable
only for so-called open vessels in which the flow is not disturbed as it
passes the measuring point. For our case, where the flow pattern changes
from plug flow in the injection and production wellbores to dispersed flow
in the fracture system, the asymptotic solutions of Brenner (1962) should
really be used. However, since the solutions are qualitativiey quite
similar, the more simple analytical expression of Levenspiel and Smith was
used in the present analysis.

Alternatively, Murphy and Cornwell (1982) calculated the E curve which

would result from hydrodynamic dispersion due to two-dimensional streamline

Tga

flow in a circular fracture. Their curve for R/L = 0.667 is plotted
alongside the actual E curve and the axial dispersion curve. While neither

model adequately simulates the Phase I tracer data, each possesses
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Figure 2. Two attempts to simulate the E curve for the
Phase I system with one-parameter dispersion models.



HhH

desirable characteristics when compared to the actual E curve. The axial
dispersion model predicts the overall shape of the curve reasonably well,

while the hydrodynamic dispersion curve predicts the positiod (but not the

- height) of the peak. -~

At first glance, the axial dispersion curve appears to simulate the
data more accurately, but we know from previous heat transfer modeling that
the modal volume (the volume for which the E curve is a maximum) is the
parameter which correlates most readily with effective heat transfer area.

For a given fracture aperture, the modal volume may be thought of as a
measure of the amount of short-circuiting of the fluid in its path from
entrance to exit. Thus, the hydrodynamic dispersion model could perhaps be
more useful in heat transfer modeling, because axial dispersion cannot
provide a sufficient amount of short-circuiting to predict the modal
volume. A two-parameter model involving both turbulent and hydrodynamic
dispersion in a single fracture is probably justified and could be used to
simulate both the modal volume and the overall amount of dispersion in the
system. Alternatively, a multiple fracture or aperture distribution model
could be used. In short, the non-uniqueness problem still exists. New
diagnostic experiments such as chemically reactive tracers will be required

to characterize the Phase II system.

Recommendation

In the future, tracer experiments'shou1d be run in the fresh water
~flush mode during the time when the peak of the E curve is being recorded.
"This would eliminate the uncertainties associated with subtraéiing out the

effect of recirculation in the tracer experiments. In the Phase I system,

80% of the recovered tracer could have been kept from recirculation by



operating in the fresh water flush mode during the period from 68,000 to

248,000 gallons. The radioactive water could be reused after allowing
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enough time for the Br - to decay (about one week).

-

1

-—
"—

Acknowledgements

bt

I would 1ike to thank Chuck Grigsby and Rick Rauenzahn for the helpful

suggestions they provided during the course of this work.

Appendix: Analytical Expression for Cout(t) for an Ideal Reactor of Known

RTD

To check the computer code TRACE, we need to solve Equation (1)
analytically for a recirculating experiment in an idealized reactor of
known E(t). Then the values of Cin(t) and Cout(t) may be used as input to
test the accuracy of the code.

The simplest way to solve Equation (1) is by first taking the Laplace

transform (Beyer, 1976):
Cout(s) = cin(S) E(s) | (A-1)

Since Cin(t) is the dirac delta function followed by cout(t)’

L4

1

Cin (s) = Cout(S) + 1 2 (A-2)
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Thus,

' Cout

(s) = E(i) < (A-3):‘;

For a given idealized reactor of known RTD, we can take the,iap1ace
transform of E(t), substitute into Equation (A-3), and take the inverse
t(t).

For our test cases we will consider N CSTR's in series. The E curve

transform to find C
ou

for this idealized system is

B = 1 eV (A-4)
STREY
The Laplace transform of (A-4) is
E(s) = 1 (A-5)
(ste1)
Cout(s) = _1 . (A-6)
(st+1) -1

The two cases we will consider are N=1 and N=2. For 1 CSTR,

Cout! B =L (A-7)
o,
while for two CSTR's,
Cuelt) = - (1-e2Ygy (A-8)
7%

Equations (A-7) and (A-8) were used to generate the input data for the

- computer code. The code calculated E(t) for the two cases using Equation

(1), thus providing a verification of the program logic.

10



wh bl

Literature Cited

- Beyer, W. H. (ed.), CRC Standard Mathematical Tables, CRC Press
(1976). B

- Brenner, H., "The Diffusion Model of Longitudinal Mixindfﬁn Beds of
Finite Length - Numerical Values," Chem. Eng. Sci., 17 (1962).

Levenspiel, 0., Chemical Reaction Engineering, John Wiley and Sons,
Inc. (1972).

Levenspiel, 0. and Smith, W.K., Chem. Eng. Sci., 6, 227 (1957).

Murphy, H. D. (ed.), "Preliminary Evaluation of the Second Hot Dry
Rock Geothermal Energy Reservoir: Results of Phase I, Run Segment 4," Los
Alamos Scientific Laboratory Report LA-8354-MS (1980).

Murphy, H. D. and Cornwell, D. K., "Transport of a Tracer Through
Simple Fractures," Los Alamos National Laboratory, ESS-4 Memorandum (1982)

Tester, J. W., Bivins, R. L. and Potter, R. M., "Interwell Tracer
Analysis of a Hydraulically Fractured Granite Geothermal Reservoir," Paper
SPE 8270 presented at 54th SPE Annual meeting, Las Vegas, Nevada, September
1979 - revised, May 1982.

Zyvoloski, G. A. (ed.), "Evaluation of the Second Hot Dry Rock

Geothermal Energy Reservoir: Results of Phase I, Run Segment 5," Los
Alamos National Laboratory Report LA-8940-HDR (1981).

11



