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ABSTRACT

In this paper reliable derivatives up to second order over a surface are

obtained frm holographic interferograms. This is done on a large scale, handling

an amoun: of data that would be prohibitive If attempted by hand snmothing. This

opens the way for bending and shear strain determinations in a non-contactingway

over large fields of view. The surface need be treated in no special way, in con-
e

- trast to the preparation required with brittle lacquers and photoelastic coatings.

Strains in the mlcrostrain range are readily measured. Holographic interfmnnetry

In conjunctionwith the numerical methods mentioned herein constitute a non-con-

tacting ollticalstrain gauge. Furthermore it makes possible experimental application

of sophisticatedmodal analysis because the normal nmdes upon which these techniques

are based are directly measured. For example, If the vibratory behavior Is known,

through a sufficiently large sample of the normal modes, then the static behavior

may be calculated. Similarly, If the normal modes of a non-rotating body are known i

Its behavior in a rotating system can be

of a turbine rotor may be predicted from
.

nutdes.

!
calculated. Thus the centrifugal stiffening

a knowledge of the spectrum of Its normal

*
This work was done while at Ford Motor Company, Sclentlflc Research Laboratories, ~

“=%!

Dearborn, Michigan 48121. s
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~NTRODUCTION

Ever since the discovery of holographic interferometry1’2’3’4’5’6 there

fiavebeen many successful and interesting applications in nondestructive testing

where the information obtained was primarily of a qualitative nature. As an example

consider the use of holo-techniquesto determine debonds in honeycomb paneling. One

wants to know where the debond occurs and its general extent, No further information

is necessary. Many such applicationsare cited in the literature,7yet in the inter-t

ferogram much more informationof a quantitative nature is latent. For example, the

displacements and deformations of the body under test may be determined. There are

a number of examples of interestingand successful applications in this area where

quantitativedeterminations of displacementand deformation were done but they are

fewer in number. As an example, consider the determination of one,8 two,g and

threelO’ll dimensional deformations under static or dynamic load, Poisson’s ratio,12

vibratory mode shapes and natural frequencies.13 Very often an engineer is not

interested in the displacement field, but rather in t“; strains which are obtained

from the first14’15’16and second17 order derivatives of the displacement field.

So far there are even fewer repwted applications in which the data reduction and

processing has been carried to actual strains. This is primarily due to the labor

#

*
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and time involved in successfully producing reliable first and second derivatives

frun experimentallyobtained data.

Leissa18 in his nmumental compendium “Vibration of Plates,” states: “Virtually

no one in the literature evaluates the bending stresses due to a unit amplitude of

motion. This information is obviously important particularly for fatigue studies.

The lack of results is undoubtedly due to the fact that the stresses must be obtained

fran second derivatives of the mode shapes. Not only does this require additional

canputationalwork, but also the mode shapes usually are not known with sufficient

accuracy to give meaningful results for stresses.” In this paperwe show that for

quantitativework of this nature, holo-techniquesare unrivaled. Full field ampli- ‘

tude distributions can be obtained from which reliable bending stress may be calcu-

1ated.

EXPERIMENTAL

In the work described here a cantilevered plate, which may be co:lsidereda

zeroth order model of a turbine blade or impeller blade, was driven sinusoidally
#

by eddy current transducers. The natural frequencieswere determined using real-

time holography. The mode shapes were recorded as time-average interferogramson

4“ x 5“ photographic plates (Agfa 10E7O). Photographic reconstructionswere made

on 4“ x 5“ negatives and 8“ x 10” prints were used In the data reduction stage. The

data reduction was performed from photographic reconstructionssimply because the

equipment was avatlablu. Obviously if much data of this kind is to be processed,

a better method would be to proceed without the photographic step by using sme form

ofelect~onic imaging and direct digitization. Figure 1 shows nine “lowest-order” ,

mdas for the cantilever plate made of aluminum with dimensions 1/8” x 6“ x 7-1/4”.

The modes are arranged according to the morphology suggested by Grinstad19 in which

each row corresponds to a constant number n of node lines parallel to the clamped

edgeo and each column corresponds to a constant numberm of node lines Perpendicular . _ ~
●“i

to the clamped edge. Thus the modes can be characterizedby a pair of digits (inn). ~
:mw

~1
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The order of appearance of the modes is

freuuency at which each mode occurred. Note

22mode at a frequency of 2150 Hz, hence the
..

above.

shown in parenthesis under ‘:he

the 30 mode actually occurs before

quotation marks around “lowest-order”

This manner of data presentation is very useful in assessing whether or-not

any modes have been missed. Furthermore,as long as one deals with homogeneous

and isotropicmaterial a relationship can be established between the modal pattern

of an unusual shape such as an impeller, and the zeroth order model, in this case,

the cantilever. As an example, consider Fig. 2which shows the lowest frequency

modes of an impeller blade. With only a little imagination they are readily

identifiedas the 00, 01, 01, and 11 modes in order of increasing frequency. Where

the first (second) digit refers to the number of node lines perpendicular (parallel)

to the clamped edge accmling to the previous convention.

DATA REDUCTION

Once a high contrast8° x 10” print was obtained on a single weight matte paper

the digitization could proceed. Glossy prints were much harder to work with than

matte. Several different digitizing devices were used, ~1 of which worked from

the prints: two models of Bendix digitizer, a graph pen, and four models ofcoordi-

nnatograph {Gerber, two Aeros and an old Benson-Lernert). The coordinatographs used

TV cameras with 10X objectives to scan the prints. They are designed to work on

large (5 feet by 18 feet) mylar drawings of very high contrast, and they are not

well suited to Interferogramdigitizing. An addlttonal inconveniencewas’the out- ‘

put~ punched cards. The more convenient digitizers, the Bendix and the Graph-pen,

write directly onto the disk file spdce of the computer, a DEC-10.

The data reduction proqram proceeds in two sta~esa First the distortion In

the reconstructionand obliquity factors due to the nolocamera geometry are

accounted for. Then a program developed Initially for use in numerical control
, *4

● ●;
. f “
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machining work Is used to provide a smoothinq and data compression. This ~

reduces the data set of many discreet points to a handful of parameter. which

allow a mathematically continuous and smooth description over the entire surface.

Initially piece-wise continuous cubics or splinefunctionswere tried. Taylor

and Brandt17

.

reported success using this method. They accomplish smoothing by

judicious deletion of some of the data. Some kind of smoothing is essential as

can be seen from Fig. 3. The solid curve is the second derivative of the sine

function over a full cycle which simulates the

gular plate clamped at botb edges. The finely

derivative obtained using piecewise-continuous

amplitude distribution of a rectan-

(coarsely)dotted line is the second

cubics when a random 1% (10%) error

Is introduced in the position of points taken so as to correspond to holographically

obtained vibration mode data (i.e., at l/4wavelength intervals). The percentage

error refers to the percentage of the fringe spacing and refers to how well the

darkest point in the fringe can be located. Dat~ taken in the manner described

above is more nearly 10% than 1%. Yet this data will produce excellent displacement

measurements that look very smooth, cf. Fig. 4. Each point is shown with its

appropriate error bars. This is data taken along the lef~edge of the 00 mode as

shown in Fig. 1. Figure 5 shows the first derivative of th~s function taken two

ways, the solid (dotted) line is obtained using si~ple differences (piece-wise-

cc+ntinuouscubics).

Figure G is included to show the modntain range produced as a second derivative

using sp!ines with no smoothing. This emphasizes the need for some method of

smoothing.

Using the vector polygon polynomial, or 13ezierpolynomial, a surface fit is

made, rather than just a curve fit. Hence all three second derivatives are ob-

tained for any point on the surface measured. Therefore, all the bending and shear
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The strains are obtained as:

. .

av a2w
‘Y ‘T-z q

av au

Yxy = K ‘r - 2Z $Y

where x.and y are in the plane of the plate, and z is along the normal in a

direction which gives a right-handed coordinate system; U. and V. refer to the

plane deformation af a particular point parallel to x andy respectively in the

surface, and W. is the amplitude for the same point in the z direction. For the

case of the cantilever plate, U. and V. = O, and for a surface point z = t/2.

Figure 7 is a plot of the bending strain on the same plate in the 00 mode
/

along a Vertical slice 1.5 inches from the right edge. The solid line represents

the strain one expects assuming the plate is a cantilever beam. The line connecting

the closed circles represents the strain obtained using t~e spline algorithm of

“raylorand Brandt.17 The line connecting the open circles is the strain obtained

using the Bezier polynomial surface fitting algorithm. The algorithm of Taylor

and Brandt has yielded good results. 7::1splot indicates the Bezier algorithm

can be expected to give even better results.

Toemphaslze that this is a surface fit, Figure 8 shows the bending strain

- along a vertical span through the middle of the plate undergoing the 22 mode
‘Y
vibration. Figure 9 shows

through an antinode of the

these sections through the

the bending strair Cx along a horizontal chord passing

sa’,,emode. And Figure 10 shows the actual paths of

plate. They are not constant y and constant x sections /,*
●$

. i
:
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because of the smoothing in the program. Points of maximum Gaussian curvature

are indicated by the crosses. The error in the second derivative at the tips

is large and the fact that the large second derivatives are seen there is to be

expected. On the free edge the bending mnr,entmust be zero. For example, at 4

the tip of the plate, wherey = b, the bending moment My must b~ zero.

My=D(Ky+vKx) =0

and hence the ratio of the curvatures Ky and Kx should give an estimate

Therefore,

of

Poisson’s ratio v. Unfortunately there is a region of about three-quartersof

an inch all around the free edges of the plate in which the second derivatives

are :wspect. Consequently no reliable measure of Poisson’s ratio is possible in

this way. Perhaps the smoothing algorithm could be improved by adding such

constraints. As it stands this level of sophisticationwas not considered

justified and was not incorporated.

The error in strain to be expected on the basis of a very simple analysis

is given by

Z+z
1 -1

-220
~~st. &Ax

(Ax)3

Where the values zl, ~o, Z1 may be thought of as values of the amplitude, and Ax

is the spacing between fringes. The error 6Ax actually increases as the spacing

decreases below . 0.030” which is about the best one can expect human hand and eye

to guide a cursor at the rates used here. Note that the error depends rather

sensitivelyon the spacing between fringes Ax, since it goes as the inverse cube.

The error to be expected for the spanwise section shown in Fig. 8 is on the order

of O.036uc at the tip. The residual may becmidered due to oversmoothing.

Shown here were examples of bending strains

complete patterns patterns from Fig. 1. Results

modes were also obtained, but not displayed here

from the simplest and most

for any of ther intermediate

for brevity.
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The Bezier Polynomial

The vector polygon polynomial used in the data reduction is named after

P. Bezier, an engineer at Renault. The concepts he developed22were further

20 One of the most useful properties ofrefined at Tord.

data compression; entire surface areas can be accurately

as sixteen parameters. Th~ surfaces so represented need

these polynomials

represented by as

not be restricted

is the

few

to

those that are describable in one of the eleven canonical coordinate systems in

which the wave equation is separable. That is, sculptured surfaces may be

represented. As a comparison consider a piece-wise continuous cubic or spline

fit. Ratlierthan a data compression,a four fold expansion results. For each

discreet data point, or knot, four coefficients are generated for the spline

fit. A compression can be obtained only by some form of deletion.

Basically the procedure is as follows: One assumes a two dimensional vector

function of the fcrm

where U, and B are the variables in a two dimensional space related to, but not

the same as x, y space; the g: are weighting factors defined by

g; (a) = (~) ai (l-a)n-i

where (~) is the binomial coefficient,i.e.,

(;)= ‘*

.
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An initial correspondence is established between the x, y space of the object

and the a, B parameter space, so that the discreet set of data points ~ (xr,y~)

maps into ~ (ar,Bs). Then the difference ~ ~s between the assumed surface and

the given surface is formed:

E-r~ = p (ar$B5) - Z (xrsY5).

The dot product of the error is formed and minimized with respect to the ~ij~

thereby allowing the ~ij to be determined. Hence it is a best fit in the least

square sense. A transformationfrom a three dimensional system (X,Y,Z (x,Y)) to

a two dimensional system (a,B) is accomplished, i.e.,

)(=)( x= x (a,B)

Y=Y+ Y = y {a,~)

z = z (X,y) z = z (a,B)

The

the

art and the skill in the program lies in the iterative procedures which adjust

parameters to allow the smoothing.

CONCLUSION

Demonstrated here was the combinationof accurate holographicallyobtained

full-field deformation data, in conjunctionwith sophisticated numerical methods

tomeasu~e indirectly bending and shear strains in vibrating plates. The strain

levels were quite low, on the order ofuc, indicating the sensitivity of the method,

one may think of this as an cptical, noncontacting,full field strain gauge method.

Furthermore,this may provide a stepping stone to even more sophisticated

methods of modal analysis.21 The application of modal analysis from an experi-

mental basis has been stymied in many applications,due to the difficulty of



11.

obtatning reliable ffrst and second order derivativesof them.

One particular application bears description. Suppose the vibratory

behaviorof a turbine rotor, for example, is known from its holographically

determined mode shapes. Further assume that the initial rotor did not have

. exactly the vibration spectrum desired. Possibly one might use the experi-

mentally determined mode shapes in a first order perturbation theory analysis
23

to predict the changes resulting from modifications to the structure, thus

guiding the redesign of the prototype ~ith a resulting savings in the number

of prototypes requfred to produce a satisfactorydesign.
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