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THE JOHNSON TRANSFORMATION SYSTEM REVISITED

Some Tesults on the Johnson transformation system arc ob-
tained which can enhance applications of this svstem in multi-
variate Monte Carlo studies. The primary contribution is that
the mean vector and the covariance matrix in the transformed
population can be specifiedi This result is applied in a small
Monte Carlo study which is devised to cxamine the effect of non-
normality on the performance of Fisher's linear discriminant
function. The observed performance conflicts in some respects

with the findings of other investigators.



I. INTRODULCTION

The Johnson transformation svstem [3] was originally developed
in a univariate setting and consisted of the normal distribufion
and three transformations for '"mormalizing' distributions. These
transformations are the logarithmic, the inverse hyperbolic sine
and the logit transformations. This system was later extended by
Johnson [2] to a bivarlate setting by applying these transforma-
tions marginally to obtain the Livariate normal distribution. 1In
Monte Carlo robustness studies, however, the direction of applica-
tion of the transformations is reversed. The inverses of ruese
transformations are applied marginally to a multinormal variate to
obtain a multivariate distribution having lognormal, inverse hyper-
bolic sine normil or logitlnormal marglnals. The simulation study
by Lachenbruch, Sneeringer and Revo [6], for example, use random
variates obtained in this manner. 1In this paper attention is
restricted to two distributions in the Johnson transformation system:

1. Each marginal distribution is lognormal (multivariate

lognormal).

2. Each marginai distributiog is inverse hyperbolic sine

normal (multivariate -inverse hyperbolic sine normal).
Distributions having logit-normal marginals are not considered
because the cxpressions for the moments are intractable [3].

In sectipn IT the basic results are derived. In section 1711



these results are used in a small Monte Carlo study to investi-
gate the robustness of Fisher's linear discriminant function on

non-normal populaticns having equal covariance matrices.

ITI. DERIVATION OF FORMULAE
In this section the appropriate results are derived. The
multivariate lognormal distribution is considered first. The goal
is to determine the scale, location and correlation parameters in
the multinormal population which yield upon transformation a
specified mean vector and covariance matrix in the multivariate

lognormal population. Let Y = (Y , Yn)' have a multi-

1’ Yzl

variate ncrmal distribution with means ui, variances o 2. and

i

correlations Pyy Let X be a random vector defined as
o= T -

X (xl, Xz, cee Xn) [exp(Yl), exp(Yz), cer exp(Yn)]. The

random vector X has a multivariate lognormal distribution. The

first and second order moments of X are derived by Jones and

Miller [5] as
E(Xi) = exp(ui + 012/2) 1=1,2,...,n (2.1)
Var(xi) = [exp(2u1 + 012)] Fexp(oiz) -1 1=1,2,...,n (2.2)

exP(pii?ioj) -1

Corr(xi.x ) =

2 1/2 2 2
(exp(a, ")-1] / {exp(oj )-1]17
i,§=1,2,...,n. (2.3)
Suppose E(Xi), Var(xi) and Corr(xi,.j) are specified as follows:
2
E(Xi) = ui, Var(xi) = oi i=1,2,...,n, .\2.4)

Corr(xi,x ) =p! i,j=1,2,...,n. (2.5)

3 1



The parancters My oiz and p1j determine the first and second
order moments of the multivarilate lognormal population. By

solving Tor the normal population parameters in equations (2.1),

(2.2) and (2.3), the following relationships can be shown to

hold:
u, = enfui?/Go)? + uiz)uz] 1=1,2, ..., n (2.6)
0,2 = anl1 + o} /u%] {=1,2, ..., n (2.7)
Pys = 520, tn[l + pijlcioj/uiu:;l] 14 1. (2.8)

Hence, by assigning parameters in the multivaricte normal distribu-
tion according to (2.6), (2.7), and (2.8), the specified moments in
the transformed populations can be obtained.

Similar results are now derived for the multivariate inverse
hyperbolic sine normal distribution. Let Y be defined as before,

and let X be a vector defined as X = (X . Xn)‘ = [sinh(Yl),

ll xz’
siqh(Yz),..., sinh(Yn)]‘, where sinh(y) = [exp(y) - exp(-y)]1/2.

Tohnson and Kotz [4], for example, include tbe following results:

2
E(Xi) = exp(di/2) sinh(ui) i=1,2,...,n (2.9)

Var(xi) = [exp(oi—l)]-[l+cosh(2111)'exp(0§)] i=1,2,...,n. (2.10)

The covariance between X, and X, can be derived directly using the

i 3

moment-generating function of the bivariate normal to yicld:



Cov(Xi,Xj) = exp[oi2 + sz)/2]°{[exP(pijoiaj) cosh.(u1 + u.)

3

—exp(—pijc o )°cosh(ui-uj)]/2—slnh(ui)-sinh(uj)}

i)
(2.11)
Let ui. oiz and pij denote the specified moments in the multi-

variate inverse hyperbolic sine distribution. The corresponding
required mutinormal parameters are obtained by solving equations

(2.9), (2.10), and (2.11) to yield

= . -1 ' 12 [ v(‘ v2 |2
w, = (1/2)+cosh [1+2ui/(—ui.+-\/ui +2ui +20i +1 )]
1=1,2,...,n (2.12)
2 ¢nfp}/sinh(u)]  u;#0
J2. i i i 1=1,2,...,n (2.13)
1 2 "
(1/2)-2n(201 +1) H1=0
1 2 1/2

i']

A= cosh(ui + uj)

B = cosh(ui + u,)

3
C=12'!0 'exp[—(ot2 +

11 icj 2)/2] + ZSinh(ui) sinh(u,)

g

3 J
Since hyperbolic cosine is an even function, two values for by are
generally possible in (2.12). For the variance given in (2.13) to

be defined, p, and p'! must agree in sign. If the mean ui is specified

i 1

as zero, the mean Wy must be set to zero.



IIT1. APPLICATION TO A DISCRIMINANT ANALYSIS MONTE CARLO STUDY

The results obtained in the previous section are used to study
the performance of Fisher's linear discriminant function (LDF) in
the two population discriminant analysis problem [1]. Population

one is denoted Tl and h's a known mean vector El and covariance matrix

L Similarly, population two is denoted 7w, and has a known mean

2

vector Yy and covariance matrix 22. If the populations are each

1

govcrned by bivariate normal distributions with I Fisher's LDF,

RILPY
which is defined as L(z) = 5'21-1(11 - EQ)’ is the "optimal" discriminant
functicn. It is optimal in the sense of minimizing the total probability
of misclassification, which is given by

P[z classified in wllgpnz] + P[z classified in = -Ee"l]' (3.1)

2
If the normality assumption is preserved, but the equality of the co-
variance matrices assumption is invalid, then the optimal procedure

is the quadratic discriminant function (QDF), which is defined by

Q(z) = (Efuz)'Ezl(gfga) - (Efgl)'zzl(gjgi). Marks and Dunn [7] con-

clude that under the assumption of normality and unequal covariance matrices,
the optimal QDF procedure performs substantially better than the LDF.

If the assumption of normality were additionally violated, then the
performance of the LDF could not be attributed exclusively to one

of these effects. The study by Lachenbruch, Sneeringer and Revo [6],
however, employs the Johnsoa transformation system in a fashicn that

the two populations are non-normal, and their covariance matrices are
unecual. They compute probabilities of misclassificatio. in each of

the transforﬁed populations using the LDF and compare them to the

correspon ing probabilities using the optimal procedure. The optimal



procedurc 1s to transform back to the normal population and then to
apply the LDF, since thg original normal populations have equal co-
variance matrices. The authors observe striking imbalances in the
misclassification probabilities and subceptimal pefformance by the
L.DF. They attribute this phenomena to the nc¢n-normality of the populations.
To test the authors' conclusions in a moce controlled setting, a
small Monte Carlo study 1s devised that isolates the effect of non-
normality by specifying equal covariance matrices in the two non-normal
populations. The results derived in the previous section lend them-
selves to this purpose. 1In Table 1 the specific population parameters
used in this study are indicated. Population ™ has a mean vector at
the origin except for cases 7'and 8, which have means at (exp(0.5),
expfV.5). This selection of parameters in cases 7 and 8 is motivated
by the result that the exponential transformation of a standard normal
variate yields a mean of exp(0.5). Population w, has a mean vecﬁor that

2

18 shifted from the population 7, mean vector either to the right or

1
up the diagonal y=x so that the Manalanobis distance between the two
populations 1s 4/3. Each component of each population has unit variancz,
and the correlation within a population 1is 1/2.

For each of the first eight cases given in Table 1, the required
parameters in the normal populations are determined by using the results
in Section I1. The computed parameters serve as inputs to the Monte
Carlo study. For each of the populations T and o 100,000 varlates
are generated, and the number that are misclassified into nz-and nl,
respectively, according to the LDF are tabulated. These results appear

in Table 2.

To compute the misclassification prubabllities for the optimal



procedure, some preliminary derivations are made, which lcad to a more
efficient Monte Carlo study. The optimal classification procedure is
to apply the QDF in the pretransiormed normal polulation; that have un-
equal covariance matrices. The QDF is defiued as

(z-u,) , (3.2)

Qz) = (zu)' I3 (z-u,) - (z-4))" I .

1

vhere ui is the mean vector and Zi is the covarilance matrix of ni. If

-1/2

v is defined as v = 21 (3-21), then
Q(z) = (z-~p )‘Z_l(z-u ) - v'v
Y ZTHp) tg ATt T ==

-1/2 1/2 -1, 1/2 -1/2

- ' .
= (z-p,+u;"uy) 'L (z-p tu,-p,y) - V'V
-1/2
If £ is defined as & = I, (21_52)' then
Q(z) = (v-0)' 21/2 l l/ T(v-L) - v'v.
The matrix 21/225121/2 can he diagonalized as P'DyP, where DY is a
- 2

diagonal matrix consisting of the eigenvalues of 51/222121/ ,» and P 1is

an orthonormal matrix of the corresponding eigenvectors. This implies

that

Q(z) = (3+£)'P'DYP(XE£) - v'P'Pyv.
Defining w = Pv and k = ?% ylelds
Q2) = (k) "D (wHo) - w'u.

By completing the square and collecclng terms, the QDF can be written

2
2 v,k 2 Yik
) = I (D 2% -1 = (3.3)

1=1 vyl i=1 Yg



If z belongs to Ty then z has a bivariate normal distribution with
mean vector u, and covariance matrix Zl. Thus, both v and w have a

bivariate normal distribution with zero mean vector and identity

covariance matrix. The misclassification probabilities are given as

N
[y]

A
S

CPIQ2) < an(|Z /]I D | 2

PlQ(2) > wn(|z /], | 2 (3.4)

N
™
A
N
[}

The simulation process for estimating the probabilities in (3.4) is to
generate pairs (wr uz)of independent normal variates, to evaluate Q(z)
in (3.3), and to classify according to the cutoff value in (3.4). Again
100,000 pairs for each population are generated and classified, vielding

the results that appear in Table 2.



Table 1

Description of the Populations

-X.T 3 a TIE2UET IS BI AT IR ASTALISIIEPTALAEEASIRAETIII-EE T FF I-LTTE - SESFE FJ LT it im=ozocoTog

Case “l “2 Location "y
1 SUU SUU (1.0,9.0)
2 ::;mI sUU (1.0,1.0)
3 . SNN SUU (1.0,0.0)
4 SNN SUU (1.0,1.90)
5 SUU SNN . (1.0,0.0)
6 sy SN (1.0,0.0)
7 SLL SLL [1+exp(0.5),exp(0.5)]
3 SLL SLL [14+exp(0.5),1+exp(0.5) ]
9 SNH SNN (1.0,0.0)
10 sNN ; sNH (1.0,1.0)
(SNN = bivariate normal)
(SUU = bivariate inverse hyperbolic sine normal)
(s = bivariate lognormal)

LL
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Case
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Table 2

Estimates of Misclassification Probabilities

0.281

0.230

0.241

0.241

0.205

0.215

0.282

0.282

LDF

Ty

0.282

0.290

0.278

0.291

0.281

0.280

0.294

0.310

0.282

0.282

Average

0.250

0.266

0.279

0.285

0.261

(.260

0.249

0.262

0.282

0.282

0.224

0.224

0.296

0.271

0.173

0.178

0.128

0.127

0.232

0.282

R o o SRR e R R R SO S

Optimal Procedure

0.160

0.163

0.131

0.129

0.301

0.298

0.069

0.071

0.232

0.262

Average

0.192

0.193

0.213

0.200

0.237

0.238

0.098

0.099

0.282

0.282

(Estimated standard deviation = 0.0015)



Iv. CONCLUSIONS

As cxpected, the performance of Fisher's LDF (sce Table 2), is sub-
optimal with these populatidn§. The imbalances in the misclassification
probabilities, however, are n;t nearly as dramatic as those observed by
Lachenbruch, Snceringer, and Revo. Certainly, Fisher's LD is not robust
against these deviations from normality {cases 1-8) despite the equal co-
variance matrices. |

The resuits derived in Section II should enhance other applications of

the Johnson transformation system in Monte Carlo studies.
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