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THE JOHNSON TRXNSFORNATION SYSTEM REVISITED

Some results on the Johnson transformation system arc ob-

tained which can enhance applications of this system in m~llti-

variate Monte Carlo studies. The primary contribution is that

the mean vector and the covariance matrix in the transformed

population can be specified. This result is applied in a small

Monte Carlo study wt,ich is devised to examine the effect nf non-

normality on the performance of Fisl~erls linear discriminnnt

function. The observed perfornmncc conflicts in some respects

with the findings of other investigators.



I. INTRODLICTION

The Johnson transformation system [3] was originally d~veloped

in a univarlate setting and consisted of the normal distribution

and three transformations for “normalizing” distributions. These

transformations are the logarithmic, the inverse hyperbolic sine

and the logit transformations. This system was later extended by

Johnson [2] to a bivariate setting by applying these transforma-

tions marginally to obtain the blvariate normal distribution. In

Monte Carlo robustness studie:~, however, the direction of applica-

tion of the transformations is reversed. The inverses of ~llese

transformations are applied marginally to a multinormal variate to

obtain a multivariate distribution having lognormal, inverse hyper-

bolic sine normal or logit normal marg.inals. The simulation study

by Lachenbruch, Sneeringer and Revo [6], for example, use random

variates obtained in this manner. In this paper attention is

restricted to two distributions In the Johnson transformation system:

1. Each marginal distrflbut~on is lognormal (multivariate

lognormal).

2. Each marginal disf:ribution is inverse hyperbolic sine

normal (multivariate -inverse hyperbolic sine normal).

Distributions having logit-normnl marginals are not considered

bccausc the expressions for the moments are inLractnble [3].

In section II the basic rrsults arc drriv~d. In section lTI



these results are used in a small Monte Carlo study to investi-

gate the robustness of Fisher’s linear discriminant function on

non-normal populations having equal covariance matrices.

II. DERII’ATION OF FOR!fULAE

In this section the appropriate results are derived. The

multivariate lognomal distribution is considered first. The goal

is to determine the scale, location and correlation parameters in

the multinormal population which yield upon transformation a

specified mean vector and covariance matrix in the multjvariate

lognomal population, Let ~ = (Yl, Y2, ... , Yn)’ have a multi-

2
variate nc,rmal distribution with means I.I

i’
variances o

i
, and

cOrrelatiOns ~ij”
Let ~ be a random vect~r defined as

~= (X1,X2, ... , Xn)’ = [exp(Yl), exp(Y2), ... , exp(Yn)]. The

random vector ~ has a multivariate lognormal distribution. The
s

first and second order moments of ~ are derived by .Jones and

Miller [5] as

E(Xi) = exp(ui + ui2/2) (2.1)

Var(Xi) = [exp(2pi + ui2)] [exp(ui2) - 1; i=lp2 ,...,n (2.2)

-p(~i UiU ) - 1
Corr(X ,X ) =

i~ [exp(ui2)-1] 1’2{exp(oj2)-1]1’2
,

i,j=l,2, ....n. (2.3)

Suppose E(Xi), Var(X~) and Corr(X ,X ) are specified as follows:
~.1

E(Xi) = IJ;, Var(Xi) = u~2 i=l,2 ,O..,n, (2.4)

Corr(X ,X ) = O’
i.j ij

i,j=] ,2,....n. (2.5)



The parameters Pi, u.
2
and ‘ij

determine the first and second
1

order moments of the multivariate lognormal population. By

solving for the normal population parameters in equations (2.1),

(2.2) an{l (2.3), the following relationships can be shown to

hold :

‘i
+

,2)1/21
‘i

i =1,2, ...Bn

1
’11In[l + p~jlU~UJ/U~lJj

‘ij = —~j.oj

i=l,z, ..n,n

i+j.

(2.6)

(2.7)

(2.8)

Hence, by assigning parameters in the multivari~te normal distribu-

tion according to (2.6), (2.7), and (2.8), the specified moments in

the transformed populations can be obtained.

Similar results are now derived for the multivariate inverse

hyperbolic sine normal distribution. Let ~ be defined as before,

and let X be a vector defined as X = (xl, X2, ... ,— Xn)’ = [sinh(yl),

sinh(Y2), .... sigh]’, where sinh(y) = [exp(y) - exp(-y)]/2.

lohnson and Kot~ [4], for example, include the following results:

E(Xi) = exp(u~/2)0sinh(Pi) i-l,z ~...-n (2.9)

Var(Xi) = [exp(o~-l)]*[l+cosh(2pi )*exp(u~) ] i=l,2,. ..,n. (2.10)

The covariance between Xi and X can be derived directly using tile
j

moment-generating function of the bivariatc normal to yield:



Cov(Xi,Xj) = exp[ui2 + uj
2
)/2]”([exp(pijuiojl cosh(pi + IJj)

-cxp(-pijaiuj) “cosh(ui-pj) ]/2-sInh(ui) ●sinh(uj)}

(2.11)

Let u;, o~2 and P;, denote the specified moments in the multi-

variatc inverse hyperbolic sine distribution. The corresponding

required rnutinormal parameters are obtained by solving equations

(2.9), (2.10), and (2.11) to yield

r
‘i

= (1/2)”cosh-1-[l+2B;/(-P;2+ P;4+21J;2+*IS;2+1)]

v

1=1,2 ,...,n (12)2)

al’ =
(1/2)*ln(2u~2+l) IJ;=o

1 J!n[(C+C2+4AB)
1/2

~ij ‘—-
)/2A1, i+j

‘Iaj

where

1=1,2 ,...,n (2.13)

(2.14)

A - Cosh(pi + I-I )
-1

B - cosh(pi + u,)

C = 2P’ a’a’
2

ijij
“exp[-(ui + aj2)/*1 + 2sinh(ui) sinh(uj)

Since hyperbolic cosine is an even function, two values for Hi arc

generally possible in (2.12). For the variance given in (2.13) to

be defined, Pi and u; must agree in sign” If the mean ~~ ‘s ‘Gpt?cificd

as zero, the mean u
i
must be set to zero.



III. APPLICATIOA’ TO A DISCRIMINWT /WALYSIS ?1OSTE CARLO STUDY

The results obtained in the previous section are used to study

the performance of Fisher’s linear discrirninant function (LDF) in

the two population discriminant analysis problem [1]. Population

one is denoted T
1
and h’s a known mean vector ).I

–1
and covariance matrix

‘1”
Similarly, population two is denoted ~2 and has a known mean

vector u_2 and covariance matrix Z
2“

If the popul~tions are each

govc~ned by bivariatc normal distributions with Z] = 12, Fisher’s LDF,
.

which is defined as L(~-)= ~’Z1-l(~l - LJz), is the “optimal” discriminant

functi~n. It is optimal in the sense of minimizing the riotalprobability

of misclassification , xhich is given by

P[~ classified in n11~cm2] + P[~ classified in n2 ~cnl]. (3.1)

If the normality assumption is preserved, but the equality of the co-

variance matrices assumption is invalid, then the optimal procedure

is t~e quadratic discriminant funct?on (QDF), which is defined by

Q(3) = @P2)’~~l(z-D2) - (:-LJl)’X~l(Z-U1). Narks and Dunn [7] con-.— ——

elude that under the assumption of normality and

the optimal QDF procedure performs substantially

If the assumption of normali:y were additionally

unequal covariance matrices,

better than the LDF.

violated, then the

performance of the LDF could not be attributed exclusively to one

of these effects. The study by Lachenbruch, Sneeringcr and Revo [6],

however, employs the Johnson transformation system in a fashicn that

the two popul.ot$ons are non-normal. and their covariance m,ltrices are

unecual. They cont~ute probabilities of misclassificatio~ in each of

the Pransforme(l populations using the LDF and compare them to the

correspond’ing probabilities using the optimal procedure. The optimal



procedure is to transform back to the normal population and then to

apply the LDF, since the original normal populations have equal co–

variance matrices. The authors observe striking imbalances in the

misclassification probabilities and suboptimal performance by the

LDF. - They attribute this phenomena to the ncm-normality of the populations.

To test the authors’ conclusions in a moie controlled setting, a

small Monte Carlo study is devised that isolates the effect of non-

normality by specifying equal covariance matrices in the two non-normal

populations. The results derived in the previous section lend them-

selves to this purpose. In Table 1 the specific population parameters

used in this study are indicated. Population Trlhas a mean vector at

the origin except for cases 7 and 8, which have means at (exp(O.5),

expfd.5). This selection of parameters In cases 7 and 8 is motivated

by the result that the exponential transformation of a standard normal

variate yields a mean of exp(O.5). Population m. has a mean vector that

io.shifted from the

up the diagonal y=x

populations is 4/3.

and the correlation

L

population Trlmean vector either to the right or

so that the Manalanobis distance between the two

Each component of each population has unit varia~cz,

within a population is 1/2.

For each of the first eight cases given in Table 1, the required

parameters in the normal populations are determined by using the results

in Section 11. The computed parameters serve as inputs to the Monte

Carlo study. For each of the populations nl and n2, 100,000 variates

are generated, and the number that are misclassified into m and m ,2 1

respectively, according to the LDF are tabulated. These results appear

in Tablo 2.

To compute the misclassification prub:lbilities for tl~eoptimal



. .

procedure, some

efficient Monte

to apply the QDF

equal covariance

preliminary derivations are made, which lead to a more

Carlo study. The optimal classification procedure is

in the prctransformed normal populations that have un-

matrices. The QDF is defi:led as

Q(A) = (g-+)’ ~;l (Z-U2) - (+’ Z;l (g++) , (3.2).— ——

where pi is the mean vector and T.i is the covariance matrix of ni. If

v is defined as v = F.‘l’~(Z-~l), then
— — 1

Q (z) = (92)’1;l(Z-Y*) __- V’v

-11:!L112L-l#2z-1/2
(2-Y,+E1-M*) -x’y”= (z-yl+El-y2)’z

-1’2(yE2),If ~ is dtfined as ~ = ‘1
then

112z-1#2
The matrix I.l z ~ can k,ediagonalized as P’DYP, where D~isa

.1/21-111/2, and p ~5
diagonal matrix consisting ~f the eigenvalues of .1 ~ ~

an orthonormal matrix of the corresponding eigenvectors. This implies

By completing the square and collecting terms, the QDF can be written

(3.3)



If z belongs to WI, then z has a bivariate normal distribution with—

mean vector u
–1

and covariance matrix E Thus, both ~ and ~ have a
1“

bivariatc normal distribution with zero mean vector and identity

covariance matrix. The misclassification probabilities are given as

(3.4)

The simulation process for estimating the probabilities in (3.4) is to

generate pairs (ul,U2) of independent normal variates, to evaluate Q(z)

in (3.3), and to classify according to the cutoff value in (3.4). Again

100,000 pairs for each population are generated and classif~.ed, yielding

the results that appear in Table 2.



. .

Table 1

Dcscript,ion of the Populations

.1....--------.rJzL.,..—.ZJ-..a, =—-=,t.rm~=—=.=--,=== ,..----:-==.-.1.-.:,. .:—-.,.:,

Case
*1 ‘2

Location U2

1 s
Ull

s
Uu

(1.0,0.0)

-1 s
‘Uu

(1.0,1.0)
IN

3 s
NN ‘UIJ

(1.0,0.0)

4 s
NN ‘U.u.

(1.0,1.0)

5
‘Uu

s (l.O,O.O)
NN

6 %Ju Sm (1.0,0.0)

7 s s [l+exp(0.5), exp(0.5)]
LL LL

a s
LL

s
LL

[l+exp(0.5),l+exp (0.5)]

9 s Sm (l.O,O.O)
NN

10 s s (1.0,1.0)
NN NN

(Sm = bivariate normal)

(Sm = bivariate inverse hyperbolic sine normal)

(sLL = bivariate lognormal)
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Table 2

Estimates of lll,sclassif~catlon Probabilities

-.-.*........J.................. ......a>.- -— ----- ———. .=.=..=—. .

Case

1

2

3

4

5

6

7

8

9

10

‘1

0.239

;L.. 2~i3

0.281

0.280

0.241

0.241

0.205

0.215

0.282

0.282

LDF

‘2

0.232

0.290

0.278

0.291

0.281

0.280

0.294

(J.31O

0.282

0.282

Average

0.250

0.266

0.279

0.295

0.261

C1.260

0.249

0.262

0.282

0.282

‘1

0.224

0.224

0.296

0.271

0.173

0.178

0.232

0.282

“Optimal Procedure

‘2

0.160

0.163

0.131

0.129

0.301

0.298

0.069

0.071

0.232

002G2

Average

0.192

0.193

0.213

0.200

0.237

0.238

0.098

0.099

0.282

0.292

—

(Estimated standard deviation = 0.0015)



Iv. CONCLUSIONS

AS expected, the performance of Fisher’s LDF (see Table 2), is sub- -

optimal with these populations. The imbalances in the misclassification
\

probabilities, however, are not nearly as dramatic as those observed by

Lachcnbruch, Snceringer, and Revo. Certainly, Fisher’s LDF is not robust

against these deviations from normality (cases 1-8) despite the equal co-

variance matrices.

The res~its derived in Section II should enhance other applications of

the Johnson transformation system in Monte Carlo studies.



.-*. . .

REFERENCES

1. Anderson, T. IV., An Introduction to Nultivariate Statistical Analysis, -

John Wiley & Sons, New York, 1958.

2. Higgins, J. J., 11AGeomet,rira] Method of Constructing hlultivariate

Densities and Some Related Inferential! Procedures.” Communications in

Statistics, 1975, ~, 955-966.

3. Johnson, N. L., “Bivariate Distributions Based on Simple Translation

Systems,” Biometrika, 1949, 36 297-304.—J

4. Johnson, N. L., “Systems of Frequency Curves Generated by Methods of

Translation,” Biometrika, 1949, 36, 149-176.—

5. Johnson, N. L., and Kotz, S,, Continuous Univariatc Distributions,

Vol. I, John Wiley 6 Sons, INc., New York, 1970.

6. Lachenbruch, P. A., Sneeringer, C., and Rcvo, L. T., “Robustness of the

Linear and Quadratic Discriminant Function to Certain Types of Non-

Normality,” Communications in Statistics, 1973, ~, 39-56.

7, Marks, S. and Dunn, O. J., ‘“Discriminant Functions when Covariance

M~trices are Equal,” Journal of the American Statistical Association,

1974, 69, 5S5-5S9.—


