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STRUCTURAL DESIGN FOR A 10-GWh SMES VACUUM VESSEL

by

Joel G. Bennett* and Charles A. Anderson**

ABSTRACT

An approximate solution to the problem of the non-
linear elastic deformation of a periodically point-supported
cylindrical shell is obtained. This solution is used to
‘nvestigate the structural design of the vacuum vessel for
the large underground SMES concept. Vacuum vessel designs
are evaluated by varying such parameters as shell thickness,
support spacing, material properties and physical configura-
ilon to keep the amount of material used and construction

cost to a minimum.

I. INTRODUCTION

The conceptual design and feasibility studies for superconducting magnetic
energy storage (SMES) facilities indicate that the energy storage cost rates
decrease rapidly with increasing facility capacity.l’2 Thus, present studies

have focused attention on 10-GWh capacity plants.s’d'S

In the large under-
ground SMES concept that will be considered here, the proposed vessel is about

100 m in height and about 300 m in diameter. The large dimensions of the
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vessel make it imperative that the material costs be minimized. Because the
total area of the outer vacuum vessel is 94,000 m2, significant cost savings
can be effected by relatively small decreases in vessel wall thickness that
could be brought about in an optimized structural design.

The main structural p oblem that will be formulated will be that of the
deformation of a point-supported shell liner under an external pressure of
one atmosphere as shown schematically in Fig. la; because of the large suppo;t .
spacing and thinness of the shell, the deflections will be large with respect
to the thickness. Hence, even though the material remains linearly elastic,
the problem is basically one of nonlinear deformation. The formulation will
include the kinematics necessary to solve for the entire load displacement
history and thus to account for stability of the shell. The primary quan-
tities of interest are the maximum displacement and maximum stresses in the
shell. This problem can be specialized to include Fig. 1b and 1lc by allowing
the axial support spacing to become very small, and adjusting other solution
parameters appropriately.

In prior investigations, Kicker6 studied the problem of preventing snap-
through buckling of point-supported, concrete-encased liner-shells by special-
izing Fig. la to point supported rings and axisymmetric cylinders. For th.
problem considered here, ''snap-through" type deformation is assumed to occur
a priori. 1In reality, for the radius of curvature of the 10-GiWh vessel and
for large support spacings, the deformation is very much 1ik wat of a con-
tinuous point-supported plate.

The advantage of formulating the problem from the point of view of the
unstrained surface being a cylinder is the applicability of the solution to
other configurations such as those shown in Vig. 1b and lc and to smaller

vessels. Various extensions of the method employed in Ref. 6 have been



carried out7’8’9 and these are summarized in Ref. 10. In Ref. 10, Moon and

Kicker also extended the study of concrete encased linear shells to include
closely spaced anchors; the plastic design method was employed. In these
cases, the structural members were idealized as rings, beams or axisymmetric
shells.

The economic and feasibility study by the University of Wisconsinz’3
gives cost estimates for the 10-GWh concept based on an assumed vessel thick-
ness and material, but no design or structural study basis for the thickness
or material is indicated.

II. ANALYTICAL MODEL FORMULATION

A. Strain-Displacement Relations

Beginning with the large strain-displacement relations from continuum
mechanics as expressed in cylindrical coordinates and applying the same
assumptions attributable to von Knrman11 for the large deflection of plates,
the total strain displacement equations for a cylindrical surface can be

derived as
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X ... the axial coordinate

0 ... the circumferential coordinate

z ... thickness coordinate rclative to the middle surface
u ... the axial displaccment

v ... the circumferential displaccment



w ... the radial displacement of the middle surface
R ... radius of the undeformed middle surface
€, ... axial strain
€g +-- circumferential strain
Yeg *-- in-plane shear strain.

As pointed out in Ref. 11, this theory keeps the first order nonlinear
terms in the gradients of w and t.ue expression '"large deflections' refers to
the fact that displacement w and its gradients are no longer small relativ: to
the shell thickness.

B. Hooke's Law and Strain Energy

To minimize costs, the vacuum vessel liner will be made from a conventional
structural metal such as stainless steel or aluminum and we wish to keep the
design elastic. Thus, we describe the stress-strain relations with Hooke's
Law. Beginning with the full three-dimensional form, including unifrrm thermal
expansion, and assuming a thin shell and thus a state of two-dimensional stress,

these relations become

E EqAT
g_a E +VE,.) - ——
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where,

O ... the axial normal stress

9 . the hoop normal stress
Tyeg °*° the in-plane shearing stress
E ... Young's modulus of clasticity

Vv ... Poisson's patio



G ... Shear modulus of elasticity
o ... the coefficient of thermal expansion
AT ... the change in temperature from the reference temperature
We will enforce equilibrium by minimization of the shell potential energy.
Following a standard procedure we define the expression for the strain energy

density function, U, as

dﬁ=-§—0..de.. .
1] 1)

(sum on i,j)
Substitute into this definition the expressions for stresses from Eq.2, and
assume intermediate states of strain are proportional to the final state.

Next, integrate from the unstrained state to the final strain state, and the

expression for the ..rain energy per unit shell volume is

2
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The total strain energy is that given by U = -/ﬂﬂ dv.
\

Substituting the strain displacement relations into Eq. 3 and carrying
out the integration over the shell thickness, we arrive at the expression

for the strain energy for the shell as
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The comma notation refers to partial differentiation of the dependent vari-

able with respect to the coordinates following the comma, and we have, as is

the custom, defined the membrane and flexural shell stiffnesses as

1 3
K - Eh D - -__—.:1—1—__—
1-v? 12(1~v?)

with h being the shell thickness.

C. Variational Method

Having an expression for the strain energy, we can treat the functional
Eq. 4 by a number of variational methods. The one we will use is basically
a modified Ritz method, as described in Ref. 12, and outlined below.

1. Using the functional Eq. 4, we derive the equilibrium equations as
tho resulting Euler equations obtained by minimizing Eq. 4 with respect to
the displacements.

2. Defining the membrane equations of equilibrium as those expressing
equilibrium in the u and v directions, we solve these differential equations
in terms of un assumed solution in w.

3. Substitute the resulting expressions for the displacements u and v
and the assumed displacement function for w into Eq. 4 and carry out the
indicated integration. The resulting expression for U involves the unknown

amplitudes of the w displacement function.



4. Form the total potential energy, II, by subtracting from the strain
energy the work W done by the loading function, i.e., T = U - W.

5. We now require the total potential energy Il to be a minimum with re-
spect to the unknown amplitudes of the assumed displacement function. As
described in Ref. 12, for quadratic functionals, the resulting Euler equations
will be linear algebraic equations. Here, the functional (Eq. 4) is 4th
order in w and the resulting algebrajic equations will be cubic in the unknown ,
amplitudes. We can solve these equations numerically to cbtain the solutions
for displacements and stresses. Parameter studies then allow the vessel design

to be carried out.

D. Assumed Displacement Function

Figure 2 shows the coordinate system used to describe the shell and the
shell deformation pattern. We assume the shell is isothermal and that the

displacement w can be described by a series of orthogonal functions of the

form
- (- -]
Wws 3 + El amx cOS mpx + ngl ‘na cos nq@ | (5)
m |
where
. _am o
p—b and q_P.eo_a

The condition w = 0 at all supports gives the auxillary <¢quation that

3, = -2 (amx ¥ ane)'

n,m

With this auxillary equation, the assumed displacement function satisfies
all boundary conditions of zero slopes and displacements it the support points

for a continuous shell. We note, however, thit in using this displacement



2., .
function, we have made onc additional assumption, that is, that %§%§ = 0, which

implies that the variation of the in-plane shearing strain through the thick-
ness of thc shell is ncgligible (see Eq. 1). For a thin shell of large cur-
vature and under the pressure loading of intercst, this assumption should be
a reasonablc one. 1In a later section we compare the result of this solution
with a solution given from the general nonlinear finite element code ;\’ONSAP.14

For practical purposes, the displacement function w must be truacated;
for linear small displacement theory one term is adequate, such as is done
for beam columns in Ref. 13. Reference 6 apparently obtains good results
from a single term expansion for the ring and zxisymmetrtic cylinder problems
considered therc. Reference 10 also uses a single term. One term in each
series, however, does not allow the decreased curvature (and consequent
bending moment) at thec supports to be adequately described for widely spaced
supports. Physically, behavior near the support should be dominated by
bending while in the center of the support pattern,membrane action should
dominate. At least two terms in both series of Eq. 5 are required to allow
the minimization procedure to represent this behavior.

Specialization of the general sclution to two terms iﬁ each series, y.elds
four coupled cubic equations for the unknowns a0 3oy 8190 and a,9° that
are given in Appendix A. A direct iteration procedure was used to solve
for these cocfficients.

IT11. APPLICATIONS

A. Elastic Design of a Periodicaily-Supported Shell

The first configuration studied witﬂ this solution is the one of Fig. 1la.
In this design concept, the shell is visualized as a continuous structure made
from welded plates and anchored to the rock cavity by a regular array of rock

anchors. The anchur points are also potential magnet structural support points.



‘0

In an intcgrated design, the rock anchor may becomc an integral part of the
vessel wall support and can be extended into a strut for the magnet support.

Several questions of interest arc as follows:

1. How does the periodic support spacing afiect the maximum stress and
the maximun displaccment?

2. How do the material properties affect the maximum ;tress?

3. How does the thickness of the shell affect the maximum stress?

This i..itial study assumes that the vessel walls will be constructed of
common structural materials. A-304 anncaled stainless steel and 5083-H38
aluminum properties were initially used. Tables I and II summarize the para-
meter studies for these two materials and Fig. 3 shows typical pressure-
displacement curves for a periodic support spacing array of 2 m and stainless
steel of different thicknesses. Also shown on this figure are the results ,
of an elastic analysis using the finite element code .\'ONSAP14 for the casc
of shell radius R = 150 m and thickness of 10 mm. (The mesh used for this
study is described in a later section.) The agrcement between the two sovlu-
tions is very good with the analytical solution predicting a maximum center
displacement of w = 43.5 mmn and NONSAP predicting a center displacement of
w = 46.8 mm. The stresses were not directly compared at specific points but
they agree in magnitude very well. The conclusion is that under this loading
condition, the assumption of negligible variation through the thickness of
the in-plane shear is justified.

Examination of Table I reveals that it will not be economically feasiblec
to specify a vessel design from stainless steel that remains entirely elastic
in the anncaled condition. Figure 4 illustrates this point graphically.

Using a lincar extrapolation in Fig. 4 (and a value of 207 MPa for the yicld

strength) the minimum thickness of A-304 stainless stcel for a potentially
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totally elastic design (according to Tresca yield criteria) is about 17 mm
*-ith a support spacing on 1 m centers. Even for higher yield strengths of
stainless steel, thickness reductions below 1 cm lead to very high values
of maxirum stress.

On the other hand, (using a valus of 385 MPa as the yield strength of
5083 aluminvun in the H38 condition) Table II and Fig. 4 reveal that almost
all values given for aluninum are within the elastic limit.

Cioser examination of Tables I and II reveal two further points of inter-
est. First, the bending stresses at the support points are more severe for
the case of the stiffer material. Second, the nonlinearities that arise
because of the large deformations show up as apparent anomalies in the maximum
predicted stresses caused primarily by shell bending. In particular, reading
across the tables, the trends for the two materials are clearly different.
The membrane stresses, however, do show the same trends,

The effect of having a more flexible material apparently is tc reduce the
overall stress level by transmitting more of the load into the supports. For
example, for the case of the support spacing being 2 m on center and a shell
thickness of 10 mm, the anchor reaction force for an aluminum vessel is
11.7 kN as compared to that for a stainless steel vessel of 10.5 kN.

Figure 5 illustrates this effect graphically and can be used to examine
other candidate materials. It is readily seen from Fig. 5 -that the best
materials for this application are those with a relatively large ratio of ten-
sile yield strength to elastic modulus.

B. Elastic-Plastic Design of a Periodically-Supported Shell

Examination ¢f Tuble I reveals that only in the locations for which the
bending stresses are maximum is the elastic limit for the materials exceeded.

For this reason, the possibilicty of taking advantage of the rvresidual strength
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available in an elastic plastic design has been briefly investigated. The
general nonlinear finite element code NO.\'SAP14 was used for this study.

Figure 6 shows the three-dimensional mesh and boundary conditions usecd
to model the shell for the 2 x 2 m support spacing. This mesh consists of
16, 16-node solid elements and a total of 130 nodes. The NONSAP code allows
a von Mises' yleld condition with kinematic hardening for the three-dimensional
elements to model the plastic effects. The initial yield stress was set at
207 MPa and a 1% strain hardening modulus was used to model the properties
of annealed stainless A-304. The predicted pressure-displacement curve for
the center of the support pattern for the elastic-plastic case is also shown
on Fig. 3. The appro:imate extent of the plastic zone predicted in the analysis
is shown in Fig. 7. Although the plastic zone extends over about 25% of the
mesh, the predicted strains are in general reasonable except near the load
singularity at node 130. In this regard, it must be pointcd out that at all
the supports, the load transmitted to the rock must be spread out over a
finite area.

The purpose of this calculation is to demonstrzte that a candidate material
should not be excluded based only on the stresses exceeding the yield criterion,
and that the elastic-plastic design potential exists. In this particular
calculation the plastic zone is probably too extensive for a reasonable design,
but further investigations in this area will undoubtedly prove Eruitful.

C. Structural Member and Shell Combination Design

By allowing the axial spacing to approach zero, adjusting the radius of
curvature, and reversing the sign of the pressure loading, the solution for
the point supported shell degenerates to that of Fig. 2, b and ¢. The I-
Beams are, of course, symbolic of some type of structural member thit can be

used to anchor the vessel to the rock cavity. The design concept is a series
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3w
* 30

elastic deformations of the shell are allowed however.

of shells or plates with clamped (w = 0 = 0) axial boundaries. Large

A number of computer runs were made to assess the design potential of this
configuration. Figure 8 gives the definition of the various geometric para-
meters. The radius of curvature R, shell arc length S, and the rise D, are

related by the transcendental equation.

S _ .
R (& - cos-fﬁ = D. .

The chord length, €, which determines the number of structural supports
needed, is given by C = R sin %—where S == R8.

This concept was studied parametrically and the results are reported
in Ref. 15.

Figure 9 gives a typical result and shows the effect cof varying the
initial unstrained rise of the shell, (and thus the radius of curvature, R)
on the maximum stress. As can be seen, the flat plate configuration obtained
from the D = 0 extrapolation is not the worst case. The nonlinearities that
arise from the combined bending and large deformations illustrate that a
definite maximum occurs in the maximum stress as a function of the unstrained
shell curvature.

Also, Fig. 9 shows the effect of the two different material properties,
and defines the extent of the nonlinear region for this design concept. This
curve illustrates that for rises of D * 1 m and greater, the nonlinearities
due to the large displacements become less pronounced. The stresses are
predominantly membrane stresses and the effect of having a more flexible
material disappears as the rise increases.

IV. SUMMARY

The main result of this study is that a large radius vacuum vessel can



be designed to minimize material by using optimally spaced point supports.
Also, the study indicates that given two materials with the same yield strengths,
the lower modulus material will lead to a thinner vacuum vessel wall.

The two term deformation shape function appeared to give sufficiently
accurate results for the vacuum vessel design. For instance, the one and
two term solutions gave about 12 percent difference in values for the maximum
displacement. A study of the coefficients in the equations for the one, two,
and a three-term approximation indicate that the addition of more terms in th;
solution will serve only to correct slightly the two-~term solution. Since
the solution is only approximate because of the neglect of the shear varia-

tion through the shell thickness, the further addition of terms will probably

not add any accuracy to the solutions as given.



APPENDIX A

BASIC EQUATIONS

14

The general equations resulting from carrying out the steps described in

Section D for the assumed displacement function of Eq. 5 have been obtained.

These equations were then specialized to a one-term approximation that re-

sults in two simultaneous cubic equations for a

and a9 and to a two-term

1x
approximation resulting in four simultaneous cubic equations for A1 Bogs
a9 and 3,9 These latter four equations are recorded below:
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and Pr is the external pressure loading.
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1.

Vacuum vessel wall design concepts.

(a) Periodically point-supported cylindrical shell concept.

(b) Structural member and cylindrical shell combination.

(c) Point supported welded cylindrical shell.

Assumed shell displacement pattern and coordinate system used

to describe the shell under an external pressure loading. .
Center of support array amplitude vs pressure for a stainless
steel vessel for 2 x 2 m supports.

Maximum predicted "elastic" hoop stress vs shell thickness as

a function of support spacing.

Fffect of the modulus of elasticity on the maximum stress for
the continuous shell concept.

Finite element mesh used in NONSAP investigation.

Extent of plastic zone from the finite element investigation.
Parameter definition and ygeometry of the shell-structural member
combination concept.

Effect of the unstrained rise, D, on the maximum stress for a

support spacing of S = 10 m as a function of the material properties,

Joel G. Bennett and Charles A. Anderson



TABLE 1

SUMARY OF PARAMETER STUDLIS POR STAINLESS STESL
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4 . 17 147 191 - 169 134 172
(28) (21) (28) (25) U9 (25)
TABLE 1T
SUMARY OF PARAMETER STUDIES POR ALLMINUM
Blastie Axinl Stress Hoop Stress Thinnest Shell
Stress 13 MPa MPa :ulun- v
Isplacenent at
Suppore icknges
Spacing 'uuuon!\!") 1.3 1.0 05 025|115 1.0 os 0.2 ""':"J'l':c:."l:l,”“'
1 68 286 331 4M 270 288 331 A4
(39) (41) (48) (&3) (W) (42) (40) (63)
2nim 2 -0  -10 1M 309 -2 <11 133 309 -1
(-12) (-1} (19) (43) |(-12) (-2) (19) (e5) .73 ?:'21)
] n M 13 27 12 sS4 113 190 '
() 1 (o () ) () (16) (28)
4 ? %4 131 7 s LTS 1 I 1
ay Q49 (200 () ) a2 a7 @8
1 246 274 307 381 s 275 %01 a2
(38) (40) (44) (SS) | (36) (40) 44)  (SS)
2 -116  -6. 77 2 |ue -6’ n .1
14x15a 11 -9 (10 (3 (1) (-9 (1) (3 0.64 10
3 -8 46 19 179 - a2 94 160 (2.3
(-1) (7 (u) () (-3) ) 3 @y
4 101 g0 114 179 96 8, 101 160
(s) (3 Uun (e6) (14) 2) «Os5) 2y)
1 - 245 288 329 - 246 206 330
(36) (41) (49) (36) (41) (49)
2 - -l16 9 M - =117 -0 133 .
1aln 11 b ue) -1 (N a9 0.37 -llz.‘
3 - -7 7% 1% . -18 66 125 (1.46)
(-1} (1) (20) (-2) o)} 9)
4 - 100 93 1% - 06 "% 126
(35) (13) (@2 (33) a2y 8

®locations 1 snd 2 are the ocutside and inside surfsces of the shell at the support.
4 are at the oulside and inside surfuces of the shell at the center of the suppert

Locations 3 ard
pattemn.

Joel G. Bennett and Charles A, Anderson
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