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ABSTRACT

The objectives of this study on the application
of statistical techniques to the analysis of reactor
safety codes are¢ the identification of the input
variables which have a significant influence on the
output variables (seansitivity analysis) and the
determination of the effecc of uncertainty in input
values on the output veriables. The Latin hyper-
cube sampling (LHS) procedure is presented as an
input value selection procedure. The partial rank
correlation coefficient (PRCC) coupled with the LHS
procedure is presented as a quantitative measure of
sensitivity. An examination of the PRCC variability
and an analysis of TRAC for a Semiscale test
are presented.

I. INTRODUCTION

This paper describes the study being done at the Los Alamos Scientific
Laboratory on the application of statistical techniques to the analysis of
reactor safety codes. The objectives of the study are the identification
of the input variables which have a significant influence on the output
variables (sensitivity analysis) and the determination of the effect of un-
certainty in the input values on the output variables.

Two aspects of computer code analysis are of particular interest and
concern: (1) the long-running time of the codes and (2) the large
nunber of input variables to be studied. While thc first aspect limits the
number of computer runs, both aspects necessitate a flexible investigation
strategy in order to support a variety of analyses from the same set of
computer runs (data). The investigation strategy includes both the
selection of input values and the application ot analysis techniques.

These areas will be discussed in the following sections, together with
an analysis cf the TRAC' computer code for a Semiscale test,

. J. Conover, a visiting staff member from Texas Tech University, is a
major contributor to the statistical work.
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II.. INPUT VARIABLES

Input variables are those quantities which are to be investigated.
Other quantities may be required to evaluate the code, but the: are not
considered to be inputs in this paper,

Input variablec may include:

(1) quantities related to physical characteristics, such as initial
conditions;

(2) coefficients in fitted functions (engineering correlations), which
are estimated from experimental data;

(3) parameters whose nominal values are derived from theory or engi-
neering judgment;

and (4) quantities related to the numerics of the model, such as the choice

of time step for solving a ditfferential equation numerically.

Sometimes an input variable has inherent variability and can naturally
be regarded as a probabilistic random variable. In other cases, when an
input value has to be estimated from data, a probability distribution can
describe the confidence of the analyst in his estimate. In general, it is
convenient to associate with each input variable a probability distribution
which determines the region of interest in the variational study.

I1I. SELECTION OF INPUT VARIABLE VALUES

The anticipated analyses should dictate the selection of not only the
input variable values, but also the variables which are to be part of the
study. The analyses could include: (1) calculation of general statistical
quantities like means and standard deviations, (2) calculation of quan-
tities needed for probability statements or uncertainty bands, (3) cal-
culation of sensitivity functiuns, and (4) curve fitting of the output
variable.

For a selection procedure to be effective, the generated input values
should adequately span the input space. Moreover, the statistical estima-
tors should have an inherently high degree of precision so that the number
of computer runs can be kept small., The statistical sampling procedure
described in the next section allows both the statistical and the sensi-
tivity portions of code analysis to be performed on th: same set of data.
Also, the number of computer runs is not a function of the number of
input variables as it is in one-at-a-time variation and in other
systematic designs., However, particular analyses m2y impose lower limits
on the number of computer runs.

IV. LATIN HYPERCUBE SAMPLING

The Latin ypercube Sampling (LHS) procedure2 for selecting values of
input variables for n computer runs first divides the range of each input
variable into n intervals of equal probability content. If each input vari-
able had a uniform probability distribution, as is the case in Quota



Sampling’, the n intervals would be of equal length. After a value is
randomly sampled from each interval, the n values of each input variable
are then randomly assigned to the n computer runs.

The LHS procedure pocsesses several desirable properties. An increase
in the precision of estimators of the mean and cumulative distribution
function can be expected over the corresponding estimators obtained from
a completely random (ordinary Monte Carlo) samgle when the output variable
is a monotonic function of the input variables'. The reduction in variance
of estimators can mean a substantial savings in terms of the required
number of computer runs. In Ref. 4, the precision of an estimator of
mean pressure as a function of time was examined for a random sample, a
stratified sample, and a Latin hypercube samples. The standard deviations
of the estimators is shown in Fig. 1. Each sampling plan contained 16
observations at each time point and was replicated 50 times.

Another desirable property of LHS is in the area of sensitivity analysis.
Since the range of each input is stratified, the points in the input space
remain distinct when projected into subspaces of fewer input variables.

If variables are omitted in an analysis, as they might be if they were
judged umimportant, the remaining variables still constitute a Latin
hypercube sample.

The LHS procedure has also demonstrated a desirable property for fitting
the output variable to an empirical function of the inputs, i.e., in surface
fitting or response surface analysis. The surfaces fitted with the LHS
procedure seem to have good predictive capabilities. The reason for this
is not known at this time; however, it is believed the property arises from
the way the LHS procedure spreads out the values in the input space. Two
topics related to the spread of data points are currently under study,
clustering and coverage. Clustering is the tendency of input values to
form localized groups in the input space and subspaces of the input space.
Coverage is concerned with the dispersion of the input values, and in
particular, the convex hull of the points, in the input space and subspaces.

V. MODEL VALIDATION AND SENSITIVITY ANALYSIS

Model validation can be defined as the process of assessing the "truth"
or correctness of a model., In actual practice, modecl validation means the
establishment of the degree of credibility one can have in the forecasts or
predictions of a model, usually for hypothesized events. One way of estab-
lishing model credibility is through the comparison of model predictions with
observed data. Statistical goodness of fit tests which have a theoretical
basis can be used under sets of assumptions usually containing almost-
normality, almost-linearity, and almost-homogcnity of variances. These
assumptions tend to limit the scope of the models to being regression-like
or strictly probabilistic. In the area cf stochastic processes, the scope
is expanded to prediction variables treated as parametric functions of
time., It is not clear, however, what direction one should take in
looking at goodness of fit and mode) validation for the more general model
with multiple, time-dependent outputs which are nonlinear functions of
the inputs.
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Another way of establishing model credibility is the use of sensitivity
analysis, by which we mean the general study of the variation of a model
output as a function of variation in model inputs. Rather than being limited
to local measures, such as those calculated from small, one-at-a-time per-
turbations about nominal values, sensitivity analysis should include global
messures which charactecrize variability in terms of the entire ranges of
values encountered in model evaluations,

Used in its gencral sense, sensitivity analysis has two desir-
able features in the area of model validation. First, by an intensive
variational study, model deficiencies can be detected and subsequently
corrected. Second, if a model survives a vigorous sensitivity analysis
its credibility as a relevant forecasting tool is increased.

VI. THE PARTIAL RANK CORRELATION COEFFICIENT

The Fartial Rank Correlation Coefficient (PRCC) is a measure of
sensitivity. The PRCC is the partial correlation coefficient® (PCC)
evaluated using rank-transformed data. The PCC measures the degree of
linear association between two variables from a multivariate structure
after adjusting for the linear effects of the remaining variables. Hence,
the PRCC measures the degree of monotonic association in the same way
that the PCC measures linear association.

The PRCC is bounded in absolute value by 1. Values near +1 indicate
a strong direct (positive) association between the output and input,
while values near -1 indicate a strong inverse (negative) association,
Values near 0 indicate a lack of associatiomn.

The PRCC preserves the time aspect of the outp':t variable. Hence, it can
provide information about important time regimes associated with the input
variabla2s, Used in conjunction with the LHS procedure for selecting input
values, the PRCC has demonstrated its value as a sensitivity measure. The
PRCC is a statistic; hence, it possesses a probability distribution. At this
time, the distribution of the PRCC is unknown except under the assumption of
zero partial rank correlation among all inputs and the output. This assump-
tion will not bc satisfied when there are at least two important input
variables in the study. Without the distribution of the PRCC, statistical
inferences on the importance of the inputs cannot be made. Caution must be
exer.ised when the PRCC is used subjectively.

To examine PRCC variability and the effect of sample siie in a typical
hydrodynamics problem, a study was performed on a code which models an
experiment by Edwards, et. al.® The Edwards' experiments were blowndown
studies of fluid depressurization in a straight pipe 4.1 m long with an
inside diameter of 0.073 m. A glass disc at one end of the pipe was
broken to initiate depressurization to atmospheric conditions. The par-
ticular experiment modeled in this study was performed at initial con-
ditions of 7 x 10° Pa and 515 K.

The experiment was modeled with TRAC? using 20 computational cells
as shown ia Fig, 2. Eight inputs were varied and the time behaviors of
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calculated quantities, output variables, were recorded. The PRCCs

between the inputs and cach output were calculated for three samples

each of size 10, 15, and 20. The PRCCs between the pressure at gauge
station 1 (PGS1), and the input SLIP, a multiplier on the relative velocity
between the vapor and ?‘quid phases, are shown in Figs. 3, 4, and S.

The three replicatiunc.of sample size 20 in Fig. 3 are all
comparable and indicate that SLIP (1) is unimportant for the first
0.25 seconds, (2) is impovtant and inversely related to PGS1 for the
next 0.15 seconds, and (3) lessens in importance for the last 0.10
seconds. The PRCC stiongly indicates a SLIP regime change at approximately
0.25 seconds.

The three sample size 15 cases in Fig. 4 agree qualitatively with the
Fig. 3 plots after 0.25s. In the first 0.25s, however, the PRCCs are somewhat
unstable, Neverthelesc, conclusions about SLIP in the sample size 15 cases
would be the same as those from sample size 20 cases.

The sample size 10 cases in Fig. 5 clearly show the impreiision as-
sociated with the PRCC for an inadequate sample size., Since it is improbable
that the quickly fluctuating importance of SLIP is real, one should assume
that this sample size is too small for drawing valid inferences. The source
of the oscillation is not known, but there is some indication that there is
oscillation in the calculated pressure which is amplified in the PRCC. An
increase in sample size seems to dampen the amplitudes observed in the
smaller sample size cases.

VII. APPLICATION TO TRAC

The LHS/PRCC analysis method wgsgapplied to the TRAC code in the
Analysis of Semiscale test No., 10117’°, The TRAC analysis consists
of the calculation cf the system thermal-hydraulic response during the
blowdown of the 1 1/2 loop seimscale test apparatus covering the time
period 0-30s after initiation of the rupture. An analysis of this
problem using best estimate inputs is presented in Ref, 1, This study
extends the previous analysis to include a statistical analysis of the
code,

1. Description of test apparatus.

The Semiscale test apparatus in which test 1011 was conducted had
both an intact loop with active components and a blowdowm loop with
simulated componcnts., In this configuration, the operating loop represents
three intact loops of a PWR and the blowndown loop represents the broken
loop of a PWR.

The pressure vessel contains nine electrically heated rods 1.68 m
in length. For test 1011, power to the rods was shut off prior to blow-
down. The downcomer gap was .0429 m.,

A simulated pump, simulated steam generator, and two rupture as-
. semblies with blowdown nozzles comprise the blowdown loop. The simulated



" pump and steam generator consist of piping containing orifices to achieve
the desired thermal-hydraulic resistance of these components. The full
break area nczzles approximate the system volume to break area ratio for
a full scale PWR. For test 1011, however, the break area was reduced

to 80% of the full size break.

The operating loop, called the intact loop, has a volume approximately
three times larger than the blowdown loop and represents three intact
loops of a four-loop PWR. This loop has a tube-in-shell heat exchanger,
centrifugal pump, and pressurizer, '

2. TRAC model of experiment,

The experiment was modeled with TRAC as a set of interconnected
components shown in Fig. 6. The model contains 18 components (16 com-
ponents shown in Fig. 6, plus 2 break components) with a total of 122
fluid cells. Typical cell lengths used in the model are of the order
of .15 - .50 m., The transient calculation is initated by instantaneously
opening both breaks (adjacent to components 14 and 18). Results are cal-
culated for the first 30s of the transient porcion of the experiment.

In this study, 16 computer runs were performed in which the values
of 8 input variables were selected using LHS. These input quantities,
in effect, varied code models dealing with single phase pipe friction,
twe phase friction multipliers, orifice pressure losses, net flashing
rate between liquid and vapor, slip between liquid and vapor phases, and
heat transfer correlations as well as other models.

Eighteen calculated output variables were selected for analysis.
These outputs included physical quantities such as volumetric and mass
flow rates, pressures, differential pressures, temperatures and densities
at various points in the physical syszem. .

From the 16 compvter runs, i44 (8 input variables x 18 output
variables) PRCCs were calculated. The calculated PRCCs indicate the
time-dependent sensitivities of the 18 output variables as a function of
each of the 8 input variables. An example of the statistical analysis
of the Semiscale test TRAC results is shown in Figs. 7 and 8 for the
output variable lower plenum pressure (LPP). Figure 7 shows summary
statistics for the lower plenum pressure (in Pascals) as a function of
time. The minimum and maximum curves are the minimum and maximum of the
16 runs observed for each time point. The nominal plot, displayed for
comparison, was obtained from an additional run with each input quantity
set at the midpoint of its range of variation.

The PRCC analysis indicates, to some extent, which of the input
variables lead to the variations in a given output variable (e.g. as
shown on Fig. 7). The PRCCs between the lower plenum pressure and flashing
rate (FLASH), heat transfer rate between the pipes and fluid (I{TCIR), two
phase friction multiplier (EXP1), and pipe roughness (RG) are shown in
Fig. §&.

The PRCCs indicate that for the first seven seconds, the lower plenum
pressure is strongly influenced by both the flashing rate and wall heat
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transfer while at later timcs the lower plenum pressure is influenced by
the two phase friction multiplier. The small absolute value of the PRCC
between the lower plenum pressure and the pipe wall roughness indicates
that this input variable (RG) has little effect on the lower plenum
pressure as compared to the others shown in the figure,

The positive values of the PRCCs for FLASH, HTCOR, and EXPl indicate
that an increase in the value of these inputs leads to a higher calculated
lower plenum pressure. These trends are easy to understand physically
since an increased heat transfer rate gives a higher fluid internal energy
(and thus pressure) whereas an increase in flashing or frictional pressure
drop increases the break mass flow rates which makes the pressuve decay
slower. Additional analyses of this semiscale test can be found in
Ref. 10.

VIII. <CONCLUSION

Caution should be exercised using PRCCs when the number of computer
7uns is not much larger than the number of input variables. In this paper,
“a sample size of about twice the number of inputs produced satisfactory
stability in the PRCC. In the TRAC application, the FRCCs calculated
using LHS agreed qualitatively with independent calculations performed
by the code developers using one-at-a-time variation. However, much
more information was obtained by the PRCC analysis since the time
preserving aspect of the PRCCs provided information about the important
time regimes associated with the input variables. Furticrmore, the PRCCs
aided code dev~lopm=nt by indicating which physical models contained in
the code have the most influence on the code output and thus indicating
a ranking for model development in various areas.
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