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ABSTRACT
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General modeling rules are proposed for con—

structing Reynolds stress clorures,

quire that the modeled
tions for Ky
of certain permissible

The rules re-
terms in the evolution equa-

be represented as a linear combination

groups of terms. The rules

geverely restrict the number of permissible proups of

terms.

The permissible groups of terms include many,

but not all, types of terms previously proposed for
turbulence modeling via Reynolds stress closures. Tt
18 ghown tiat a lack of ecxperimental {nformation pre-

vente one from concluding that Dy

511 for well-developed
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doen not know to which
assign terms algebraic

NOMENCLATURE

A, B, cg, €1, Cp, dy =
A4 Bijr Cyja Og 4y =

9/3xl -
Efgo F13, Gggs Hyy =

f(r), g(r), hiry) =

is propourtional to
turbulence) even thouph this
made. In consequence, one
correlation tensor one should
in lel

constants

permigsible groups of terms
under the proposed modeling
Tu!cs

energy dissipation tensor
trace of energy dissipation
tensor

total time derivative, moving
with the mean fluld velocity
spatial grudient nperator
symmetric tensors independent
of the Reynolde stress Lhat
satisfy nudeling rules (1)
through (h)

scalar functions appearing in
the tvo point velocity corre-
latfon tensor discus-cd !n the
tent

I35 Kigo Lyy

My Ny

q
Q)
inj = Qk%j

ry
T

Ry
R.i(r)

8
Ti4s Uz Vige Wyy

Uy
s
atd)

€

supplemental symatric ten-
nors independent of the
Reynolds stress that satisfy
modeling rules (1) through
(6)

symmctric tensora linear in
the Reynolds etress that sat-
iefy modeiing rules (1)
through (6)

local turbulence energy den-
sity

dimcneionless Reynolds stress
tensor

square of dimensionless
Reynolde stress tensor
ralative position vector {u
tvo point velocity correla-
tion function

leayth of relative position
vector

Roynolds streas tecn:ior

two point velocity corrvla-
tion function

dissipation lenpth scale
supplemental symmetric ten-
pore linear in the Reynolds
stress that satinfy modeliag
rules (1) through 6)

mean fluld velocity
Kronecker tensor

plecewinme lincar function of
turbulence Reynolds number
local mean encrpy dissipatlon
rate per unit mass

weak function of turbulence
Reynolds number

turbulence Reynolda number
kinematic viscosity



Subscripts

a,f = indices of Cartesian coordi-
nates, not suamed when repeat-=
ed in a tensor expression

INTRODUCTLON

The nd hoc character of the turbulence madels
propused 10 the Heynolds stress cquations has long
been a source of discomfort for tarbulence modelers.
The ouly previous attempl to provide a systematie
dertvation of the terms accepted for the equations
was made by Lumley (1-3), who used functional methods
to develop a systematie perturbation theory of devi-
ations fruorn: homopencous, Isotrople turbulence, How-
cver, the method performed only moderately well when
appliced to ricasurcvuents of the triple correlation
tensor (4), presumably because the deviations of lab-
oratory shear {lows from homogeaecous, {sotropic tur-
bulence are substantial,

lHere we propusce simple, penceral nodeling rules
in the form of mathematical requirements on the ten-
sors to be accepted as models for the triple correla-
tion tensar, the pressure=-straln tensor, the ecnevgy
dissipation tensor and the pressure diffusion tensor,
as thcy arc used in the Reynolds stress equations,
For the model terms whilch are algebrale in the
Reynolds stress tensor, the rules are sulficlen.ly
general to encompass all the types of terms that have
been previously proposed,  These rules thus provide a
framework for discussing systematically a class of
turbulence theorles sutflelently pencral te be Incer-
cstinge The cnefficients of the terms permicted by
the rules nust be determined by litting to experi-
ments and by nunerleal sbaulatfons.  The rules are in
principle applicable to the terms appearing in the
cquation for the dissipation scalar, but we restrict
attention here to the Revnolds stress equations,
Furthier, we do not consider the intluence af walls on
the turbulence modeling.

GENLERAL MODELING RULES

The modeling rules we propose are:

(1) the cvolution cquation for Lhe Reynolds
stiesses should bhe a tensor equation expressed in
terms of the Cartesfan tensors of the theory;

(2) the terms of the evolution cquation should
posuesy the Calllean Invarlance of the original
Navier-Stokes cqaatlons;

(3) the terms of the cquation should be express-
ed in terms of local values of Ry y and Uy and should
contain no more than twu orders oa wpatial deriva-
tives;

(4) nonlinearltles should be no more than quad-
ratic In Rl_] and lij;

(5) functions of the turbulent Reynolds number
should be no nore complex than plecewise linear;

(6) the ratios of components nf the enerpy dis=-
sipation tensor and the pressure-straln tensor should
not depend on spatfal deefvatives of Ry

(7) the principle of super-vealizability: that
terme permitted by the other modceling rules be {n-
cluded only in groups which separately prescrve the
rcalizabflity of the Reynolds stress tensor (namely,
that the Reynolds streas tensor remains a synmetric
tensor with non-negative elpenvalues under the action
of cach proup of terms separately);

(8) the non-peneration hypothesis: that the
groups of terms accepted under the principly of su-
per=reializability and which are intended to model (a)
the pressure-straln correlation, (b) the triple ve-
Jocity correlation, (¢) the pressure fluctuation in-

ducced transport, or (d) the encerpy dissipatinn tensor
shall not separatcly cause the total turbulence ener—
3y to increase, and shall separately permit the Incal
turbulence energy density to inerease only throuph
diffuslon processes which disperse turbulence energy
more widely in space,

These rules seem simple and natural. They are also
quite powerful in delimiting possible forms for tur-
bulence theories.

It was pointed out by Lumley (1) that turbulence
models cannot be rationally assessed as vo thelr {n-
trinslc¢ adequacy unless "the elosure ugsed 1s based on
a small number of cxplicitly stated, readily grasped
principles, and that all terms, and only those terms,
pencrated by these principles are used.” Our propns-
ed modcling 1ules du provide a small number of ex-
plicltly stated principles and we do propose that
precisely those *erms permitted by the rules be used
in constructing Reynolds stress closure medels, The
coefficients of the groups of terms permitted by the
rules would be determined by comparing model predic-
tions with data.

Whether the modeling rules are “"readily grasped”
might possibly be questioned. They have not, for ex-—
ample, been shown to represent the leading term in an
asymptotic solution of an exaet turbulence theory.
But they can be considered the leading term of a type
of approximation scheme quite common i{n other branch-
e8 of mechanics and, indeed, in physies and engincer-
inpg quite generally., That is, the evolution equa-
tions [or the variabler of the theory are assumed to
depend only on the current values of the varjables,
and not on valuey at previous times (as is true of
the underlying Navier-Stokes equations in the present
instance). Then, when thls dependence 1s specified
as a power scrics in the varlables and their deriva-
tives, the series is truncated at the second order,
Morce genceral approximatlons then the one proposed
here might truncate *he scries at higher order. le-
caure there 18 no genceral selution technique for the
turbulence equations, the terms must be chosen and
grouped to insure that they will malntaln the appro-
priate mathematical propertleds of the variables of
the theory. In addition, the coefflcients of the
serics must bhe determined empiricelly,

The rcalizability requirements for Reynolds
stress closure models have been stated by Schumaun
(5) ir the form of three types of lnequalities (no
sum over Greek indices)

20 , (1)
ao 2

Riu RBB - (RGB) >0, 2)
det (RaB) » 0 . (3)

e pofuts out that for exact solutions Ryp the
avicr-Stokes cquations require that when one of the
incqualities becomen an equality, then the total time
derivative of this equallty be zero, namely

2D -
Roq = 0- bt Rac o, (%)

and similarly for the other inequalities. We propose
here to wecaken these requirements on the time deriva-
tiven of the equalitles to the maximum permitted by
the rcalizability of the theory, namely

- D
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and similarly for the determinant. The ression for
this 1s that it {s common, and sounetimes necessary
faor the numcrical stability of a dlfferencing sclvenme,
to have excess diffusion in the solution of fluld dy-
namics problems. Such excess diffasion will chanpe
the equalitles, Such theories have been called over-
realizable vy Schumann.

By the principlce of super-rcalizability we mean
that a peraissible proup of terms for modeling the
velocity correlation will prescvrve Lhe fnequalities
of Kqe. (5) and (6), and the coiresponding one for
the determinant, when the group of terms §is substi-
tuted for DR /Dt after the product rule for deriva-
tives has been used tu evaluate the time derivative
of the equality explicitly, as, for example, in Eq.
(0). The total modeling of the cvolutinn equation
for the Reynolds stresses is to be a sum of such per-
migsible groups of terms. The modeling will capture
another property of the exact solution if, in the cv-
olution cquiaticn for the Reynolds stresses the terns
resulting from the triple correlation tensor, the
total corrclation involving the fluctuating pressure,
and the correlations proportional to the molecular
viscosity are sceparately represented as a sum of per-
missible groups of terms. We would strongly recom-
mend such modeling as maximally likely to approximate
the exact cquatfons most sueccessfully, but we would
not demand this property under the principle of su-
per-realizability until it bec rmcs clear that accu-—
rate models may be constructed enforcing this rule.
Similarly, we weuld encourage, but not yet demand,
modcls to he constiucted in which the inequalitics of
Eqs. (5) and (6) arc replaced by cqualities.

The non-gencration hypothesis s recasonable for
fully developed tarhulence: it agrees with the ovi-
dence that 1s available; 1t [s a staltement of sone-
thing that approaches consensus among turbulence re=-
searchnrs, and it is consistent with past practice in
turbulence model building. However, it does disapree
with experiment during the transitlion to turbulence,
for then viscous forces can give rise to turbnlent
encrgy. We have not built this reservation Into our
theory bucause we think that the primarr interest of
Reynalds stress models 1s for fairly well=developed
turbulence and becavse {t scems over-optimistic to
hope that a single workable turbulence theory will be
able to describe accurately both fully developed tur-
bulence and the transition to turbulence, We there-
fore ceater our atteuntion on the theory for well-de-
veloped turbulence and simply build in the most rea-
sonahle behavisr at low turbulence cnergles that we
cin,

RESULTS FOR TERMS ALGEBRAIC IN REYNOLDS STRESSES

We first specify the terms alpebrale in the
Revnolds stresses that satisfy the modeling rules (1)
through (6) and that also prescerve the symmetry of
the Reynolds stress tensore  The additional require-
ment of the principle of super-realizabillity, that
the terms be accepted only in groups which separately
preserve the non=-nerativity ol the eipenvalues of the
Reynolds streses tensor, requires scparate discussion,
which follows, as does the discusuion of limits 1im-
posed by the hypotuesis of pou-generitlon,

We note thit tensors alpebraic In the Revnolds
atresses will be consistent for use In the evolution
equation fur the Keynnlds stress If they are formed
by multiplying the scalar v by a symmetric dimen-
sionless tensor which satisfies model tng rulces (L)
through (6). Appropriate dimensionless tendors are
bullt from R,, and U, and may be enumerated as fol-
lows. The tidsois lﬁdvpundunl of Rl] are 61‘.
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Finally, the quadratic teusor is
Q%y v Qgu Qg - ®

In addition, we do nolL count appearances of q,
and 8 in dctermining the quadratie nonlinearity of
the system as a function of Ky and Uy, Thus there
arce, in principle, two extra vectors avallable for
producing tensors algebraic in Ry, namely aq/ax’ and
9s/oxi, (The latter veetor could be raplaced by 37/
vxl 11 desired.) Because it s not yet certafin that
these vectors are nceded in the alpebraic terms of
Reynolds stress closures, we would prefer, as a first
choice, to restrict the form of the theor: by not ja-
corporating theme  However, Lumley (l) has argucd
quite persuasively for thelr inevitabhle appearance.
So one must be prepared to see that cxperiment ve-
quires their {rcorporation. When thiese vectors are
added to the theoury, onc may obtaln the addivional
symmetrie tensors alpebraie 1n Ryy and satisfying the
modeling rules (1) through (6), namely tensors con-
stant in Ry 4
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109 3 3 3
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and tenrors linear in Ri
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-1 I 8
¥yy = ®a (91k ok T ad * Q ok o] “) :
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Now the two added vectors do considerablv cenrlceh
the throry, when terms proportioaal to the flrst spa=
tinl derivetive of R]j are consldered.  However, wu
shall elow hiere that none of the tensors of Fq. (10)
arc permitted by the applicatfon of both the princl=



ple of auper-realfzalility and the hypothesis of nan-
generation,  First consider the constant tensors of
Eq. (10). Siace the components of Ly do not have a
universnl alechrale sign, this tensor may vielate the
inequalities of Equ, (5) aud (6) when Ljgq 13 gubutd-
tuted for DRy DL In these cquations. Since this 1
true even when Ly 18 multiplicd by an arbitrary cn-
efficient, Lyy in"exeladed by the principle of super-
reolizabllity. Similarly, the principle of super-re-
allzability requires that both Jyy and Ky 4 enter the
modeling with pasitive cocfficients. But the hypoth=
esis of non-generation requires that the enel ficiente
be nogative. Thus Jyg and Kyy are separately veelud-
ed from the theory. annlly. one may show that no
1inear comblnation of Jyy, Kyy and Lyy I8 permitted
by modeling rulra (7) nni (8): these three tensors
are fully excluded from the theory, aud any enrich-
ment of the theory of the terms algebraic in le [}
provided by the tensors of Eq. (11).

By analyzing In the lacal principal axen of Ry,
one may readily show that all the tensors of Eq. (lf)
satinfy the princlple of super-realizabllity. low-
ever, the hypothesis of non-peneratlon requires that
these tensors be added to the right hand side of the
evolution equation for Rjj only iu the linear comhi-

natiun ) 2

o”--A -r”-uujjﬂov”nluu y  (12)
whare

e°+cl-1-2M! , 13)

which contains only three arbitrary constanta, A, B
and onc of ¢, and cjs As Blnted carller, we would
prefer firsr to attewpt modeling the alpebrale terma
without using the perrmisalble group of terms of Eq.
(12).

The constant tensors of Eq. (7) do not form a
perairsihic group of termy, elther separately or as a
llnear coabination of terms: to contribute permissi-
bly to the theory, these terms mist be rombined with
the lincar and quadratic terms of Eqs. (8) and (9).
To sce this, consider a peneral lnear conbinatlon of
the tensors of Eq. (7) and analyze in the lacal prin-
cipal axes of Rjq. The principle of super=realira-
bility requires that the rewulting tenser (of Lhe
lincar comblination) have posftlve diapgonal elements,
while the hyporhesis of non-gencratinn requires that
the sum of the diagonal elements of the resnlting
tensor be nepgative. The only way to achieve this for
a general mean velority field Is to have the null
tensor as the lintar combination.

By the same arpument one may sce that the trace-
less Lunsurs
Ay = 9y 2/3 6” ' (14)
and

B,, =, -130% & 15)

13 1) kk 1]

are hoth permlusaible groups of terms provided that
they are multiplied by nepative cocfficleonts, While
F’j und Gij would seem to have the poritivity proper-
tice necessary to replace 6py in Eque (14) and {15),
both, in fact, fail tn vield a permimsible group of
termi becauvse the algebraic sign of the dilagonal com
poncnts of the resulting tensor cannot be wade duefl-
nite for peneral Ry aud Ugs The tensors of Eqs.

(14) and (15) are the ouly permissible groups of

terms that may be formed by Qqq or in’ acting scpa-
aratcly with lincar combinations of the tensors of Eq.
. .
Finally, we note that both of the tensora Hl]
and Hli aatiafy the principle of super-rcalizablility,

Lut that each scparntely falla to gatisfy the hypoth-
esie of non-gencration, In particular, Mj§ Is the
nepative of the production tere, In the evnYution
crquation for "ll' which may caunc cither a gain ur a
loss of wurbulence encrgy. The fact that bnth ten-
sors have identleal traces does permit a third per-
nicslble group of terms to be constructed, namely

€y = Mgy~ Nyy o (16)
wvhich is a perminsihle group of terms even when mul-
tiplied by cn arbitrary coefficient, The tensors
KD Byy, and Cyqy form a complete set of the inde-
peident “permissible proups of terms that may be con-
structed from the tenrors of Eqs. (7), (8), and (9).
The general permissible group of terms {s a linear
conmhinntlon of these three tensors, in which the co-
efficienta of A‘J and li; 4 are nepative. If ncces-
sary, onr may add the teasor 0j4, which ir {taelf a
linear combination of three independent permissible
groups of terms.

Finally, we conslder the mathematical form de-
manded of the coefficients of the permiseible groups
of terms when these groups of terms are required
(through the evolution equation for K|{) to reprodace
the measured values of Ry for particular turbulent
flows,

Previous turbulence modeling has indicated the
uncfulness of Introducing pieccewise lincar functions
of the turbulence Reyno'ds number

L= (2q)% s/v , an
such as (6)
A(C) =5 for £E<5
=f forL>5 . (18)

The dissipation length acale 8 is defined by the
cquation

D = AC5) q/s? . 19y)

In principle, there mipht he several such functions,
but go far one function of thlk type seems to be ade=
quate. We adopt the function A(L) of Eqe (18) simply
te have a definite exanple In nind., Nothing that
follows 18 dependent on the partiecuvlar chnice of
A(E), which could as well be scparately deterinined
through optimization of any concrete turbulence mod-
cl. We use this function to construct the positive
function of

¥ = E/LCE) (20)

which {8 unity for larpe turbulent Reynnlds numbers
and approaches zero for Jow turbulence Intensities.
We then require that the coefficients of any permis-
sible proup of terms, say the nth guch froup, be writ
ten in the form

cn + dn v o, (21)

where ¢, and d,; are conatanta, possibly subject to
constraints from the requirement that this eroup of
terms ke perminsible, ‘This allows a permlssible
group of terms to appear in the evolution equatinn
for Ry with one weighkt at low turbhulence intensities
and with another welght at iuugh turbulence intensi-
ties, as i4 somctimes required for accurate modeling.

PHYS" CAI. TMTERPRETATTON OF TERMS ALGEBRAIC IN THE
REY'.OLDS STRESS

Most turbulence wodels awmupe local fsotropy in
the high Reynolds number limit and take Dyy propor-
tional to &;,. TIndced, the mLrong and peruintent
feellng that”local iuotropy has beenr demonstrated in



laboratory flows has been the basis of a eriticlsm of
the more geuneral nodeling of Bpy by Harlow and baly
(6). In fact, the eviderce for lacal isotropy at
high Reynolds numbers {8 seriously Incomplere, as
discuascd fun deral' by Mjolsness (7), with the conde-
quence that one strictly dors not know [rom experi-
mental evidence how to appurtion terms alpebrale in
the Reynolds stresse: between the pressure=velaocity
corrclations and the viscous correlations between ve—
locitice and velocity derivacives,

The conmun hizh Reynolds number limit assumed
for D; 4, adopted, for cxample, by Lumley and Khajeh-
Nouri al) and by Launder et al. (8), and uyed to rep-
resent the total action of the viscous forces, dovs
not esatisfy the principle of surar-realizability,
even in the less strict senue ot the present Eqa. (5)
and (6). A fully corrrct treatment of the vikcous
forces will, cf course (5), satisfy the strintest
form of the principle of supcr=realfzab{lity, with
cqualitics In Eqs. (5) and (6), We thus sce Lhat the
conmon high Reynolds number modeling of the viscous
forces cannol be correct at any Reynnlds number. In
view of this, it {8 reievant to review the evidence
supporting this common mudeling,

This evidence was recertly summarized by Corrsin
(9) who cites Cocraln (10), Townsend (11) and (12)
and (iudirectly) Laufer (13) as investigations deman—
strating that

B2
R

D
2] e (22)

in laboratory flows. In fact, the Investipgations
measure certaln properties of the two point velocity
corrclation tensor

Ry J(E.) = <ug(x) uylx + 1) > (23)

which are consistent with local fusotropy cnd from
which the inference is drawn that local isotropy
holds.

To see that Eq. (22) 1s not forced by the previ~
ausly cited cxperinents, we consfder a possible pener
alization of the Isotrople expansion of Ry(r) which
might be valld under the quasi-steady, quasi-hnmope-
neoun conditions of the experiments, namely

r

r
Rygte) = 2/3 o? {l1r) - )] "fij'+ B(r) 511}

+ h(rg) [65) 8534 8y 61,1} , (24)
where
() =1 - A e?
2A (25
s(v)’l--a%rz '
and
h(l)-c-fiuz .

Here u, A, ¢, and d arr weak functions of space and
time and ¢ and d are of order unity. The first ternm,
conirlhuted by f and g, representn the contrlbutlon
due to a local {sotroplc teonor and the predlictions
for thlu Lerm plven nbove are well tested by experi-
ment.  The second (h) term munt vanlsh 1f local ian-
tropy ig to hold. But formally thin term im of the

same general size as the ficwt term {F ¢ and 4 are of
order unity. Now nonc of the experiments cited above
in sepnitive to the presence of he Thus the values
of ¢ and d pust be considered te he arbitrary, and
not forced by experimental data to he zero.

From the relatfon vaild In the homogeacous limit

Dyy ¥ - 1/292 Ryy()|: = 0 (26)
we sce that the model tenmor of Eq. (20) ylelds
D
e 5 | lﬁd : 27
D is| * (27)

which iz of the order of

~ 0.4 (z8)

(in many laboratory fiowa) i{f d is of order unity.
Thus Corrgin's En. (22) does not follow fron the
dnta. We recall alsn experineuts on Reynolds siress-
es (Uberoal, (14)) and on several skewness factors
(Gibson ct al., (15) and Freymuth and Uberoi, (16))
which show that local tsotropy cannot be a completely
valid hypothe=is In high Keyaolds number flows.

We conclude, as in (7), that lncal i{sotropy haa
not beer fully demonstrated to hold in laboratory
flows (dua to the absence of weasurements of cross—
stream veloclty derivatives) and that the absence of
a conclueive demonntration of local {rotropy implien
that there are no firm experirmeantal constralnts on
the modeling of Dli' gave that it be a symmetric ten-
sor with ponitive trace.

frt]
.}

USE OF PERMITTED GROUPS OF TERMS IN TURRULENCE MODEL-
1NG

We discuas here the extent to which the permlt-
ted groups of terms alpebralc In the Reynolds stross,
cbtained earlier, have found application in Reynnids
atress closures cexiating in the literature. The dis-
cussfon 19 meant oercvly to be indicative of the de-
gree of usage, lence, we do not give a tabulation of
the permitted terna urnd and the non—-permitted terms
used for cach theory.

The tensor Ajy waa Rotta's (17) orisinal, and
inapired, choice for inclusion.s It has been employed
in nearly every Revnolds strers closure model since
that time. The tensor H|J has been used hy Lumley
and Khajeh-Nouri (1), but™i{s nnt commonly used in
thesc Reynolds stress closure models.

The tensor Cy4 wny found te be nccessiary by Ialy
(18) in modeling the convection phenomena of fluids
heated from below. The tensors My and Njj were used
in a different lincar combinaticn than Cy4 by Launder
ct al. (E), who wera puided by consideratlons of mod-
cling the pressure-straln correlations. As we Lndi-
cated earlier, woe stronely prefer the combhination
Cii. bocause It has more correct miathematical proper=-
tics, The tensor 0f4 dors not appear to have been
used in Reynolds stress clomures,

We Ree that the propomred modeling rules have a
sufficiently rich content to include many, but not
all, of the tcnsors used in turbulence modeling via
Reynolds Rtrewss closures. Yet the nunber of tensornm
allowed by the rules, the permitted groups of terms,
is not very larpo.

FINAI, REMARKS

We note that the tensors Ajy and H,| reonerate
over=reallzable turbulence theorles. Thus they would



not he perminsible prouj: of terms 1f the inequall-
tics of Lgs. (5) and (b) were replaced by equalitics,
as would he required by oexact solutlons to the
Navler-Stokes equations, Yt Apy (Rotta's oripinal
cholce) appeirs In virtually every attempt at model-
ing Reynalds stress closurew. 1t {8 primarily this
fact that canses us to wonder whether suecassful rur-
bulence models ean be cunstructed when the nore cor-
rect equalitlee are enforced in Fqs. (5) and (6).
This in turn, prompted us to specify only the less
strinpent requirenents of the present version oi Eqs.
(5) and (b).
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