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ABSTRACT

In this article we review some recent wverk on the quantum theory of
radiation reaction. The starting point of this work is the Heisenberg
operator equation of motion for a nonrelativistic point electron coupled
to the quantized electromagnetic field. It is shown that this equation, in
contrast to its classical counterpart, leads to a finite value for the
electrostatic self-energy of a point electron and, for values of the fine
structure constant o < 1, admits neither runaway behavior mnor noncausal
motion. Furthermore, the correspondence limit of the solution to the
quantum mechanical equation of motion agrees with that of the Lorentz-Dirac
theory in the classical regime, but without the imposition of additional
conditions and with no possibility of observable noncausality. Thus, a

consistent picture of a classical poirt electron emerges in the correspondence

limit of the quantum mechanical theory.



I. INTRODUCTION

I would like to describe some calculationsl’2 which E. J. Moniz and
I carried out for the purpose¢ of understanding more clearly the relationship
between classical and quantum electrodynamics, particularly in regard to
their treatment of radiation reaction. Let us begin by reviewing some of the
questions of interest here.

According to the classical theory of radiation reaction due to Abraham,
Lorentz and Llrac,3—5 a nonrelativistic point electron, interacting with its
self-field and subject to an external force F(t), obeys the equation of motion

m® = F(t) - l(r) + 2’730y (1.1)
where &m 1is the electron's electrostatic self-energy.

Thuis theory of radiation reaction suffers from a number of defects
besides the fact the &m = « for a point electron, a fact which can after all
be swept under the rug by working with the experimental mass, according to
the philosophy of renormalization.

The first defect is that Eq. (1.1) admits runaway solutions, i.e.
solutions for which the acceleration of a particle increases exponentially,
even in the absence of external forces.

The second defect is that the solutilons violate causality. This comes
about when runaways are eliminated from the thcory by imposition of a suitable
asymptotic condition. To see thls, notice that the general solution to
Eq. (1.1) is

. » t - -+
R(L) = et/T[R(O) - (1/Tm)f at’ e L'/TF(:;')] , (1.2)

0
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with 1 = 2e2/3mc3 . 1f K(O) is chosen arbitrarily, Eq. (1.2) gives an
t/T

acceleration which grows asymptotically like e even 1f the force acts
only for a fini‘e period of time. This behavior can be avoided if you impoée

the condition:

by t —tl /T—+ .—;
R(0) = (1/tm)lim .[ dt’e F(t') s (i.e. 1lim R(t) - 0).

tso O too
But then one can write the solution (1.2) in the form

R(t) = (1/m) f dt’e
t

(tl-t)/Tf(t') ’

or, introducing s = (t/-t)/t , as
R(r) = (1/m)J ds e SF(t+rs) . (1.3)

This form of the solution displays clearly the acausal behavior known as
preacceleration: the electron accelerates before the force acts.

While these defects mar the internal consistency of classical
electrodynamics, the point can be made that Eq. (1.3) doe< in fact correctly
describe classical radiation damping, in so far as it has been tested, and
the view is often adopted that, since preacceleration occurs on such a short
time scale (~ 10_23 seconds for an electron), the acausal effects would occur
in the quantum domain, which is where one has to lcok for a resolution cf
tte problem.

It is a very reasonable proposition that runaway solutions should not
occur 1n quantum theory. One would not expect a Heisenberg-picture operator

to display an exponentially growing dependence on time, since its time



davelopment 1s given by

0(t) = eiﬂto(o)e-iﬂt ,
with eth unitary. Nevertheless, to date no rigorcus proof of the absence
of runaways in quartum electrodynamics has been given.

Unfortunately, such a rigorous proof is not the subject of the present
paper either. 1Instead, I will describe some rather straightforward calculations
which appear to shed some light on the following questions:

(i) What is the mechanism by which runaway solutions are eliminated in quantum
mechanics?

(i1i) Howdoes quantum theory manage to suppress the runaways and at the same time
give Eq. (1.1) in the correspondence linit?

(iii) What sort of formula do you get for the electrostatic self-energy in
quantum theory?

(iv) What about preacceleration?

In other words, we will discuss whether quantum theory resolves any
of the problems of consistency which appear to be present already in classical
electrodynamics. We will not be addressing the more fundamental questions

of the possible finiteness, and overall consistency, of quantum electrodyramics.



ITI. CLASSICAL ELECTRODYNAMICS OF EXTENDED CHARGES

It will turn out that some aspects of our results on the quantum

theory of radiation reaction can be best understood by comparing them to

the classical results for the motion of an extended charge. For a spherically
. . . > -+

symmetric static charge distribution p(x,t) = ((x - ﬁ(t)), where ﬁ(t)

is the coordinate of the mean position of the charge, Eq.(1.1) is replaced by6

[+
. n n+2s
moﬁ(t) = F(r) - (2e2/302) :5 ("13 d niéb) + (non-linear terms)
n=0 n!c gt

(2.1)

where

Y, = ji/a;d;’p(;,t)|; - @ et

and L is the effective charge radius.

We have showr. explicitly in Eq.(2.1) only terms which are linear in
the particle's velocity or its time derivatives. Thesé terms all arise from
the electric self-field. The non-linear terms, which arise be:h from the
electric and magnetic self-fields, areall of order |§/c|2 times the linear
terms. These are neglected in this discussion, since we are considering
the motion of a nonrelativistic electron.

For simple charge distributions, the coefficients Y, can be
explicitly evaluated and the series summed. Thus, for a spherical shell,

onec obtains

y, = @Hoen"lwn (2.2)

and the ecquation of motion can be written in the form2’7’8



R(t) = F(t)/m(1 - ct/L) + E[R(t - 2L/c) - R(e)] (2.3)

neglecting non-linear terms, where

E = (c/2L) (et/L)/ (1 - c1/Ly , T = 2e2/3mc> , m = mg + 2¢2/31c2

’ One finds

The solutions to Eq. (2.3) have been analyzed fully.
that if L > ¢1(§ > 0) Eq. (2.3) has no runaway nor preaccelerating solutions,
while if L << e¢T Eq. (2.3) reduces to Eq.(1.1) with my + 0m = m . Runaway
and acausal solutions of Eq. (2.3} occur if L < cT .

ihe pertinence of these results to the quantum mechanical case is
the following. We will find that the structure of the radiation reaction
problem for a quantum mecibanical point electron, i.e. an electron with zero
charge radius, is similar to that of a classical extended charge. Specifically,
the quantum mechanical eqiation of motion for a point charge has the general
form of Eq. (2.1), with the électron Compton wavelength A formally playing

the role of the charge radius L. It is the fact that there is a new length

scale in the quantum theory whicbh allowe this to happen.

-,
e,
-, .



ITI. QUANTUM THEORY OF RADIATION REACTION

Our plan is to first derive the Heisenberg-picture operator equation
of notion for a nonrelativistic electron, including the self-force terms,
and then to analyze some properties of its solutions. In other words, we

want to study the quantum counterparts of Eq. (1.1) or Eq. (2.1).

A. Equation of Motion

To derive the equation of motion, we follow the Abraham-Lorentz
procedure for deriving the self-force on an electron, except that we must
remember to take proper account of the fact that we are working with operators.
For the purposes of the present discussion, this just mezns that w= pay
attention to the order of non-commuting quantities.

Our starting point for this calculation is the

Hamiltonian9
He=—= [F-2R&7% + —-L-/d?{gz(?,t) + [T x2E, 017, (3.1)
Zmo c 8u
where
r
A®) =jd?p('r’ - R(ENHAGE, L)
and

E=E +E
long trans

This describes a nonrelativistic charged particle of mechanical mass m,
and (spherically symmetric) charge distribution10 [defined so that
d;p(? - §) = 1] interactiag with an electromagnetic field, computed in

Y -
Coulomb gauge. P(t) and ﬁ(t) are, respectively, the Heisenberg-picture

momentum and position operators of the particle.



Proceeding in standard fashion, we use Eq. (3.1) to derive the
Heisenberg equations of motion, and airive at the operator form of the Lorentz

force equation

4 (mk) = eE®) + (e/20) [ x B®) - B(®) x K] (3.2)

dt

and the usual operator field equations for the electromagnetic potentials

K and ¢ (here written in Lorentz gaugell)

- R, 1) = 4mel(T,t) (3.3a)
- OY(T,t) = 4mep(T,t) : (3.3b)
In writing these equations, we have used the following notation:

A (R)
ot

BR) =V xK@® ER) = - Vo®) ~ (1/c)

3(¥,t) = % [p(; - ﬁ(t)),ﬁ(t)]+ = the single particle current

density operator.
As in the classical case, our goal now is tc use the field equations
(3.3) to eliminate the self-fields from the Lorentz force equation. To do
this, we first observe that the exact solution to Eq. (3.3), =zatisfying
retarded boundary conditions, may be written
]

](r ’t;et

=y

)

‘K(;’t) “ Kin(?’t) + (e/C)fd?, ’ (3.4a)

>4
+

in + Aself
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and

-
. Lo, )
¢(r,c) = ¢in(r-t) + efdr’ — s , (3.4b)

|z |
= ¢in *+ ¢self

!

> =, -+ -+
Tep = " {lr-x’ |/¢) . Note that 1im A » A

where the retarded time ¢t in °*
t-)-—oo n

which is a free field.

We can relate an operator evaluated at the retarded time ¢/ to

ret

its value at time t by the formula

+H(t! _-t) -ii(t! _-t)

o(t;et) = e ret O(t)e ret
(3.5)
0" |7/ 1" o
= oy ——— (ad H)O(t) ’
=0 e
where

(ad H)0 = [H,0]_ , (ad?n)0 = {H, 1,01 1_

Next, we use the expansion (3.5) and Eq. {3.4) to evaluate the electric
and magnetic self-fields occurring in the Lorentz force equation. The resulting

form of the quantum mechanical equation of motion is

moﬁ(t) = efin + (e/2c)[R x gin - ﬁin X ﬁl
= n+l
+ (2%/3¢%) HZO %-—ffd;d?'%[p(;—ﬁ(t))l?—;’ "L, @d™ T €)1,

(3.6)

In writing Eq.(3.6), we have dropped the contributions from the magnetic

self-field. These have been evaluated and found to be formallyof order
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izlc2 times the leading contributions from the electric self-fieid, as one
would expect. Such contributions should therefore be negligible for a slowly
moving electron. The same should be true of the nonlinear terms associated
with the electric self-field. The statement that these terms are negligible
means, in the quantum mechanical context, that there is a subset of states

in Hilbert space for which the matrix elements <m|%2/c2|n> are "small"

and that one can work consistent y to a given level of accuracy within this
set of states. It is a crucial assumption of this calculation that such

a set of states exists.

Equation (3.6) is the starting point for our study of radiation
recaction in quantum mechanics. The main labor in this calculation consists
in evaluatiag the nesved commutators in Eq. (3.6), so that it can be put in
a useful form. The details can be found in Ref. 2, and I won't reproduce
them here. However, it might be instructive to see what the f{irst few terms

in the series (3.6) look like.

After evaluation of [H,g(g,t)], the n=0 term in Eq. (3.5) give512

(mOK)n=0 = - (2e2/3c2)<|?¥?7|_1>ﬁ .
with the notation <|r-r/|> =ffd?d?’ p(?) I}*-?/ ‘p(;/) . This is the same as

the classical result. Similarly, the n=1 term gives
e e _ 2 3 .0
(moﬁ)n=l = (2¢7/3c )<l>§ .

which is again the same as in the classical case. The first new quantum terms

come in when n=2, where you find
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->
(29R) =2
>y > >, - 32 % WS 555
= - (l/3c4)<|r~r’ >R - (l/9c4)<|r-r'| l>[3{R2,§} + {R°R,R} + {R-R,R}
. ® oo o e e —.
\
classica
t
result neglecting order of operators, exactly the
’ 32 2 >
s R"/c” correctcion arising from E to the

self

5>
classical result for R

- (31r/3c2)(h,'moc)z[fdrpz(?)]ﬁ .
e~ C”

new quantum term

Let L denote t'e particle's charge radius and let A = (h/moc)
be the electron's Compton wavelength. We see that the new term diverges
as (1/L3) as L >0, and is ~ (X/L)2 times the classical self-energy term.
This suggests a s .all quantum mechanical correction to the self-energy if
A< L, but if =+ >> L (point charge limit), one will have to sum the series.
This is h"w one proceeds, carrying out the term by te 1 cvaluation of
Eq. (3.6), until : ne has inferred the combinatorics governing the general term.

1,2

The result is {dropping all terms of order .ﬁz/c2 or smaller compared

to the leading terms)

moﬁ(t) = Hﬁin + (e/2c)[§ X ﬁin - ﬁin X ﬁ]
= 1D (niZ)
- @23y D Ly T , (3.7)

n=0 nlc

with
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o / k
< n+l+2k 2
- Z n! -\ —/L[ > onn-l42k o2 2k
B = (n+2k)! ( 2k ( 4 ) drdr’ p(r) [r-r] (Vﬁj) p(")

(m)
We have used the notation that R (t) = dmﬁ(t)/dt and, again, that A = h/moc.

Noce that each structure coefficient 1is a power series in (AZ/LZ) and that

fl

if we retain only the k 0 term in the series for Bn , which corresponds
to taking the h - 0 1imit of the expression, we recover the equation of

motion for a classical extended charge.

B. Evaluation of the Structure Coefficients

a) Electrostatic Self-Energy

The electrostatic self-energy, defined as the coefficient of th
acceleration arising from the self-force, is given by the n=0 term in the

series in Eq.(3.7). Specifically, one obtains

= (22/3¢2)A = (2627302 A3 9
6m (2e“/3c )AO (2e"/3c7)(1 + 6 a)\)(l + XBX)QO (3.8)
where o
= _..__-l_:__ ~(k)2 Z (-1~ b _)L.‘S_z_ 24 i‘i ilzor 2%
LI R —~ ()T \ 2 r ’

ard with E(k) the Fourier transform of p(r). Doing the integral over r

and summing the series leads to

L) ~ 2
fy = (2/mP fdk —-Qi’%—é-— , (3.9)
1 - %°k%/4
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where the improper k-integral has beea regularized by taking the Cauchy
principal value. |

This formula for the electrostatic self-energy ha:s a number of
remarkable features:
1) 1If one lets A + 0 1in Egs.(3.8)-(3.9), and then goes to the point charge
limit, one obtains the classic divergent expression for d&m. However,
if one first takes the point charge limit (g(k) = 1) in Eq.(3.9), keeping
A fixed, one finds &m = 0 . Thus, according to this calculation, one
finds that the electrostatic self-energy of a point charge is zero in
nonrelativistic quantum electrodynamics. This is a surprising result. To
keep things in perspective we emphasize that it is not claimed that this
calculation shows that the electron's self-mass is finite. There are
contributions to this self-mass other than the one treated here, and these
other contributions may well be infinite. Nervertheless, it would be most
interesting to see what an essentially non-perturbative calculation, as this
is, would tell us about these contributions.
ii) It is also interesting to study the self-~energy in the case when the
particle has a convergent form factor, such as the Yukawa form factor
S(k) = (1 + kzL?')-1 . (L 1s the effective charge radius.) Using Eqs. (3.8)-
(3.9), onc finds2 that the maximum value for d&m occurs when L ~ ),

and that then

where o 1s the fine structure constant. This scems to be a physically
reasonable result. For example, it would lead to hadronic electromagnetic

mass shifts on the order of a few MEV if were chosen to be a few

)
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hundred MEV. Furthermore, Eq.(3.10) excludes the possibility of a purely
electromagnetic origin for the electron's mass within the framework of
nonrelativistic quantum electrodynamics.

iii) For 0 < L << X , the electrostatic self-energy can actually become
negative.2

iv) Additional insight into these results cra be obtained by transforming
QO’ Eq. (3.9), back into coordinate space. One finds that

-1
_ 2
2 = f/d?d?/p(r)ﬁf-m 1 [1 + 3 'v’.f,,] o(x’) . (3.11)

The integral operator in this expression is defined by

(2 + A28 o0 = [ays, -pdo) = b )

with " -
or

k
S (r) = ?}f
(2w) 1 - A k /4

- . cos(Zr/A)/(nkzr) .

(3.12)

Thus we see that in this calculation all of the physics involved in the
interaction of the charged particle with its quantized self-field is summarized
in the “sprecading function" SA(r) which geaerates an effective charge
distribution peff(r) which is smeared out over a Compton wavelength., In
this respect, our results are quite similar to those obtained many years ago
by Weiskopf.13 In his work, however, the spreading out of the charge
distribution was caused by virtual clectron-positron pairs, where:s in our

strictly nonrelativistic treatment there are, of course, no positrons.



TE

Finally, we note that the charpe distribution Pegf BeNErates anm

effective scalar potential

>
Pogs (¥) = fdrl v ogpe (7)o

from which the electrostatic self=-energy can be calculated as

9 = fd’"r’p(r)%ff(r) .

%. The Remaining Coefficients

I will simplv assert in passing that the other structure coefficients

in Eq. (3.7) have been e\'\luated,l‘2 and that in the point charge limit one

Einds
y 20 (4n+5)
Ly (n=1)/2 _ n-1
(-1 3?;$T$?E:§$ (2n - 1)1 . n odd
A ™ (3.13)
0 , n even .

Thus the equation of motion (3.7) is indeed similar in structure to that of
a classical extended charged particle, Eq.(2.1), with the Compton wavelength
A playing the role of a size parameter.

C. Solutions of the Fquation of Motion

&) Motion in the Abscnce of External Forces
Now I want to discusss some properties of the solutions to Eq.(3.7).
First I will discuss the motion of a "free" clectron, i.e. one that expericnces
gelf-interactions, but is not acted upon by any external force. This 18 the
situation in which one encounters runaway solutions classically, and we want

to sae what happens fn the quantuw mechanical case.
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To investigate this question, we take matrix elements of the equation
oi moti - n between the exact stationary states of the Hamiltonian (3.1). We
assume that among these states there are ones for which the matrix elements
of the in-fields are negligible, and we confine our attention to these
states, This is possible owing to the linearity of Eq. (3.7).

While we do not know how to construct the exact stationary states of
the Hamiltonian (3.1), we do know that for sucl states one can write

t/h

. iE .
wa|R()[n> e ™ |k |n>

with E = Em - En . We see that if there were runaway solutions to Eq.(3.7),

il
.

there would have to be states such that <m|ﬁ(0)|n> # 0 and for which
B = iEmn/h has a positive real part.
Supposing that <m|§(0)|n> # 0, and taking the indicated matrix

elements of Eq. (3.7) results in a power series in the varlable n = BA/c:

1o 2oy O @ D/2 Grn [% <2-‘_L> (fnyﬁ) ]r,n-l

n+l n+2
n=l 1
odd (3.14)
(3.14)
=2 ¢
= 3 O-f(ﬂ) .

In writing Eq.(3.14), I have factored out the root £ = 0 . This
corresponds to motion at constant veloclity, and is the expected result for
a free electron. The question is whether there are ocher solutions to
Eq. (3.14), corresponding to runaways or other unphysical motions.

The serfes (3.14) converges for |n|<1/2 . Inside its radius of

convergence, the serinscan be summed and one obtains
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/2 _ a+ z'in)-l/z

gm = - () ra - 27 ]

7

- (&) 1a - 2m?f?

+ 1+ 2amt/2 %}

+<31—2) (a - 2im3% - @+ 20?4 . (3.15)
3n
Thus, to examine the question of runaways, one must determine the roots

of the equation

1 = —§— of (n) , (3.16)

where o 1s the fine structure constant and f{(n) 1is given by Eq. (3.15).
Here is what you find:l’2

i) For physical values of the fine structure constant, in fact for all

o < 1, Eq. (3.16) has no roots inside the radius of convergence Inl =1/2 ;

ii) For large a, interpreted either - as a strong coupling limit or a

scumi-classical limit, one does obtain a real root of Eq. (3.16) for

In| < 1/2. 1In fact, what one finds .a this case is a small h expansion

about the classical runaway solution

B~ (1/1t)[1 + (numerical coefficient) h2 + ...]

= (1/7)[1 4 (numerical coefficient)’ (1/0L)2 + ..l . (3.17)

where T = (202/3mc3) H
1ii) The large and small @ regimes arc separated in “hat there is a

critical value of q, Orie 1, such that
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-3
o acrit

This behavier is like that of a first order phase transition, and it means
that the radius of convergence of Eq. (3.17) cannot include the physical
value of «o .

Thus the analysis of the roots of Eq. (3.16) shows that runaway
solutinns are not present in nonrelativistic quantum electrodynamics, for
physical values of the fine structure constant. Our understanding of this
result is that the interaction of a charged point particle with its quantized
seli--fleld generates an effective charge distribution spread out over a
Compton wavelength (Eq. (3.17)). This structure is reflected ii. the particle's
equation of motion, resulting in a form for the quantum mechnanical equation
of motion for a point charge (Eqs. (3.7) and (3.13)) which is similar to
that of an extended classical charge (Eq.(2.1)). Several analysesz’7’8
indicate that a classical charged particle of sufficient size (charge radius
> classical electron radius) does not exhibit runaway behavior.

It is also interesting to inquire about the significance of the

condition nl < 1/2 . Recalling the various definitions, we see that it

says that

E <« l—mc . (3.18)

This condition represents a restriction on the energy eigenstates of particle
plus ficld between which one can consistently evaluate matrix clements

of Eq. (3.17), and expresses the fact that our results are limited to the
nonrelativistic domain. It is remarkable that the criterion (3.18) is

generated by the dynamical equations themselves.



b) External Forces

Now let us consider how the electron moves in response to a time
-5
dependent external force F(t). If we again neglect the in-fields, the
equation of motion can be solved by Fourier transformation and the solution

can be written in the form

e =]
moR(t) =f de’ 6t - HF@Y (3.19)
-0
. 7 1,2
where the response function G(t - t’) 41is given by
1 c/2X Jdu(t - t’)
G(t - t') = I fdw 5 . (3.20)
-c/22 1 -3 of (iwA/e)

In Eq. (3.20), the function f(iwA/c) is defined by Eq. (3.15)

To derive Egqs. (3.19) -~ (3.20), we have had to require that F(w)
vanish for |w| > ¢/2X . This is because the series defining f£(iwA/c)
does not converge unless |w| < ¢/2A . This condition is of course closely
related to that derived above, Emn < % mc2 , as a requirement of non-
relativistic motion, and it also follows directly from the condition that
the applied force change by a small amount in the time requirad for light
to cross a Compton wavelength.

It is not difficult to see that the response function (3.20) does not
allow for observable preacceleration 1if o << 1. An approximate evaluation
of (3.20) shows that the quantum response function is spread about the origin
(t = t/) with a minimum width given by the characteristic time AT ~ 2X/c.
This time 1s detcrmined jointly by the uncertainty principle and the equation

of motion (through the condition < ¢/2)\), and the time at which the

particle starts to move in response to the applied force cannot be determined



21

more accuirately than AT. The time scale for preaccele-a-‘on. on the other

hand, is
2 3
T~ (" /mc”) = a(A/c) << AT 1if o << 1 .

so there can be no observable violation of causality. Note, however, that
this conclusion would not follow if o ~ 1.

If the force is cut off at a frequency smal; compared to c/\ ,
the correspondence limit of Eq. (3.19) can be obtained by expanding the
denominator of the response function (3.20). One finds that

mo'ﬁ(t) = F(t) + TF(t) + ...

(=] .
= f dse SF(t + s1) . (3.21)
0

Thus, in the classical regime, Eqs. (3.19)-(3.20) give the same result as

Eq. (1.3) ~ the solution to the classical Lorentz-Dirac equation which results
when the runaway solution is eliminated by fiat. The interesting point is
that Egqs. (3.19)-(3.20) rlace 2 limit, originating from quantum cheory,

on the applicability o/ the classical solation (1.3).
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IV. DISCUSSION OF THE CORRESPONDENCE BETWLEN QUANTUM AND CLASSICAL

ELECTRODYNAMICS

We have studied the quantum theory of a nonrelativistic charged
particle coupled to the quantized electromagnetic field. This model, which
we have been calling 'monrelativistic quantum electrodynamics," is defined
by the Hamiltonian (3.1).

We have mentioned that nonrelativistic classical electrodynamics
app-:urs to be internally consisteat in describing the motion of extended
charged particles. However, taking the point charge limit of the theory of
a classical extended charer iesults in a set of equations whose solutions
display runaway behavior and preacceleration. In quantum mechanics, on the
other hard, the point charge theory is consistent, displaying neither
runaway behavior nor observable acausality. Furthermore, the correspondeice
limit of the solutions of the quantum mechanical equation of motion reproduce
those properties, and only those properties, of the solutions of the classical
Lorentz-Dirac equation which are physically reasonable. Thus, a consistent
picture of a classical point electron emerges as the correspondence limit
of a quantum mechanical point electron, but not as the point limit of a

1
classical extended charge. 4
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V. CONCLUSION

In conclusion, I want to mention some questions which I believe
this work raises. The model studied here, based on the Hamiltonian (3.1),
lacks relativistic invariance. Consequently, no overall consistency for this
model can be claimed. Moreover, we do not know which of our conclusions
about the consistency of nonrelativistic quantum electrodynamics would centinue
to hold in relativistic quantum electrodynamics. Thus, an attempt to extend
our calculations to the domain of fully relativistic field theory is clearly
important.

Another point concerns the interesting fact that, according to our
calculation, nonrelativistic quantum ele~trodynamics apparantly would display
runaway behavior and preacceleration if the fine structure constant were
greater than about one. This suggests an upper bound on a. Is this bound
real, or would ‘t disapperar if more physics, such as pair creation, were
Included in the model? 1If the bound is real, what general property of the
theory is being revealed?

Finally, as has recently been stressed by Grotch and Kazes,15 it
would be quite instructive to understand more clearly the relationship
between our method of calculzation and standard perturbation theory. Some
progress has been made on this Juestion, and in fact it turns out that
quite different assumptions and approximations underlie the two methods.
There 1s, therefore, no particular reason why the results obtained from
these two metnods should agree in any given order ot approximation. T will

not go into detail about this work here, since it is discussed elsewhere.16’17
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