. el o —

| LA-UR-79-1833

Co OF- 7Go74/--3

TITLE: VELOCITY REQUIREMENTS FOR ONE-DIMENSIONAL TARGETS

AUTHORIS): Thomas R. Jarboe

SUBMITTED TO: The Impact Fusion Workshop to be held July 10-13,
1979 in Los Alamos, NM, for presentation and pub-
lication in the Workshop Proceedings.

By acoiptance of this srticle, the publisher recognizes thet the
US. Government retains a nonexclusive, royalty-fres licsne
to publish or reproduce the published form of this contribu-
von, or to sllow othen to do so, for U.S. Governmant pur:
posss.

The Los Alamas Sclentific Laboratory requests that the pub-
lisher ldentify this article as work performed under the sus-
pices of the U.S. Department of Ensvyy.

versity of California

(=
-

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545
An Affirmative Action/Equal Opportunity Employer

Form No. 838 R UNITED STATES

3t. No. 2620 DEPARIMENT OF ENERGY
12/78 CONTRACT W-7408-ENG, 3¢

, lJ!lB:l'ﬁl\P}ﬂ'l’ON OF THIS DOCUMENT I8 UNLIMITED

4


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


VELOCITY REQUIREMENTS FOR ONE-DIMENSIONAL TARGETS

Thomas R. Jarboe
University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

A simple =zero dimensional model which includes
thermal conduction, Bremsstrahlung, compressional
heating, alpha heating, and wall movement losses 1s used
to estimate the velocity necessary for a fusion reactor
based on impact fusion. Simple 1D impact and spherical
3D shock heating and compression are considered. The
results are that an absolute minimum of 6E7 cm/s 1is
needed for the 1D case while 0.85E7 cm/s is needed in
the 3D case. However 7E7 em/s and 1.3E7 cm/s
respectively look like good operating points.
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INTRODUCTION

The purpose of this paper is8 to give an estimate of the minimum
velocity needed for a projectile which is to shock heat and compressionally
heat, 1in a s9gimple one-dimensional manner, a column of DT gas to
temperatures and densities necessary for a fusion reactor. The same model
wlll also be applied to spherical implosiocns. The physical phenomena taken
into account in the 1D estimates are thermal conduction, Bremsstrahlung,
compressional heating, alpha heating, and loeses due to motion of the
containing back wall. In the 3D estimate the same effects are included,
however there 1s ne back wall but compression ratios and transfer
efficiencies are discussed. These calculations are of the temperature at
the center of the plasma and analytic equations are used to estimate the
rate of change of this temperature due to each of the physical effects.
Thus, there is no zoning of the plasma and its pressure is assumed uniform
and acts on a slug (or spherical shell) which is assumed to have a mass per
unit area but no thickness. 1Its velocity is determined by F = ma and the
initial velocity.

DISCUSSION AND RESULTS
A. General
The Dbasic equation for the normalized rate of change of the

temperature is as follows:

(3) (y=1)v
3 Em - ———P 4 27584 £,017%/3 exp(-211.1/11/3)
(1)
- 32814 w/rl/2 - [3] Lom2L 272
4 AnA an

The square bracket factors are needed when compression is 3D. The x
which 18 the length of the plasma in 1D becomes the radius of the shell in

3D. T is in eV, n 18 1in cm'3, and v, is the velocity of plasma com-

P
pressions A vy of 5/3 1s used in this calculation. The first term on the
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right is the compressional heating term. The second term is the alpha

heating term.! Where fo is the fraction of alpha energy being absorbed

<z>/Au

£y 2 1 +<£>7Aa'

Where <> = 4x Volume/Area and A, is the range of a particles given by
Spitletz due to energy absorption by only the electrona. The equation is
good only for temperatures up to about 20 keV. The third term on the right
is for Bremsstrahlung and is derived from the equation of Boyd and
Sanderson.3 The last term 1s the thermal conduction loss term. The
coefficient of thermal conductivity of an unmagnetized plasma is given by
Spitzer.2 The term is found by considering a system of contained plasma
with thermal conduction 1n only one dircection. To get this equation one
uses the fact that the pressure and its time derivative are uniform over
the plasma and the density profile is time independent.

In the calculation the plasma’s 1initial temperature is found by
assuming that it is equal to that of the DT in a one~dimensional shock
where the piston has the velocity of the imploding wall. The energy which
.+ needed for shock heating is subtracted from the plug energy and the
remaining velocity is the initial velocity for the caloulation and 1s usad
to find the initial temperature, This temperaturs for DT is:

T, = v2/2.4E12 (eV, cm/s)

The final approximation is that the mass of the plasma is ignored.

Before discussing tha methods of optimization for minimum velocity and
the calculational results a discussion of Eq. (1) 18 in order. Multiplying
it by x and rearranging yielda:

»

(3] (v = 1) lvp

Cgf’ + [B(T) = A(T)]y (2)



when
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dT
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A(T), B(t) and C(T) are the Alpha heating, Bremsstrahlung, and thermal
conduction temperature dependent parts. Note that the velocity requirement
for a given T depends wounly on y which can be chosen to minimize the vp
requirement. However in the 1D case Bremsstrahlung is worse early in time

since B(T) a 1/T1/2- This gives another velocity requirement namely

(v - 1) v, >B(Tyy. (3)

Since both C(T) and A(T) have strong temperature dependence they are
negligible early i1in time. Thus Eq. (2) and (3) give the velocity
requirement for achieving any given T in 1D. Besides the obvious factor of
3 in Eq« (2) another advantage of 3D compression 1s that the velocity
requirements for both Bremsstrahlung and thermal conduction are greater at
higher compression because y is time dependent iu 3D. Thus, an optimum y
can be picked for Eq. (2) further reducing the velocity requirements in 3D.
Figure 1 shows the 1D velocity requirement as a function of temperature.
In Tig. 1! the mass per unit area i3 infinite and hence it does not give
information about Q. Q is the ratio of thermonuclear energy divided by the
initial kinetic energy.
B. 1D Q Calculations

The fact that the back wall motion 1s included in these calculations
adds a loss mechanism which does not depend on the nl product but more on

nT. In these calculations the back wall moves according to:

P =Py vy (vg +4/3v,)
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where Vv, is the wall speed and p is the plasma pressure. p, = 20 gm/cm3
and vg = 5.E5 cm/s. These are the density and sound speed of the wall
material. The initial length of the system is set at 10 cme The mass unit
area and n are varied (20% stop size) to find the optimum Q for each
veloeity. The results are shown in Table I. Since fuel depletion is not
calculated Q’s over 100 are not accurate, but these calculations show when
alpha heating dominates Eq. (1)-. Also shown in Tabtle I is the minimum
energy required to achieve the Q°s shown. The table shows the 1nitial
Bremsstrahlung cooling time divided by the time needed to shock-heat the
gas to its initial temperature. The fact that this ratio is about 1 shows
that some cooling will occur during the shock heating process especially in
the gas that 1is shocked firs+%. Thus the actual initial temperature may be
some lower than used in the calculation. However, 1if it is large enough to
satisfy Eqe. (3) then the plasma will heat and the same Q°s will be achicved
but with a larger compression ratio.

Figure 2 shows the plasma length, plasma temperature and Q versus time
for the v = 7E7 cm/s case. It can be 3seen 1in Fig. 2 that the
compresssional heating ignites the fuel and most of the energy 1s released
during the expansion. The piston in this case has a mass of 0.86 gm/cm and
an energy of 230 MJ/cmz. The 1D system also has the other two undiscussed
dimensions which can cause added thermal conduction losses. However, it
appears that 1in the v = 7E7 case the diameter need only be about 1 em so
that radial thermal conduction losses even at L = 10 em will be small
cumpared to the compressional heating. The reason that the diameter can be
this small 1s due to the strong temperature dependence of the thermal
conduction. Thus, a copper slug for the 7E7 cm/s case could be 1 cm in
diameter and 1 mm thick which is about the thickness of a penny anrd half as
large in dlameter.

In this example the total energy 1s rather large. However, the system
can be made smaller provided that a) the values of y, the velociLy, and
mass per unit area are kept the same, b) the back wall movement doesn’t rob
significantly more energy, and c) the thickness of the slug does not exceed
the final plasma length. The last condition 18 necessary for the mou-=l to
be applicable and will bhe necessary for efficient tramnsfer of liner encrgy

into plasma energy in any case. This last condition puts the largest lower
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bound on the system size. Thus if the plug were tungsten then it could be
0.5 mm thick and the system could be made half as large in all dimeneions
giving a peak compression length of 0.6 mm which is accepitable. The area
of the plug would be about 0.2 cm? with an energy of about 50 MJ.
C. 3D Q Calculations

The optimization 1in this case is done by varying y and the mass per
unit ares divided by y. The maximum Q for a given velocity 1s showmn 1in
Tabhle I1I. The energy in the model thus far can be arbitrarily small but
vthat 18 shown is from the following considerations. In order for the shell
to efficiently transfer its energy to the plasma it cannot have a thickness
much greater than the radius of the plasma. If its thickness is too great,
it will transfer too much of its kinetic energy into its own internal
energy. This 18 a consequence of the fact that the sgpeeds involved here
are well above the speed of sound in the shell material. From this we have

that at peak compression

1 2
fo €5 00v4" = 3 n g kTg-

Here fo is the ratio of shell volume to plasma volume and € 1is the
efficiency of transfer of shell energy to plasma energy. From this the
initial energy in the shell can be written as

3
3kT; (ngrg)
- 4 £ £ f l_ 2
E f'j n [ — 2] 3 Py Vi
fe 7 Po Vi

(4)

= 35 E4l/v,* (ergs)

witere ngre is the final value of 3E22/cm2- Tg 18 4000 eV, p, 18 20, and v,
is the 1initial shell velocity. Values from Eq. (4) are shown in Table II

when fo = 7 and € = 1/4.
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Another consideration is that radlal ccmpression ratio 1limitations
also 1limit the minimum velocity. Figure 3 shows the velocity requirements
necessary for each compression ratio. It seems that a good velocity would
be 1.3E7 em/s. It will give a high Q for a modest amount of shell energy
while requiring a radial compression of about 20:l.

CONCLUSION

It appears that a projectile with an energy of 50 MJ and a velocity of
about 7E7 em/s will be required for simple 1D impact fusion and that an
imploding shell of about 12 MJ at a speed of 1.3E7 cm/s could be used for a
3D 1implosion. In 1D the velocity 18 much higher but the geometry is
simpler. The ability to achieve high velocities compared to the ability to
produce symmetrical 3D implosions will determine which geometry is most
desirable.
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Fig. 1. Minimum impact velocity in 1D needed to achieve a given temperature.
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Fig. 2. Plasma length. temperature, and Q vs time for the 1D
impact in the 7E7 cm/s velocity case of Table I.
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Fig. 3. Minimum velocity requirements as a function of the maximum

allowable compression ratic to achieve Q > 100 in 3D compression.
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Velocity

1x107
2x10’
3x107
4x107
Sx107
5.5x107
6x107
6.5x107
7x107
8x107
9x10’
10x10?

TABLE I

Optimum parometers for 1-D impact

Toom @ :E%— %ﬁ?ﬁ nx Initial ;::::;;
41eV .000007 1.1 22gm 6.7x10%m® 1.0
160 .0021 8.0 .40 2.6x10% 1.0
360 .028 26 .58 5.0x!0% {.2
640 S 63 .84  8.7xI10% i.1
1000 64 150 1.2 1.5x10% .1
1200 2.5 630 4.2 2.4x10% .82
1S00  >100 1100 6.0  3.4x10% 71
1600 >100 360 1.7  3.6x10% .15
1800 >100 230 .96  3.6x10% .86
2100 >100 190 .60  4.Ix10% .93
2400 >100 170 .43 4.5x10% (.0
2600 >100 150 .30  4.3xi0% {.2
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TABLE II

Optimum parameters for 3-D impact

Velocity T parrar Q Energy (MJ)

.5x107 [0eV  .010 -

.E 15 .029 —
v 20 .068 —
.8 27 15 -
.85 30 >100. 67
.9 34 >100 54
I.1 S0 >100 24
1.3 60 >100 12
1.5 - 8l >100 6.9
2.0 167 >100 2.2
3.0 375 >100 .43

4.0 667 >100 014



