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POSSIBLE UEPARTURET FROM LOCAL ISOTROPY IN THE SMALL
SCALE STRUCTURE OF TURBULENT VELOCITY FIELDS
R. C. Mjolsness
Theoretical Division, Group T-3
University of California
Los Alamos Scientific Laboratory
Los Alamos, NM 87545
ABSTRACT
Two weakened similarity hypotheses are proposed as possible replace-
merits for the two Kolmogorov similarity hypotheses as descriptions of labor-
atory turbulence. It is shown that these nypotheses yield consequences
which are 1n full agreement with the whole range of laboratory, atmospheric,
and oceanic measurements bearing on the question of the existence of local
isotropy 1n turbulent flows. However, the weakened hypotheses are fully
consistent with the non-existence of local isotropy. It is concluded that a
new class of measurements - the measurement of cross-stream variations in
the velocity correlations - would be required to establish the existence or
non-existence of local isotropy. One consequence of the proposed weakened
similarity hypotheses is that the Kolmogorov constant C is not a constant,
but is, instead, a flow-dependent quantity, depending on velocity gradients.
This is in at least qualitative agreement with the large scatter in values

of C reported in the literature.

NOMENCLATURE

8,51 = unit vector specified by velocity gradients in mean
flow

AO,A].A2 = proportionc'ity "constants" with weak functional

depcndences on velocity gradients in mean flow
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general positive function of wavenumber with weak
dependence on velocity gradients

two point velocity correlation

Kolmogorov constant, here taken to depend on veloc-
ity gradients

proportionality "constant" for the one-dimensional
cross spectra and tne spectrum, respectively, de-
pending on velocity gradients in the mean flow

proportionality "constants in non-isotropic part of
structure functions, dependent on velocity grad-
ients

the tensor of structure functions, its isotropic
component and its non-isotropic component, respec-
tively

longitudinal and lateral structure functions, re-
spectively

the spectrum

three-dimensional and one-dimensional cross spec-
tra, respectively

dimensionless three-dimensional cross speccra of

Hypothesis A

dimensionless three dimensional cross spectra of
Hypothesis B
function of wavenumber component

integration domain for polar angle theta
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function of proportionality in non-isotropic part
of structure function

wavenumber vector

magnitude of wavenumber vector
Kolmogorov number

integration variable

position vector denoting separation of two points
in the two-point functions

unit vectors along r
magnitude of position vector
general position vector

local direction of mean flow
general argument of a function of one variable
mean velocity vector
Kolmogorov velocity

Kronecker delta function

Dirac delta function

spatial gradient operator
local mean energy dissipation
Gamma function of argument 1/3
Kolmogorov length scale

azimuthal angle of polar coordinates in wavenumber
space

kinamatic viscosity

polar angle relative to r in wavenumber space



INTRODUCTION

It is ofen presumed that local isotropy of the small scale components
of turbulent velocity fields has been demonstrated for several laboratory
flows, for atmospheric boundary layers and for oceanic turbulence. There is
even a large body of data which is consistent with local isotropy. Thus,
the comparatively few and scattered observations which conflict with predic-
tions based on local isotropy are regarded as insufficiently decisive to
shake the consensus that local isotropy exists 1. It is the purpose of the
present paper to point out that the large number of observations consistent
with local isotropy do not logically suffice to establish that local iso-
tropy holds. The many observations all verify limited features of the flow
field. 1In particular, the almost exclusive use of the time dependent signal
of a single hot wire anemometer, together with the use of Taylor's "frozen
turbulence" hypothesis to interpret the signal as the streamwise spatial de-
pendence of a velocity component, means that the data systematically lacks
the cross-stream derivatives of velocity components which are needed to ful-
1y establish local isotropy. The crossed wire data permits simultaneous
meastirement of two velocity components, but, again, does not yield cross-
stream derivatives.

Even the numerous data estabiishing the k~5/3

power law for velocity

spectra 1n the atmospheric boundary layer are based only on streamwise spa-
tial structure of the velocity correlations, and, thus, do not fully estab-
1ish Kolmogorov's seccnd similarity hypothesis 1,2 even though the measure-
ments are certainiy consistent with this hypothesis. We will put forward a

weakened form of similarity hypothesis, which permits much more genaral



forms of "universal equilibria" than does the Kolmogorov hypothesis, vio-
late. local isotropy, and yet agrees with the experimental data that is used
to support the local isotropy hypothesis. We put forward theoretical argu-
ments which suggest that one should at least consider the possibility that
local isutropy is violated. Naturally, the present hypothesis, permitting
more complex equilibria, cannot have the esthetic appeal of the simpler
Kolmogorov hypothesis. But since the more complex equilibria have conse-
quences for turbulence modeling, and they cannot be ruled out by present
evidence, it seems most reasonable to decide by conclusive measurements
whether local isotropy holds in the inertial range. We mention several meas-
urements that could provide additional evidence on this point.

The theoretical arguments suggesting that local isotropy holds in the
dissipation range seem fairly strong, yet it isn't clear that they are neces-
sarily valid. Again, we are able to display an example of & two-point veloc-
ity correlation tensor which agrees with the experimental data in the dissi-
pation range porting local isotropy, yet definitely violates local isotropy
in the dissipation range. Thus, it is at least logically possible that lo-
cal 'sotropy fails to even in the dissipation range; present measurements do
not rule out this possibility. Again, the question of whether local iso-
tropy holds is best settled conclusive measurements.

WEAK FORM OF SIMILARITY HYPOTHESES

We formulate two weakened similarity hypotheses for incompressible tur-

bulent flows in terms of the mathematical properties of the two-point veloc-

ity relation tensor

B”(r_) = <u1(5.t)uJ(5 + r,t) =fd3k Fij(i)eis'i . (1)



where the x and t dependences of B1j have been ignored as usual for the
largz wavenumber (small r) part of the spectrum.

Hypothesis A

For sufficiently large Reynolds numbers an inertial range exists in the
k space of F1j. When this occurs Fij is determined by the mean energy
dissipation rate e, the mean velocity field and the geometry of the

flow field according to the rule

2/3 -11/3 ky ko k3
K sl n)

Fijlk) = kK*k*k

(2)
Here f does not depend explicitly on v but may depend locally, or, pe.
haps functionally on the mean velocity field and on the flow geometry.

The x and t dependence of Fij are contained implicitly in € and f.

This is related to Kolmogorov's second similarity hypothesis 1,2, but it as-
sumes only what is necessary to achieve agreement with the data presently
supporting the Kolmogorov hypothesis. According tc the Kolmogorov hypothe-

sis

K, k.
_ s8¢ i
fi5 = T08sr(173) (‘515 - k_rl> , (3)

where C, the constant of the longitudinal structure function, is a pure num-
ber independent of the particular high Reynolds number turbulent flow. This
is one definite function in the infinite class of functions permitted by Hy-

pothesis A.



The principal theoretical reason for thinking that the asymmetries per-
mitted by £q. (2) might be neaded in the inertial range lines in the possi-
bility that some significant fraction of the small scale structure of a tur-
bulent velocity field may be produced by a few discrete steps of nonlinear
evolution of instability, further convective distortion, and breakup, rather
than via nearly infinite cascading process involving adjacent Fourier compo-
nents. The arguments that the production process necessarily leads to 1so-
tropy via multiple interactions of many degrees of freedom have less cogency
in this case. However, even in the case of a cascade proceeding roughly
along the lines originally envisioned, it is merely plausible, but not en-
tirely certain, that all phase relations and anisotropic gradients would be
lost during the cascade process.

The suggestion of several discrete steps for production of fine scale
structure remains a theoretical possibility rather than a well validated
scientific hypothesis, but some very impressive recent work 3 is not incon-
sistent with this suggestion. Corrsin and Kollman 3 give a numerical simu-
lation of a homogeneous shear layer, to which Taylor-Green vortices 4 are
added as a turbulence producing finite perturbation. They find that a par-
ticuiar dynamic structure - a stagnation point with the "right" direction of
energy transfer - becomes instable and produces a fairly localized disturb-
ance. One may further show 5 that the stagnation point will itself be a
source of vorticity amplifications via the localized and highly directional
vortex stretching mechanism.

Apparently the first, and only, attempt to account for the fine scale

features of a turbulent velocity field, including the inertial range, by



means of a two-step process has been provided by Saffman 6, who has also
questioned the existence of small scale isotropy in turbulent flows 7. He
1s able to achieve agreement with most qualitative features of the fine
scale structure by means of a "primary cascade," in which a concentration of
vorticity is stretched out into a vortex sheet in the presence of the
straining field of a general velocity field, and a “secondary cascade,” 1in
which the curved vortex sheet becomes unstable to the formation of Taylor-
Gortler vortices 8,9. Of course, this sequence of ideas is speculative and
heuristic until the whole theory is developed in much greater detail.
Again, it may prove possible to develop a theory of formation of fine scale
structure via several discrete steps along rather different lines. Never-
theless, the fact that there is a theoretical possibility of accounting for
the fine scale structure of a turbulent velocity field via a production
process of several steps seems to be an adequate motivation for formulating
the similarity hypotheses from the point of view of clarifying what minimal
assumptions need be made to account for the experimental evidence, as done
in the present paper, rather than from the pcint of view of making the
greatest simplifications which do not contradict experimental evidence, as
done heretofore.

Next, we present a weakened form of Kolmogorov's first similarity hy-
pothesis 1,2, applicable to both the inertial and dissipation ranges. We
introduce th- Yolmogorov wave number kn and velocity vn and formulate

Hypothesis B

For sufficiently large Reynolds number the high wavenumber portion of
the spectrum of FiJ is determined by e, v, the mean velocity field and

the flow geometry according to the rule
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Here G1j may depend locally or, perhaps, functionally on the mean ve-

locity field, and the flow geometry, but not explicitly on the gradient

lengths of the mean flow field. The x and t dependence of F1J are con-

tained implicitly in ¢ and Gij'
Of course, the violation of local isotropy seems less likely intuitively in
the dissipation range than in the irertial range, but it cannot be excluded
by the present evidence. The rough reduction cf the data on one-dimensional
energy spectra to a universal curve in the dissipation range suggests that
the fuli dependence of Fij on the flow field permitted by Eq. (4) may'be ex-
cluded by experiment. However, it should be pointed out that the measured
vaiues of € always assume locally isotropy. Co-rected values, allowing for
measured rather than assumed cross-stream velocity derivatives, could lead
to less scatter in the universal curve. Again, Hypothesis B is all thrat is
necessary to achieve agreement with all the existing data, including dissi-
pation range data, which is used to support the hypothesis of local iso-
tropy.
EXPERIMENTAL CONSEQUENCES OF HYPOTHESIS A

We discuss here the possible experimental consequences should Hypoth-
esis A, rather than Kolmogorov's second similarity hypothesis, happen to be
valid in the inertial range. We consider a point in a turbulent fluid and
orient the coordinate system so tha. the mean flow is locally in the x] di-
rection. We discuss the general implications of E3. (2) as well as th> spe-

cific implications of two model Fourier transformed spectral tensors
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where 38 1s a unit vector related to the flow field, Ao'and ﬁl are constants

determined by the mean velocity field, and secondly,
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where H is a general smooth Ffunction decreasing at infinity. The ten-ors
are chosen to illustrate the types of features that may be expected t: re-
sult from additional measurements, should Hypothesis A be correct.

First, we note that all solutions of Eq. (1) satisfy the observed k~3/3
law. Thus Hypothesis A obtains full agreement with the extensive sets of
primarily atmospheric and oceanic hot wire measurements which establish the
existence of the k'S/3 law for one-dimensional longitudinal velocity spectra
at high Reynolds number. These measureiients are discussed in de ail by
Monir and Yaglom 1. Here, we merely cite the measurements of Grant, Stewart
and Moilliet lg, Pond, Stewart and Burling 11, and of Sandborn and Marshall
12 as instances of measured one-dimensional longitudinal velocity spectra
which are in reasonable agreement with each other and with the existence of
kK3 qaw.

One may immediately verify that the gereral three-dimensional cross

-5/3

spectrun Fi‘ of Hypothesis A will yield the k law for the spectrum and
V]

for any of the measureable one-dimensional cross spectra. For an arbitrary
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one-dimensfonai cross spectrum, orient the axes so that the il’ axis becomes
the unintegrated direction and introduce spherical poiar coordinates rela-

tive to this axis. Then each one-dimensional crocs spectrum takes the form
. c2/3 -5/3

where

2n 2/3
C.. = de sind d$ |coss | f,.(coso, sine cosy, sind singp). (8)
Y Jie) 0 1]

Similarly, the spectrum takes the form
E(k) = 23 3¢, - (9)

where

2
¢, = 1/2 ,/'" do sinef T do ,4(cose, sind cosd, sind sing) . (10)

Cleaarly cij depends on the particular function fij chosen in Hypothesis A
and also on the direction chosen for the axis of the one-dimensional spec-
tra, while Cl, which is related to the Kolmogorov "constant" C, depends only
on the particular function chosen for fij‘

0f course, the most general function fij of Hypothesis A would not

satisfy the kinematic constraint

kiFis(k) =0 (11)

J '~

which 1s demanded by the equation of continuity and is consistent with the

(one-dimensiona1) spectra that have been measured in turbulent flows.
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Clearly, we must choose fij to be consistent with Eq. (11). We must also
restrict f1J to yield a C1 which {s consistent with the measured range of
the Kolmogorov "constant” C, namely, within roughly 50% of 2.0, a- discussed
in Ref. 1.

The principal new content of Hypothesis A in the tnertial range is that
the Kolmogorov "constant" C of the longitudinal structure function, ard the
corresponding constants of the other measureable one-dimensional spectra,
are not constants, but functions of the velocity gradients in the flow
field. Dcubts have occasionally been expressed 6,7 about thr universality
of the Kolmogorov “"constant." Here this variability follows as a direct
cunsequence of our similarity hypothesis and is i1lustrated by reference to
the model spectra tensors of Eqs. (5) and (6). We note that the longitudi-

nal structure function

D (r) = ¢ e?/3 23 (12)
generated by these spectral functions gives the Kolmogorov "constant"

C = s 1(1/3) (A, + D1z - 13(R8) %A} (13)
and

c= 1% ram s, (14)

for Eqs. (5) and (6), respectively. In these equations, Ao' Al’ Bo’ and 3
may be expected to be weak functions o1 local velocity gradients. In both
Eqs. (13) and (12), the Kclmogorov “constant" is thus a weak function of ve-
locity gradients, but in addition, this "constant" depends on the direction

of r in Eq. (13).
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Finally, both Eqs. (5) and (6) yield structure functions that contain

deviations from isotropic form. Specifically, these tensors are given by
Dy4(r) = D9, + D] (15)
1j°~ 1J 1

where D?j is the usual isotropic contribution generated by Ao and Bu terms

in Eqs. (5) and (6) respectively,

=C

PR c2/3 213 {- [6 + 11(?-.5)2]?-1.?j + [42 - 7(F-2)2] 8 - 93;3;

- 6(F-3)[F,3; + 3,71} (16)

for £q. (5), and

D%j C3 { 3 vyl [851850 + 8448421 + /3 i3l3 [6;1645 + 6498 13]} (17)

for Eq. (6). In these latter two equations

) = TIRET(3) A, (18)

and

Cy = 34(1) r(1/3) . (19)

The D}j of Eq. (16) contributes to the Kolmogorov "constant," while the D

of Eq. (17) being traceless, does not. As noted earlier, it would be neces-

sary to measure cross-stream components of D}j to detect the presence of

1

components such as the Dij’ and this has not been done.
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EXPERIMENTAL ZONSEQUENCES OF HYPOTHESIS B

We discuss here some of the experimental consequences should Hypothesis
B, rather than Kolmogorov's first similarity hypothesis, happen 10 be valid.
We 11lustrate the effects to be expected by means of the model Fourier

transformed spectral tensor

G B -2

k
1) (53, (%2
[8i1852 * 5518521 + € (E) <R;) (k_> (850853 * 8518531 (20)

*2 X3).
k * k_
non

(K]
G.s \
13 \k,

where, again, the mean flow is locally in the Xy direction, B0 is a weak
function of velocity gradients and a general function of (k/kn)z, and H is a
general smooth function decreasing at infinity. The experimental conse-
quences may be discussed by means of the spectral tensor of Eq. (20) a-d of
the structure functions generated from it. lhen the two particular struc-

ture functions

2 2 s 9 cos{erk_) sin(zrkn) }
D, (rk ) =8 22’8 (2°){2/3 + ———--2———-), (2
T "n '4" ° { (zlr‘kn)2 (erk ) (21)

and

Zf 2 2 s1n(2rkn) cos(#rk_)
DNN(rkn) - Bwvn A des Bo(z ) {2/3 - ern) -

(zrkn)

+— (22)

~(
sin\zrkn) }
(zrkn)
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are introduced, the tensor of structure functions from Eq. (20) takes the

form
Dy 4(r) = [0y, (rk.) = Dy(rk )T kS ryry + Dyy(rk )8,
2
+ 2, {K(r3kn) [8,1855 + 8518351 + K(rgk) [8985 + 511513]} (23)
where

K(x) = fmdzH(z) [1 - cosax] . | (24)
(

There are thus non-isotropic corrections to the structure functions.

We note that the three-dimensional cross spectra of Eq. (20) and the
structure functions of Eq. {23) satisfy all of the experimental relations
used to support the assertion that local isotropy holds in turbulent flows,
both in the inertial range and in the dissipation range, with the single ex-
ception of the k'5/3 law in the inertial range, for which .he more restric-
tive assumptions of Hypothesis A are needed. Specifically, the two tests

that have been applied experimentally are, for velocity derivatives,

2 2 2
3U1 Bu2 3u3
< ﬁT >=1/2 a—q > =1/2 £ E > (25)

where the mean flow is locally in the k1 direction and for the one-dimen-

sional cross spectrum,
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Now Eq. (23) is compatible with Eq. (25), while Eq. (20) is compatible with
Eq. (26). Equation (25) has been verified by Townsend in grid turbulence 13
and 21so, and 1n much greater dr*ail, in the wake behind a cylinder 14 and
by Champagne et al. 15 in homogeneous shear flow. Equation (26) has also
been verified experimentally at high wave numbers, or, equivalently, at high
frequencies, by Corrsin in a round jet 16 by Klebanoff in a boundary layer
17, by Laufer in channel flow 18 and by Champagne et al. 15 in homogeneous
shear flow. Additional experimental confirmations are cited by Monin and
Yaglom 1, who also give references to the scattered literature of measure-
ments which contradict the assumption of local isotropy.

The fact that the one-dimensional spectra appear to lie nearly on uni-
versal curves in the dissipation range 10-12 suggests that the full general-

ity of Eq. (4) may not be needed in the dissipation range. Instead, the
2
function B !L7?> may approach a univers2l function, apart from a normaliza-
k
n

tion factor, at very iarge wave numbers. We note that the normalizing of
all expeirimental results to the Kelmogorov scales involves computing the
energy dissipation througa the assumption of local isotropy. Using a full
set of cross-stream velocity derivatives to evaluate € could modify most re-
sults and conclusions somewhat. In particular, 1t could happen that the
universal curves rerferred to above are satisfied with greater accuracy (less
scatter) than might appear from present measurements.

Finally, we observe that the deviations of Eq. (23) from the mathemati-
cal form of local isotropy, while substantial in size if B° and H are com-

parable, cannot be detected by the standard experimental criteria for the



-17-

validity of local isotropy. Measurements of cross-stream variaticns in ve-
locity correlations, which have not been carried out, would be required to
disclose cheir presence.
POSSIBLE TWO-POINT MEASUREMENT PROCEDURES

In principle, it would seem possible that any measuring technique for
two-point velocity correlations, with or without time d2lay or spectral
analysis, might serve as the basis vor measurements that could test for the
presence of non-isotropic components in the small scale structure of turbu-
lent velocity fields. In particular, the techniques adapted by Favre,
Gaviglio, and Dumas in their pioneering series of investigations, summarized
in Ref. 19, on two-point, space-time, velocity correlations might be consid-
ered for such usage. However, the observations of Tritton 20 suggest that
the possible interference erfects of the supports of the hot wires may re-
quire further investigation before they can be safely dismissed. Possibly
thre technique suggested by Bradshaw 21, of seeing whether measurements are
invariant to small changes in the size of the support structures for a given
probe geometry, would suffice for this purpose. Even if the question of
possible support interference is resolved satisfactorily, there may be con-
siderable difficulty in making two-point measurements at sufficiently small
spatial separations.

A methoa which might avoid some of these difficulties could be based on
a two~-point measurement scheme proposed by Poreh, Landa, and Kidron 22. 1In
this scheme two hot wires, with independent electronics and linearized
voltage outputs 1ie in the Xy = Xq plane and are oriented parallel to the X3

axis, while the mean flow is parallel to the Xy axis. The time average of
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the product of tﬁe output voltages is measured, noise terms drop out, and a
spatial integral of the two-point velocity correlation is obtained. The
time derivative of the corresponding average formed when one voltage fs time
delayed, when used with Taylor's frozen turbulence hypothesis, can be com-
bined with the preceding measurement to obtain much of the information ob-
tainable from measurements at a whole series of spatial separations of the
two wires. The fact that the time-averaged product of the output voltages
has a simple physical interpretation (proportional to a spatial integral of
a two-point velocity correlation) in this scheme is dependent on the output
voltage of each hot wire being strictly proportional to the fluid flow ve-
locity transverse to the wire. For this reason i* is probably worth taking
unusual pains to linearized the anemometer output in this method.

The technique seems interesting because measurements have already been
reported 22 at spatial separatiorns of ~0.2 mm for the two wires, and this
would seem to be sufficient for testing possible non-isotropy. Moreover,
interferenca effects appear to be small in the reported measurements.

The lack of definite theoretical predictions for the mathematical form
of the nonisotropic part of the two-point velocity correlations has the con-
sequence that no definite predictions for the expected form of the output
signal can ve given, if non-isotroric effects are significant. However, it
would be possible to use mathematical models of possible two-point velocity
correlations to explore the possible consequences of non-isotropy on the
spatially integrated two-point velocity correlation measured by experiment.
For example, in cases where the wire separation and the wire lengths are

small compared to the Taylor microscale, functions such as those of Eqs. 5
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and 6 (more specifically, the Fourier transforms of such functions) might be
used to affect the spatial integrations. When the physical lengtns are
large compared to the Taylor microscale, functions more adequately modeling
the asymptotic form of the two-point velocity correlation at large spatial
separation should be used.
CONSEQUENCES FOR TURBULENCE MODELING

It has been pointed out 23 that the usual 24-25 high Reynolds number
modeling of the viscous terms in the Reynolds stress equations, namely, ig-
noring the viscous diffusion and replacing the energy dissipation effects by

the factor
2/3 ¢ 6” (27)

on the right hand side of the Reynolds stress equation, has the potentiality
for violating the realization conditions 26 of the Reynolds stress tensor.
This i1s not to say that Reynolds stress tensors computed with the aid of Eq.
(27) will often be unphysical, but only that this equation violates the
principle nf super-realizability formulated in Ref. 23 - that modelings of
the physical groups of terms (the triple correlations, the pressure-velocity
correlations, and the viscous terms) should separately satisfy the realiza-
bility criteria that the exact solutions of the Navier-Stokes equations do
satisfy - and, thus, may on occasion give trouble.

It is usually felt that Eq. (27) is fully supported by experiment. In-
deed, Corrsin 27 cites Ref. 13, 14, 16, and 18 as evidence that local iso-

tropy has been shown tr hold in laboratory flows and that, a fortiori, Eq.
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(27; is valid. We have shown in previous sections of this paper that these,
and other, works do not suffice to demonstrate that local isotropy holds in
turbulent flows. In consequence, Eq. (27) need not be assumed, and no ex-
izting measurements suffice to specify the modeling of either the pressure--
velocity correlations or the energy dissipation tensor. It should be re-
garded, at present, as an unsolved problem for Reynolds stress closure mod-
els of how to portition the terms of the model which are algebraic in the
Reynolds stresses between the two physically distinct types of terms - the
pressure-velocity correlations and the energy dissipation tensor.

The situation could be resolved by direct measurements of the pre: 're-
velocity correlations o of &1l the components of the energy dissipation
t.nsor. One could then see what terms of the turbulence model best repre-
sents the measured tensor. Measurements of the pressure-velocity correla-
tions are thought to be extremely difficult. But measurements of the compo-
nents of the energy dissipation tensor would involve nothing more intricate
than measuring cross-stream variations of the velocity correlations - meas-
urements which are needed in any case to establish the existence of local
isotropy in turbulent flows
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