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Application of the Adjoint Method

in Atmospheric Radiative Transfer Calculations

S. A. W. Gerstl

University of California
Los Alamos Scvientific Laboratory
Theoretical Division
Los Alamos, New Mexico 87545, USA

ABSTRACT

The transfer of solar radiation through a standard mid-
latitude summer atmosphere including different amounts of
aerosols (from clea: to hazy) has been computed. The ciscrete-
ordinates (S_,) method, which has been developed to a high degree
of computational efficiency and accuracy primarily for nuclear
radiation shielding applications, is employed in a forward as
well as adjoint mode. In the adjoint mode the result of a
transfer calculation is an importance function (adjoint
intensity) which allows the calculation of transmitted fluxes,
or other radiative responses, for any arbitrary source distri-
bution. The theory of the adjoint method is outlined in
detail and physical interpretations are developed for the
adjoint intensity. If, for example, the downward directed
solar flux at ground level, F,(z=C), is desired for N
different solar zenith angles, a regular (forward) radiative
transf~r calculation must be repeated for each solar zenith
angle. In contrast, only 1 adjoint transfer calcuiation
gives F (z=0) for all solar zenith angles in a hazy aerosol
atmosphere, for 1 wavelength interval, in 2.5 seconds on a
CDC-7600 computer. A total of 155 altitude zones were employed
between 0 and 70 km, and the convergence criterion for Lh93
ratio of fluxen from successive iterations was set at 2x]10 7.
Our results demonstrate not only the applicability of the
highly efficient modern S, codes, but indicate also concentual
and computational advantages when the adjoint formulation of
the radirtive transfer cquation is used.



I. iptroduction

The transfer of both solar and terrestrial infrared radiation

through the atwosphere cen be described mathematically by the well-known

(1)

radiative transfer equation

(2)

which is a special form of the iinear
Boltzmann equation governing the transport of any neutral particles
through a given medium. Particularly in nuclear technology, the

linear Boltzmann equation* ic the basis for the calculation of neutron

and gamma radiation fields due to nuclear radiation sources such as
radioactive materials or reactor cores. Due to the impcrtance of an
accurate prediction of neutron and gamma ray distributions around nuclear
reactors for radiation shielding purposes, a large amount of research

end development has been invested during the last 35 years to solve the
linear Boltzmann equation efficiently for almost any prespecified degree
of accuracy. These R & D investment< have resulted in many diversitied
computational methods such as semi-empirical, spherical harmonics,
discrete ordinates, and Monte Carlo methods. Advantages and disadvantapes
of these different calculational tools are discussed e]nvwhvrv(z).

In contrast, methods developed to solve solar and infraved radiative
transfer vioblems in the atmosphere for meteorology or climatology applica-
tions have centered mostly around semi-empirical methods for broad-based
(1,4)

overview calculations and the spherical harmonics method for high-

(J’“). Mher methods like the donbling mvlhud(/)

resolution detail analyses
21! the method of successive orders of svallvring(a) are also developed
to a high degiee of sophistication and computer ettectiveness., Since

the linecar Boltzmann equation also describes problems in atmospheric

radiative trausfer, it is evident therefore that the computational

*also often called the transpory equation.



methods developed primarily for nuclear radiation tramsport calculations,
also must be applicable to solar and infared radiative transier prnblems.
We attempt to demonstre in this paper that the highly-develop:d discrete-
ordina* =« (SN) method may be used advantageously for meteorology or
climstology applications. In additisn, since most SN codes are capable
of solving the linear Boltzmann equatioa both in a fo.ward as well as
an adjoint mode, we shall also demonstrate how an adjoint solution may
ofifer additional benefits ic certain cases.

The discrete ordinates method, as developed by Chandrasekhar, has
been successfully applied before to atmospheric radiative transfer

9)

problems by Lion However, Liouv developed his own special-prrpose

code to solve the SN equations in which he could not take full advantage
of mary recently developed numerical techniques guch as special
differencing methods or iterative accelerstion methods. Hence, aithough
Liou could demonstrate the principle applicability and accuracy of SN
methods, a comparison with other methuds 'nnot yield any general
conclusion about the computational efrectiveness of SN methods. In
contrast, we are applying an off-the-sgheive SN code which incorporates
today's rtate-of-the-art numerical techniques so that 2 computer time
comparison with other standard codes may & ‘ow a more general coaclusion.

We will not describe any details pertaining tuv the S, method itself nor

N

the code since both are well=-documented clsewhere (10'11).

We will
concentrate instead on developing the mathematical basis for Lhe adjoint
method and the physical interpretation of the adjoint intensity in order

to lay the groundwork for a deeper undevstandcing rf pousibls advantages

in using th.- adjoint method.



11. Theory
The basic radiative transfer (or linear Boltzmann) equation for

monochromatic radiation in a plane-parallel atmosphere may be written
1e(112)

a1 +] 2n
Wkt I OT - Lo a0 Gt w070 T0k36") = Q0 0)

where I(x,u,0) is the intensity distribution at level x in direction u,¢,
and Q(x,u,¢) denotes an arbitrary radiation source distribution. For a
solar radiative transfer problem the spatial variable x may be measured
as the distance from the top of the atmosphere vertically down while the
direction variables pl and ¢ are measured with respect to the upward
normal vector. Zs and Zt denote the scattering and total (scattoring
plus absorption) cross-sections for the atmosph:'re, respectively, which
are assumed 1o be given for any x. The often-used scattering phase
function js defined as P = bnis/Zl.

If only solar radiation is copsidered, then the source distribution
) may he written as

A, 8) = 4F S(x)6 (4 )6(0-0,) (2)
wherc IP“ is the incident solar flux at x=0, and "My ¢“ identity the
incident direction for the monodirect ional solar flux. In general,
the chjective of a radiative transter calculation is the computation
ol an integrul response such as a netradiation flux in the upward or
downward direction, a total transmission or retlection (adlbedo) at a
certain altitude, a photodissociation or absorption rate, ecte.  All
such radiative responses may be computed as o phase=space integral of

the torm

® 4] 2n

Response = [ [ R(x,p,$)1(*,u,0)dxdpde (1)
0o =10

(N



where R is a given response function and I the solution of Eq. (1).
1f, for example, the downward directed solar radiaticn flux* at the ground

level x=1 (altitude zero) is desired, then Eao. (3) takes the form

0 2n
Fv(r) = [ J ¢ I(t,p,¢)dudd . (4)
-10

Comparing Eq. (4) with E3. (3) we note that R in this case is chosen as

R(x,p,0) = p6(x~-1)5(~p) , (5)
where 6(p) is the well-known Heavyside step function which is 1 for p>0
and zero for u<o0.

In order to derive the adjoint transfer equation we introduce a
simplifying operator notation and rewrite Eq. (1) as

L1=Q , (1a)
where L is called the linear Boltzmann operator. The phase-space integral
in Eq. (3) is abbreviated as an inner product by brackets:

Response = <R,I1> . (3a)

(12)

The theory of linear operators defines now an associated operator
to L whichk is denoted I.+ and called the adjoint oyerator to L. L+ is
uniquely defined if for any two arbitrary function: | and 1+ the tollowing
commutation relation holds:

atue = a, st (0)

Specifically, the adjoint to the linear Boltzmann operator defined by

Eqs. (1) and (la) is

' a +1_ n
L st S e 2 0 - [ pt [ Ao (xinenere') (7)
-1 0 )

which differs from L, only by the sign in the first (streaming) term and

*In nnclear tevminology a tlux expressed by Eq. (4) is called a current.



an interchange of initial and final directions in the scattering integra
term. The function I+(x,p,¢) is called the adjoint function to I(x,u,9)
if it is chosen as the solution of the adjoint radiative transfer
equation

it =r (8)
where the arbitrary response function R is taken as the adjoint source
term.

The physical meaning of the adjoint intensity distribution 1+ and
the potenticl usefulness of Eq. (8) can be shown as follows: Multiplyin
Eq. (la) by I+ and integrating over all phase space yields <I+,L]> =
<I+,Q>, while multiplying Eq. (8) w~ith I and integrating gives <I,L+I+>
<I,R>. Due to the defining commutation relation for L+, Eq. (6), the
left-hand sides of the above twc equations are equal from which follows
that

ah,Qr = <OLR> (9)

The right-hand side of Eq. (9) is recognized as the tyrical integral
response, Eqs. (3) and (3a), which is the goal of any radiatvie transier
calculation. The left-haud side of Eq. (9) identifies therefore a
second recipe to ralculate such integral responses by using the adjeint
intensity ]+. Remember, that Eq. (9) was derived for any arbitrary
functions § and R. For the sake of physical interpretation, let us
chose R according to Eq. (5) which yields the as integral response the
downward flux at groundlevel, Fi(tr), according to Eq. (4). As a
special radiation source distribution we assume a delta-funciion source
in phase space, QO = 6(x-x“)6(p-pn)6(¢—¢o). Then all integrations in
Eq. (9) can be carried out and we obtain

l+(xu.p0.¢”) = F u(n) . (10)

In other words, the adjoint intensity at the phase space point (xu’“u‘¢u

1

8

)



can be interpreted as that contribution to the downward flux F°+(t)
at groundlevel which is due to a photon that was born at level X, in
direction Hy» Qo. Therefore the adjoint functicno I+ is also called

(13)

an importance function with respect to the detector response
defined by R.

Returning again to the transfer problem where the solar radiation
is specified as a source distribution according to Eq. (2) the
left-hand side of Eq. (9) can then also be integrated for this choice
of Q and gives

<L,R> = RF_17(0,-p_,0_) . (11)
Eq. (11) indicates that any desired integral response <I1,R> is given
directly by the adjoint intensity at the top of the atmosphere (x=0)
and for the ditrection of the incident solar radiation m“o'¢o' To obtain
this specific value of the adjoint intensity, the adjoint transfer
equation, Eq. (8), needs to be solved with the appropriate response
fuuction R as an adjoint source. If, as in the following sample
calculation, the radiative response of interest ie chosen to be the
downward flux at ground level, Eq. (4), then the adjoiat transfe:
equation must be solved with an adjoint source term R accordiug to

Eq. (5). In this case then Eq. (11) reduces to
A .
Fi(r) = XF  1°(0,-p ) . (12)

Comparing now Eq. (12) with the conventional recipe to compute Fi(1),
namely Eq. (4), it might be suspected that in certain cares the use

ot Eq. {12) may be advantageous over the vse of Lq. {4). Both formulas
require the solution of a radiative transfer equation, namely either the
"forward" transfer equation, Eq. (1), to obtain 1, or the adjoint transfe

equation, Fq. (8), to obtain l*. Only the specific problem characteristics,



i.e. the form of Q and R, determine which of the two mathematically
equivalent formulations may be advantageous. The following sample
calculation demonstrates clearly one practical case where the adjoint

method offers substautial conceptual and computational advantages.



JII. A Sample Application of the Adjoint Method to Compute the

Diurnal Variation of Solar Irradiance.

Consider the classical problem of the transfer of solar radiation
through the atmosphere where the integral response of interest is the
downward directed total flux at ground level as a function of the solar
zenith angle. The standard procedure for the solution of this problem
is to solve the transfer equation, Eq. (1), for a number cf different

source terms Qn’ n=1,...,N, which are chosen so that each Qn represents

(n)_

a different snlar zenith angle My

This leads to a set of N different
solutions of Eq. (1), say In’ which, through Eq. (4), gives then the desired
result in the form of a series F&n(r) for N different solar zenith angles.
In contrast, however, employing the adj>int method requires the
solution of the adjoint transfer equation, Eq. (8), with the adjoint
source term R chosen according to Eq. (5). The solution, namely the
adjoint intensity distribution I+(x,p,¢), contains immediately the
solution to our transfcr problem, according to Eq. (12). Ideally
the adjoint intensity at the top of the atmosphere, I+(O,p,¢), may be
obtained for all directions p,9, which, for negative zenith angles
Ho= M includes I(O,-po,¢o) for all solar zenith angles H, and all
solar azimuth z.agles ¢ . The factor %FO in Eq. (12) provides onlv
th- proper normalization of the adjoint solution to the solar source
strength.
Figure 1 compares schematically the regular (“forward") and
adjoint solution methods as discussed above. For the spatial variable
in Fig. 1 the altitude z is chosen, as opposed to the distance x from
the top of the atmosphere which is used throughout all equations in

the text. The transformation for x to z is straightforward via x = 1-2.
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A numerical analysis has also been performed for t!.is sample problem,
using the one-dimensional discrete-sidiuates code ONETRAN(II). This code
has been developed primarily for reactor pbycics and shielding applications
where usually the transport of neutrons and gamma rays thrrugh structural
and other materials is of concern. However, like almosi all neutron
transport codes, ONETRAN has a built-in adjoint capability. Therefore
we can use this code to solve our solar radiation transfer problem in
both the forward and adjoint modes. For simplicity we performed the
calculations only for one wavelength, A=0.6354 pm, which corresponds
to a ruby laser frequency for which atmospheric cross-section data are
easily obtained from the literature. Macroscopic molecular absorption
and scattering cross-sections for a standard midlatitude summer

(14)

atmosphere were taken from McClatchey et. al. who give these

data for 32 altitude layers from zero to 70 km altitude. The latter

was chosen as the top of the atmosphere. In order to compare our

results with other published data, we normalized the incident solar source
strength to unity, i.e. -he factor %Fo in Eq. {2) and consequently also

in Eq. (12) was set tc 1.0. In this case ths quantity Fv(1) can als»o

be interpreted as the total transmission of the atmosphere for the

given wavelength.

Fig. 2 summarizes the results from our calculations. 7Tn all cases
the numerical values for the total transmission for a gtven solar zenith
angle were identical within the accuracy set by the convergence criteria
when calculated independently by the forward and adjoint methods, as
described before. In addition, for the case without aerosols, our
results could be directly compared to earlier reference calculations by

(9)_ (14)

Liou Both are in good agreement. Since McClatchy et. al.

give also cross-sections for two types of aerosols, "clear" for 7y °
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ground visibility Vo, and "hazy" for Vo=5 km, we added to Fig. 2 also
the solutions for these two polluted atmospheres. The specific solar
zenith angles {1'2’4'7 indicated on the abscissa in Fig. 2 by arrows,
correspond to four discrete directions as eaplicitly contained in the
S8 Gauss-Legendre angular quadrature set (1 used in our ONETRAN
calculations. It should be noted again, that in order to obtain each
one of the curves in Fig. 2 by means of the standard forward solution
method, it is necessary to run ONETRAN for a series of different solar
zenith angles and then interpolate the results. In contrast, the adjoint
method requires only one single adjoint ONETRAN run to obtain each of
the three curves because, according to Eq. (12) with %F°=1.0, the total
transmission is given directly by the adjoint intensity distribution at
the top of the atmosphere as a function of zenith angle.

Table 1 gives a very simplified computer time comparision between
the CPU-time (central processor unit time) needed for our calculations
and that given for a comparable calculation using another solution technique.

(15)

Luther reported such a calculation « .ing the successive-scattering

(16)

iterative procedure of Dave and Gazdag where 500 horizontal atmospheric
layers were used and 91 discrete values of H; were employed. Using a con-

vergence criterion of 1.002 (maximum allowed fraction I

(15)

m+l(r,ui)/1m(r.pi)

for all H; and iteration index m) Luthcer quoles a typical running Lime
o about 20 minutzs on a CDC-7600 for a full solar spectrum calculation.
Since 82 discrete spectral intervals were employced we estimate an average
running time cf 14.6 seconds per interval. QOur computations with

ONETRAN have been performed with comparable detail resolution (80

discrete angles, 155 altitude zones, convergence within 1.002 for all

pointwise intensities) with a typical CDC-7600 running time of 2.4

seconds for one wavelength. Since the adjoint of the RBoltzmann
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operator is mathematically very similar to the (forward) Boltzmann
operator itself (compare Eqs. (1) and (7)), an adjoint ONETRAN run
requires roughly the same computer time as a forward rur with otherwise
the sam parsmeters. No attempt has been made in cur calculations to
minimize the computer time in any way, and it should be noted again that
we employed a standard off-the-shelf SN code which had not been modified
for this rather unusval application of ONETRAN. Nevertheless, th:
computer time comparison given in Table 1 may be taken as an indication
that such bN methods may prove to be advantageous not only conceptually
by offering an adjoint capability, but also in computational efficiency.
It should be clear from the generality with which the adjoint
riethod was deri =d in section 111, rhat its applications are not at all
limited to solar radiation transfer problems or any other limited type
of problem*. For example, another typical application to the transfer
of terrestrial infrared radiation through the atmosphere is quite
strai>htforward. The thermal radiation emitted at groundlevel may
be considered as the external radiation sonrce, described by Planck's
law and with a spatial delta fuonction ia altitude 2z, 5(z). If the
loss of thermal radiation into space is of interest, then a response
function describing the outward directed leakage flux at the top of the
atmosphers (altiivde 2z = 1) must bhe used as an adjoinl source term RIR
for the adjoinu transfcr equation; this response function has the form
Rig (%,0) = peb(z-1)u(y) . (1)
Solution of the adjoint transfer equation, Eq. (8), with R from Eq. (13),
gives an importance tunction J:R(z,p,¢) which quantifiecs all contributions

to the infrared leakage Hlux from both, external (terrestrial) as well as

*Note added in proof: Thv(,9J|inl method has recently bec, applied by
Carter, Hovak and Sandtord to solv  the equation of radiative transter
for polarized light using a Monte Carlo solution .echuigue,
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internal (atmospheric) radiation sources. Of course, if atmospheric
emissions of infrared radiation are to be considered, then the adjoint
Boltzmann operator L+ of Eq. (7) has to be slightly modified to include

such internal sources.
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IV. Conclusions

Our analysis demonstrates in principle and in practice that the
compulational techniques developed in unuclear technology to solve rcactor
physics and radiation shielding prcblems can be applied ‘lirectly to the
solution of solir and infrared radiation transfer problems in the atmosphere.
Specifically the highly developed discrete-ordinates (SN) wethod is
applied to calculute the transmission of solar radiation through clear
and polluteu atmoepheres. The LASL SN code ONETRAN is shown to solve
a typical transmission nroblem about six times fast~or than a comparable
high-resolution calculation which emrloys a successive-scattering iterative
procedure. More importantly, however, it is also demonstrated how the
adjoint method can be used to solve atmospheric radiation Lransfer
problems. Substantisl additional computational advantages are derived
using the adjoint methud in certain cases; an additional factor of 40
in computational efficiency is obtained in our sample case. Morener,
since the adjoint solution to the transfer equation is the basis for
many advanced computational methods involving the radiation transfer

oquulion(l7’la)

y the demonstration of its applicability opens many
avenues to further rmprove existing computational capabilities to solve

radiation problems in climatology and meterology.
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THE ADJOINT METHOD
IN SOLAR RADIATIVE TRANSFER

REGULAR
LI = Q(u.¢p)

Y

FY0) = { lf 1(0..2.0)R(pe.p)d ude

ADJOINT
L*I"=R(u.g)

Q

t 2

-jrﬁz==r """" e

\ \ / 1"(z.p.)
C aDJ. TRD
| . I R(u.9) |

. /

Fi(0) = ff [t asp )R 0)dpde

N TR. CALC. FOR N SOLAR
ZENITH ANGLES

1 ADJ. TR. CALC. GIVES F{0)
FOR ALL SOLAR ZENITH ANGLES

Fig. 1. Tihe concept of the adjoint
method compared tc the
regular nethod in solar
radiative transier througn
the atmosphere.
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