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EXPLOSIVE GENERATION OF HIGH MAGMETIC FIELDS IN LARGE VOLUMES
AND SOLID STATE APPLICATIONSS

C. M. Powler, R. S. Catrd, D. J. Brickson, B. L. Freemasn and ¥. B. Cern
Los Alamos Scientific Laboratory
Uriversity of California
Los Alamos, NM 87545, USA

Abstract

Various methods of producing ulrtra-high magnetic fields by explosive flux
compression are deacribed. A survey is made of the kinds of high magunetic
field solid state data obtained in such fields by various groups. Preliminary
results are given for the magnetic phase boundary that separates the spin-flop
and paramagnetic regions of MnF,.

1. Introduction

This year marks the twentieth anniversary of the first description of devices
that produced ultra-high magnetic fields (1000-1500 T) by explosive flux
compreseion techniques [l). These devices rely upon the explosive cylindrical
implosion of a thin walled conducting cylinder, usually called a liner, that
contains an initial wagnetic field. To the extent that flux is conserved
within the liner, the initial magnetic field is amplifie. inversely as the
square of the liner radius as it implodes. Since these early experiments
similar resulte have been achieved at several other laboratories. Hovever, as
will be noted later, these systems have been exploited vcry little as remearch
tools. Or. the other hand a certain amount of scientific information has been
obtained in the range of 100-200 T with other types of explosive flix
comprcesion aystems. There are some distinct advantages to these sy tems that
partially offsct the difficulties in using explosives. The initial .sagnetic
fields required can be supplied by relatively slow capacitor banks, they can
generate largec fields in volumes substantially larger than trhose sbtained by
other methods; they can develop much larger fields than those o'tained by
other methods, at least to date.

A brief description of various high field systeus with representative field
volumes and time histories is given in section 2. Included here are
speculations on the magnitudes of ultra-high fields that might be produced
within the ncxt few years. In sectiun 3 we present the results of recent
measuredents made to obta’n the temperature dependence of the magnetic phase
bourdary that separates cne spin-flop and paramagnetic regions in MuF,. Very
preliminary results are described that were obtained from a new rotatfng
mi. ror spectrograph with optics designed for the near ultraviolet.

2. _Righ Field Systems

Fields to 250 T
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description of the two stage system used for higher fields.
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gulayr cavity, or second stage, is normally about 150 mm wide
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Fig-2 Field vs. time plots for Fig.3 Schematic drawing of
single and two-stage systems. a cylind-ical implosion gystem.

Load coil diameters for curves 1-3
are ll.1, 15.9 and 19.]1 mm.

initiator and a high explosive pad, norwally 76 mm high, 76 mm deep and 155 mm
long. The explosive used most often is a piastic bonded type, 95% HMX and S.
binder. The P08l plane wave initiator is uvaiiable from Los Alamos. TWERLACH
and his collaborators [?] have used a re ated two-stege system. 7Thuy achieved
simultaneous plane initiation by using a metal flyer plate tc impact the
explosive.

A typical field vs time plot for this . stem is given in rig.2 for a field
coil 15.9 mm in diameter and 76 mm long. This record may be compared with
that obtaincd from a single stage device with the same sized load coil that is
also shown. The single-stage devices aca quite forgiving in that about the
same peak fields are obtained from similar systems, even with variationa of
several percent on metal thickuess, explosive rthickness and width, the anglc
between the conper plates and the initial energy supplied to the system. Ve
nava found that the two-stage devices are¢ ncre demanding. 1In our systems, for
example, performance seems to Jegrade if the magnetic fields at the start of
the second stage depart appreciably from the vange of 35-45 T. Generally,
peak fields obtained with a given system var, from shot to shot by 2-3%, and
up to 5% for the smaller diameter, higher field shots. Typical peak fields
for other load coils are 170 T and 240 T four diameters of 19.1 and¢ 9.5 mm
respectively.

Cylindrical Implosion Systems: fields to 1500 T
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ST 57 2130 T 2.3l mm
10 5 2320 2.21

i0 10 1eso 3.47

15 S 2360 2.19

T 7.5 2080 2.86

1S 10 1930  3.46

Fig.5 1Idealized calculations for combined explosive-electromagnetic flux
compression system. The dimensions of the HMX explosive charge were fixed at
235 mm OD and 108 mm ID. The wall thickness of both aluminum liners is 1.6
mm, and the OD of the inner liner is 51 mm.

As 18 seen in Fig.5, an inner liner is added to the system shown in Fig.4.

The experimental region i1s centered inside the inner liner, which has an
initial magnetic field Byy5. This liner is then driven magnetically by the
field between the two liners, with initial value B;n. The explosive system
and initial liner dimensions are not varied. Peak fields and turnaround
diameters are given for various initial fi2ld values, B,, and B The
calculations are compietely idealized in that flux 1nsi&e the 1 ners is
conserved. Only a few calculations have been made. It is likely that results
simfler to those shown in Fig.4 can be predicted with other materials and
configurations. A few calculations have been made where several conceatric
liners have been placed in one flux compression system, each liner in turn,
being driven by its adjacent field. However, no striking improvements in high
fleld generation have as yet been obtalned.

3. Solid State Data: <200 T

Examples of data obtained with cylindrical implosion systems were mentioned in
the preceding section. We mention here a few examples obtained from strip
systems or two stage systems, generally in fields in the 100-"00 T range.
Since this report is limited to explosively produced fields we do not include,
for example, the beautiful cyclotron resonance experiments in megagauss fields
nf HFRLACH et al. [22]) and of MIURA and his collaborators ([21]. These
experiments usually involved the analysis of laser light reflected from the
surface of various materials placed in high fields obtained by electromagnetic
lipncr implusion. They could also be carried out in explosively produced
fields, pnrhaps with some advantages, but have not been done to our knowledge.
Almost all of the information in this category has been obtained either by
DRUZHININ and his associates [23] or by the Los Alamos group. Generally
speaking, the first group employed the Faraday effect using a single
wavelength of light obtained from a laser. Most of the work reported by the
Los Alamos group also invulved optical effects both in tha Faradav mada and -



