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RELATIVISTIC EFFECTS IN THE ATOMIC AND NUCLEAR FEW-BODY PROBLEMS
J. L. FRIAR

Theoretical Division, Los Alamos Scientific Laboratory
Los Alamos, New Mexico B7545

Abstract: Relativistic effectg in the atomic and nuclear few-body systems are
classified and discussed with the emphasis on electromagnetic transitions.
The size of relativistic corrections, calculational techniques and amhi-
guities, and comparison of theory and experiment are considered.

1. Introduction

The purview of my talk covers the influence nf relativity on the atomic and
nuclear few-body problems. This presents both an opportunity and a problem. The
opportunity is to introduce practitioners in related fields to each other's prob-
lems, methods, and solutions, while the problem which immediately arises is the
layer of formalism, notation, and folklore which surrounds a field, and which is
difficult for a nonexpert to penetrate. The attempt to synthesize the two fields
is particularly worthwhile for those of us in nuclear physics, since many of our
conceptual problems which have arisen have been dealt with in atomic physics.

The eligance and richness of the atomic few-body problem must be seen to be oppre-
ciated ). 1ln general, the ability to calculate wave functions makes the few-bLody
systems the best sBtudied of the various atoms and nuclei, and the first plsce Lo
look when examining small corrections.

The approach t!.at I have adopted is to treat nuclei and atoms as weakly bound
systems, for which the binding energies are small compared Lo rest masses, and
therefore the velocities, v, of constituent particles, nucleons or electrons, cre
slow compared to Lhe speed of light, c. This is a reasonable approximation for
any case we will deal with, since in hydrogenic (one-electron) atoms v/c is Za/un,
where Z is the nuclear charge (in units of e, the fundamental charge), o is Lhe
fine structure constant (T 1/177), and w is the principal quantum number of the
bound state in guestion. For nuclei, we can write v/c = p/M and use a typical
nuclear momentum p~100-200 MeV/c to estimate v/c ~ ,10-.20. This means Lhat
(v/¢)®, which characterizes the aize of relativistic effects, is of the order of
a few percent in nuclei, We will demonstrate this later in a numerical example.
It is for this reason that the effects of relativity will he treated as
corrections in basically nonrelativistic systems, rather than as primary effects,
distinguishing our weakly bound ayatems from elementary particles, for example,
rfhis does not imply that in every instance relativistic corrections are small,
since cancellations can enhance the relative correction; one hopes to find just
such caser. This type of treatment is not necesdary in the two=bhody problem,
ecither atomic and nuclear, where a more lundn,rnlnl approach to the dynamics s
possible by uning the Bethe-Salpeter equation”™), for example., Nevertheless,
the cost of using such a formalism that incorporates relativity manifestly and
exactly in a formidable increage in complexity, which makes interpretation diffi-
cult. Although we will comment later on this approach, the inlrrrnqu Enndrr i
referred to the impressive calcolations of Tjon and his collaborators™ 7). We
will follow a more pedestrian path, Outside the few-body problem these non-
perturbative methods are not available. Hopefully, the lessons learned i
treating 4 few partaiclen can be extended 1o many.

In the cvourne of preparing thin talk, | became aware that there were subtle-
tien in defining wvhat a relativistic correction is! The reanon is &hnl Lthege cor-
rectionn to the nonrelativintic limit are corrections of order (1/¢%) relative to
1. Clasnically, thin endn the dincusnion, but in quantum mechanics factors of W
are ubiquitous, so much so that they are ignored by theoristu. It s gquite common
to ingorporate than factor into definftions of coupling constants, such an
o /R . Doing this can be minleading., For example, the nonrelativistic



Coulomb Hamiltonian is (p2/2H-Ze2/t), which can be rewritten as (p2/2H-ZaMc/r),
and can be made in this way to involve cl Many years igo Hideki Yukawa showed
that the exchange of a meson of mass p between two nuciegﬂs produced a potential
V which depended on their separation r and varied as g e "/r, where x = pcr/j.
Thus the Compton wave length of the exchanged meson, M/pc, which sets the length
scale of the potential, involves c, and in this context has nothing to do with
relativistic effects in a nucleus. Consequently, our rules for determining the
order of a relativistic correction will be to ignore the c's that occur in the
dimensionless combination, x, abgve, and.to avoid incorporating c's in defining
coupling constants (i.e. treat g, not g“/Mc, above). Thus, the Yukawa poten-
iial defined sbove is nonrelativistic. It is not clear that this prescription
suffices for all problems that arise, but it will be sufficient for our use.

This procedure is still too complicated for easy usage, because it requires
paper and pen; since v/c is p/Mc, T therefore count powers of 1/M, where M would
be eibher the nucleon or electron mass, accoiding to the problem. Consequently
(v/c)” will be dimensionally reckoned as 1/M®, To male thitc prescription consis-
tent, in addition to explicit powers of (1/M), it is necessary to use the wesk
binding assumption and count powers of the potentia} as powers of (1/M), also.
The kinetic energy of a nonrelativistic particle, p°/2M (and explicitly (1/M)),
is nearly equal in magnitude and opposite in sign to the potential energy; both
contain no powers of (1/c) and will be treated as (1/M). (Skeptics ehorld take a
brief look at the virial theorem and convince themselves this argument isn't to-
tally crazy). Relativity, of course, treats all forms of energy, potential or
kinetic, on an equal footing, an idea that has had enormous consequences for our
era. We must therefore expect some relativistic corrections to be of the kinetic
type and involve momerita and masses, while others will be potentiai-dependent.
Our counting procedure treats them equally. Corrections of the former type are
called nonstatic because they vanish ag the mass of the constituents becomes very
large (mtatic limit). In addition, because of the weak binding assumption, these
two types of terms will tend to be of the same magnitude and opposite in sign, if
they are Lhe same order in (1/M). A8 an example, we expand the Kinetic energy
T= Jpzrzoﬂzc“ w chopZIZH-pA/ﬂerz. The leading-order relativistic correction
is therefore of order (l/cz) or (I/HT) and is manifestly a (l/Hz) correction to

p2/2ﬂ. Note alro that ip is attractive. If a nonrelativistic reduction ig 1 ade
of the Dirac equation '7) with a Coulomb potential V. lor a charged particle
with magnetic moment p (in magnetons), the npin-orhi!(nnd Darwin=Foldy potentials
are the two leading=orde: relativintic corrections to the potential Vr which
result:

NGBV xg

V.. = (2p-1) A (1a)
80 .

aa’
Vi o= (2p-1) ()
DE o

Both are manitently I/Hz and |/r2 correctionn to V , and together with the cor-
rection to the kinetic energy, generate the complele 1/¢” correcticn to the Hohr
energy of o hydrogen atom which iv contained in the Dirac eigenvalue. The
Darwin=Foldy interaction is a purely quantum mechanical effect, while the
spin-orhit interaction in the sum of iwo classical phenomena:  the Thomas preces-
kion, and the elrectric dipole interaction of a moving magnetic dipole,

In addition to the Hamiltonian, which generaten the ecigenvalues and wave
functione of bound staten, nur interest (5 directed at trannitions hetwern two
nuch Ntates mediated by tranmition operatorn.  The two mont prevalent such opera-
tory are the charge (p) and current cennity (J) operators, which van couple to



external electric and magnetic fields, and are responsible for such phenromena as
photon decay or absorption by a rystem and electron scattering from the system,
both elastic and inelastic. Just as we made an _expansion of the Hamiltonian in
powers of 1/M (1/c), we do the same with p and J as indicated ir fig. 1, neglec-
ting henceforth factors of | and c¢. The nonrelativistir charge operator shown
there has the form

py(¥) = : ei53(;-;j) (28)

while the nonrelativistic current is given by

> € + + H, » -+ >
Jo0) = 1 - (3,8°G-X)) - I 5 (i R-R)) (2b)
i i i i

for a composite system whose ith par{iclg has coordinate, momentum, charge, mass,
magnetic moment, and (Pauli) spin: x_,, p,, e,, M., p., and o(i). Most electro-
magnetic ‘ransitions in both atoms and nutlei’are’caldulated using thess opera-
tors. Both the tonvection (first) and magnetization,(Becond) terms in are
manifestly (1/M), while the charge operator ia (1/M) . One ingredient enters the
nonrelativistic current in nuclear physics which is not present in the atomic
problem: interaction currents. This 1s an important distinclion and we must
momentarily digress.

—_—
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Fig. 1. Categorization of charge and current operacors according to relativistic

content .

The masn qualitative difterence of the nuclear and atomic force prohlem:
that we will deal with isv the fact that the nuclesr force in mediated by the
exchange of mesonn which may be charged, as opposed to the neutral (and marsless)
photon. Thit ix illustrated in fig. 2, wher> the upper row of processen de-
picta electronn (wolid line) futeracting via photon exchange (wigply line),
pussibly in the prescace of an external imteraction (crons plus wiggly line).
The lower row deparcts nuclear processes mediated by charged pion exchange, which
vonvertr a proton (neutrun) into o nentron (proton).  The change of nucleon
charge (isonpin) stater in reflected in an imospin-dependent puclear foree in
(). Clearly the flow of charge asnocinted with the mexon conntitules a current,
and theretore the current operator must have an inleraction or exchange component .
In fact, without it, the current {8 not congerved,  That is, the current continn-



ity equation

V30 = - iMH,p())] €))

is not satisfied because the potential in H =T + V fails to commute with p and
thereby necessitates an additicnal (potential-dependent) component. The nonrela-
tivistic exchange current is isovector (that is, it vanishes for neutral meson
exchange) and static ( no explicit powers of 1/M). Nevertheless, because it is
potential dependent, we ca®l ii of order (1/M), just as § is. Although we will
not discuss it in any detail, generates 10-15 percent contributions compared
to . This sounds anomalously small in view of our argument that the kinetic

and i1nteraction parts should be roughly comparable, bu. it does illustrate an im-
portant point: dimensionless factors can be large and change a 50 percent effect
into a 10 percent effect or vice versa. Th> typical process that we will cdeal
with is an isovector Ml, or magnetic dipole, transition. The spin magnetization
currenl dominates this type of transition because it is proportional to (p_-p ),
the isovector nucleon magnetic moment (in nuclear magneton units) which is"numer-
ically large: 4.7 n.m. Thus we are comparing 10 percent to the 4.7; were p _-p

of "normal" size (1.0), meson exchange effects in these M1 processes would be n
typically 30-50 percent.
e” o) (b)
- ‘ - (c)
.
-l
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Fig. 2. Graphs of phyrical processes which contribute to bindiog and trankitions

in atoms and nuclei,

In addition to the nonrelativirsic compgnents, both p and J have relativislic
correction pieces of kinetic type (Ap0 and Al ) and potentiai=dependent type (4p
and AJ ). The former are nonstatic and rnnlgiu explicit powers of (1/M), while
the laller type may or may not be static. An example of o static exchange con-
lrihull9n to Ap it Lhe two-bonon- exchange rh!rnr denaity of Hyuga and
Ohtgubo ™ ), which dan be shown to he of order 1/c7, acgording to our ruler, and
1/M° by inmpection, mince iU has the schematic form V° oand we lrrlh V~1/M. Thix
type of term ix inovector and vanishes for neutral meson exchanges’)

The most important contributions to Ap( are the mane ones we Jdaw earlier in
the potentialn in eq. (1) the rpin-orbit Jnd Darwin-Foldy interactions. In the
present context, one has to replace Vi eq. (1Y by the external electromagnetic
potential which generates the electric field, but the physics in the name. [
one prohes the dennity of charge in an atom or nucleus by placing it in an ele.-
tric field, the fact that the constituents are moving internally generaies a con-
tribution to pix) via P, while Por resulte bhecaune of zitterbewegung, lu
muclei, the large urulrk magnet (v moment, =1.91 n,m., generaten a small but non-
negligible component «f p from neutrons which leadr to a difterence between the

e



proton density and the charge density, and historically led to,a clarification
of the anomalous charge radius differences of the ,Ca i;gtopes ).

A wide spectrum of contributions of order 1/M” to can occur, and we men-
tion only oRe: the Lorentz contraition [} thi magnetic moment of a moving magne-
tic dipole ) by a factor 1=-(v/c)” ~ 1-p“/2M°. This nonstatic tera has a
clagsical origin and will play sn important role later, when we discuss M]
transitions in few-electron atoms.

A variety of mechanisms lead to the transition operatorg we havz discussed.
The most important for the interaction currents are the processes (b) and (e) in
Figure 2, which illustrate virtual electron-positron pairs, or nucleon-antinucleon
pairs, which are created and deatroyed by ihe potential and the external interac-
tion. If the formalism one uses does not explicitly include negative energy
(Dirac) components, contrib Eions of this type to operators will occur. This is
the mechanism by which the * /24 term in the Schroedinger equation is generated
irom the Dirac equation, which is linear in the electromagnetic vector potential,

More exotic interaction currents are generated in (c) and (f). In (c) an
electron in the Coulomb field of a nucleus (shaded line) can interact with jts
own electromagnetic field (Lamb shift) while emitting or absorbing a photon ).
In (f) the external field can interact with mesons being LranaTitLed between nu-
cleons; even the nature of the meson can be changed in mid air ")! Many other
mechanisme are also possiole.

Our discussion above has centered on a few phenomena of relativistic Qrigin
which generate transition operators of (relative) relativistir orde5 (v/c)“.
Earlier we discussed contributions to the Hamiltonian of order (1/M7). C(learly
these terms generate wave fuanction components of order (v/c)”, and they will con-
tribute to transition ma rix elements in the same order. Two types of terms are
generated in the wave function: corrections to :he center-of-mass or internal
wave function, and motional corrections caused by, the overall motion of the sys~-
tem as a whole. Thus we find 3 sources of (v, )" terms in matrix elements: (1)
the transition operators; (2) the internal wave fuaction: (3) the motional correc-
tions. The latter correction is relatively unimportant in atoms, because of the
large nucleus mass. 1314

The third category has received a lct of attention ~' '), however, in
nuclear physics, because this is the mechanism by which such phetnomena as the
Lorentz contraction, Thomas precescion, etc., for the enkgrr composile Ryslem
are manifested. An impressive rrcies of papers by Foldy ™) and his collabor-
ator Krajcik ) has detailed k. constraints that the wave function of a many-
body system mukt saLisfy in order to satisfy the constraints of special relativ-

ity. These consiraints must be :. formulakedzthnl a nystem of mack M in the
system's rest frame generates an euergy P +M° when Lae system is given a
momertum P.  This is more than a ni. ety for practical calculations, siniv almost

every external interaction changes a system's momentum. To order (v/c)® Foldy
showed that the wavs function in a general frame had to have the form

wﬁ ~ (1 - ix(ﬁ))w()rm‘ﬁ . (4)

wiere ¢, is the rest frame wave function and x(ﬁ) accounts for all the motjonal
ellrcts. The operator X can be divided into Rinetic (xo)l nd potential=-dependent
termr (X,,). The former accounts for Lurﬂ?hz contraction "), ete,, while the
latter can be ditfferent in every formaling " ); we will deal with thin prohlem
later. Foldy also showed that the patential energy u# a aystem of particles
changes when the nystem begink to move with momentum

V(b = vo) - By oot -k Vol - g ] )
i} 0'0 v'o

wheie Vooand B are the nonrelativintic potential and Hamiltonian., 7This rela-
tion {n lmpnrlgnl, becaune it cammntrates how the potential hetween 2 particles,



for example, is modified by relativity when buth particles are moving together
relative to the center-of-masg of a many-body system. It does not deal with the
corrections inlg(ga, however. This relation, or formalisms equivalent to it, has
been much used "'“7).

The theoretical mechanism which takes a system at rest and makes it move is
the "boost" operator, s fundamental operator in any theory, together with the
Hamiltonian, momentum and angular momentum operators. The boost is intimately
related to x and knowing one you essentially know the other. Having calculated
Y. by some means, knowing the boost allows you to deduce ¢ in a general frame.
Tg!s is illustrated in fig. 3, which depicts a spherical system at rest with a
mass M and a radial density p(r). when the "bo it"zcauses the object to move
relative to a fixed frame, the energy becomes Jg +M” and Lorentz contraction
occurs. This is also one of the mechanisms which contributes to Foldy's rela-
tion (5). Another manifestation is the f!ct 59:t tae form factor F, the Fourier
tra?,form of p(r), develops an argument q° = q +3 Qg° which is a Lorentz invari-
ant '); nonrelativistically we would have only q".

Rest P

@ "Boost"
————e

M (_ISZ+M2)V2
pi) F (52 q2)
Fig. 1. Efteccts of the "boost” operator on a composite system,

2. Calculaiional methods

The methods used to calculate wave functions, Lransitions rates and eigen-
values aie as varied and numerous as the people who use them. 1 like to divide
them into two basiuv calegories. One category subrumes atomic physics calcula-
tions and ab initio nuclear calculations and uses a model for exchanges of
quanta which produce binding. The other tyoe uses Foldy's relation (5), or its
equivalent to ¢ilculate the corrections which a-ige for a fixed two-body potential
in the two-hody enler-of-mass. The latter type thrrf?6r cannot calculate all
relativintic elfects, particularly electromagnetic ones ) and those ariming
from three-body forces. We will concentrate on the former type.

host begin in principle with the Bethe-Salpeter equation, its Feynman
graplical equivalent, or the widerlying field theory. Although the former
approach can stand by itself, most efforts are devoled to mapping this four-
dimrisional equation into an equivalent three-dimensional Fqyqtion, called a
quaripotent ial equation, or a Blankenbecler-Sugar reduction ~ ) in nome canes.
This in not a unigue procedure. It js not even clear that any one method is
better than all the others. The problem in easily illustrated by exnminlﬂg_lhr
form of the excaange of a siagle mexon of mass p ‘!d 5""5 momentum g = (q ,q)
betveen two nucleons in any Fevoman diagram: V/(q"-q .+~ ), The vertex factor
in the numerator in umimportant, and ignoring the . -Verm leaan directly to the
Yukawa potential we naw earlier. The relative encrgy variable . has no non-
relat vincic analogue™ ), and {8 required to accomodate the retardation of the
nuclear furce due to the fanite propagation speed of gignalu. [t cannot be
ignored 1n many canex wince (U leadn directly to relativiatic corrections, but
there (v no unique method for eliminating 9 in favor of other quantities. A



similar situation exists in the Coulomb problem if we set P=0. There the ambi-
puities are simply the choices of gauge used to describe the electromagnetic
field of the exchanged photon. Fi;ty years agg, this ambiguity first showed up
in the atomic potentials Eg Breit"~) and Gaunt™ ). For most applications

Breit's form is preferred™ ™)

If there are ambiguities in potentials, is there an ambiguity in the physics?
The answer is no, if calculations are performed consjstently, but interpretation
may be ambiguous. To understand this we have to understand the sources of the
problem. In mapping the four-dimensional formalisa into a three-dimensional one,
many methods generate an effective potential which depends on the energy (eigen-
value of the system). This energy dependence hat so many unpleasant consequences
when it comes o calculating transition matrix elemeats, that 1 (and many others)
regard it as a serious technical defect. The reason is that the energy is actual-
ly a time derivative in the Schroedinger equation, and it is this derivative term
that leads to the definition of the probability density. Adding potential-
dependent terms of this type modifies the very nature of the probability density
in nEbunpleusnnt way. It also modifies the wave function orthonormality condi-
tion® ). Consequently, considerable effort has been devoted to fnrmalisms that
eliminate this problem. Among these techniques are: (1) the_renormalization
methnd, similar to the renormalizatio?7m55hods of fieiﬂ theory~) and used by the
present author in EBe nuclear problem "'“") and Drake” ") in the atomic problem;
(2) the FST method””), which uses projsstion operators; (3) the folded diagram
method popularized by Mikkel Ja?nson ); (4) certain of the quasipotential
methods, such as Franz Gross's™ ) in the one-boson-exchange approximation.

The second source of ambiguity is more mubtle, and certainly,more confusing
to Lhi7u5§nitinted. In the first complete treatment of the {v/c)” contribu-
tions "’“") to Ap__ from one-~pion-exchange, it was pointed out that different
approaches produsgd charge, current, and Hamjltonian operators (and wave func-
tions) which were different, but unitarily equivalent, ensuring that the differ-
ence in the form of operators does not affect observables such as energies, mag-
netic momeghs , form factors, etc. Recently it was shown that the four different
techniques' ') listed above lead tn (in general) different looking. but unitarily
equivalent, treatments of the deuteron charge form lactor. Several other obser-
vations follow from the above discussion: (1) the many physical phenomena
that we discussed in the introduction are spread throughout various Feynman dia-
grams differently in diffgrent representations; (2) the amount of meson-exchange
conlribution of order 1/c” to a given process is not an observable and can be
varied by changing representation; (3) ! § percentaye of D-state in the deuteron
is not an observable, (i.e. unmeasurable™ ™)) and variers from representation to
representation; (4) runsinlrnrngrmnnds that hoth wave functions and operators
be cglculated to the grame order™ ). All of these problems are basically of arder
(1/¢®) and don'l n&jrrl the nonrelativistic limite. Almost every nuclear calcu-
lation of &p _ or has violated (4), and consequently is useless. For the
atomit proh]s#. the ffual choice of Coulomb gauge Lo perform cnlrulnlion*a!ixru
the representation to order (1/¢%); for on~-photon-exchange Ap i8 zero” ) (al-
though A is not), and this simplifies many calculations. There is in fact a
clone confifction between the choice of gauge in the atomic problem anu the choice
of representation.

We summarize Lhis section by stating that there iy no shortage of methods
(fach with ity own champ on), but this abundance has not always led to an increase
in insight.

4. Experiment

Every physicr atudent in expored to the hydrogen atom problem repeatedly and
in detajil. Neverthelean, thin moxt studied of the simple quantum systems contin-
ues Lo be a rerearch topic, because of the rich variety o! altates and the transi-
tionk between them, as well an the great experimental precinion of many of the
measurements. It s reasonable to look to this system for examplen of relativin-



tic effects in transitions. The fine structure splitlLings a~-» examples of rela-
tivistic corrections to eigenvalues, as we have discussed. Ligure 4 shows the
four lowest-lying states of a hydrogenic ion (1 electron, arbitrary Z), including
the 2p3/2-2p1/2 fine structure and the 281/2-2pl1/2 Lamb shift. Electric dipole
transitions dominate the s-p transitions, including the exotic 1000 MHz (in H)
one(see Fig. 2c). More interesting for our purposes is the 261/2 » 1s51/2 transi-
tion, wvhich prefers two-photon (2E1) decay, but can also pro-eed via the retarded
M1 decay by a single photon, although this has not been observed in light
elements. The leading-order (nonrelativistic) M1 decay amplitude vanishes

Hydrogenic
F
2s1/2 fs. _ _
*I jEIL 2P1/2 | 1000 _MHz Lamb Shift
Mi

El

Al2s— Is)= Agla-1~-1)=2A¢
LISIIZ/ A

Kinetic Current |~ Interaction

Retardation Current

Fig. 4. Low-lying states and transitions in hydrogenic ions. The 2s4%-1a% M]
amplitude is decomposed inlLo components.
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\ 1
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El Ei
Mi Low-Lying States
/2 / Cf Helium-Like lors
11sg (182)

Fig. 5. Low-lving states and transitions in helium=-like ions.
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Fig. 6. Ratio of experiment to theory for the 35 + l5 and 3P + lS transi-

tions in helium~like ions. 1 0 ' 0
because we arg dealing with orthogonal s- sll&gs The amplitude A for this decay
to order (1/¢“) involves three contributions : (a) the retardation correction
to the nonrelativistic matrix element; (b) Lhe l.Lorentz contraction correction to
the magnetic moment operator; (c) a number of contributions from the spin-orbit
interaction, which includes an intera~tion current component as well as a kinetic
part (the sum of which vanishes). Theae have been arvanged as illustrated in
tig. 4; the factor A, contains all the parameters involved. There is actually an
ambiguity of the Lypg we discussed earlier. It is possible to use the Schroe-
dinger equation to eliminate half the interaction current component in terms of
a kinrtic contribution. The simple structure of one-electron atcms allows us
to calculate all the matrix elements analytically for this problem.

Much more interesting are the helium-like (2 electrons, arbitrary Z) atoms
ilJustrated in fig. 5, showing the types of transitions. Particularly relevant

-9~



is the 38 > lS transition which has virtually the same structure as the
251/2-111}2 trualition ve snalyzed earlier. 3Ihs7rltio of experiment to theory

is shown above ind is 5" elcillent agreement™ '"') with 1. The other interest-
ing transition is the "P. + "S_ transition, which is El in nature. However,
because the nonrelntivillic elgctric dipole operator has no spin flip component,
the transition induced by this operstor is greatly inhébitfd, proceeding only
through relativiastic components of the wave function ( Pl- P, mixing) induced

by the spin-orbit potential. In addition, retardation and rllltivi:tic correc-
tions 52 the dipole opnerator play a comparable role; the latter tvo csgtributionl
cancel” '). The agreement of theory and ezmperiment is again excellent™ ). This
transition offers excellent lessons for nuclear physics because the relativistic
corrections to the wave function cannot be neglected (as they usually are in our
problems) and because the relativistic corrections to the dipole operator violate
Siegert's theorem (actually an approximation), which has pluyed such an important
role in photonuclear physics.

After listing the auucesses of atomic physics in the relativistic regime, it
is with some trepidation that I discuse the nuclear problem. In the past, two
approaches have been uced when discussing relativistic corrections. Strictly
speaking one should compare the results of a complete calculation with a purely
nonrelativistic one, as is done in atomic physics. Because the strong interac-
tion dynamics are poorly understood, every ab initio calculation contains at
least a few adjustable parameters., It is not clear whether some of these should
be readjusted before making comparisons. Thus vurious calculational approaches
could produce different answers to the same question: how large are relativistic
corrections? Consequently, meaningful experimental comparisons with theory are
difficult to formulate. In most caser, three-body calculations of relativistic
effects adjust the two-body Hamiltonian to reprcduce the known two-body data in
the two-nucleon center-of-mass. Some don't do Lhis, however.

IOne problem in nuclear physics ism the lack of clean, "forbidden™ transitions.
The S, + S, radiative transition rate involving a proton and thermal neutron is
not small ag’it is in atoms, bscnule the neutron and proton magnetic moments are
different, The thermal ntd * “Hty transition, however, is very small for essen-
tinllyaihe same reason that th. atomic M1 transition. that we discussed are
mall ). This transition proc:eds through wave function components that are
induced by the spin-dependence of the nucleon-nucleon force (which can be non- 9
relativistic in origin), and th-ough (nonrelativistic) meson-exchange currents™ ).
Although this is an extresely interesting process, there is no direct evidence
of relativistic effects.
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Fig. 7. Thzoretical (a) and schematic (b) densities for the trin:-leon system.

Huch attention has been directed recently at the experimental 3He charge den-
sity, vhich {9 reputed to have a swall "hole" in the middle, if the effect of the



nucleon finite size is removed from the dltl‘o). This hole it intimately re-
lasted to the behav or of the form factor F at large momentum transfers as the
following sum rule ") shows:

p(0) = 2—‘—2 Sotaa’Fta®) %)
n

A large negative contribution to qu suppresses p(0). Since the behavior of F at
large q is a reagonable place to look for relativistic phenomena, have v seen
the evidence we are looking for? The anewer to this is noL known. One thing is
clear, hovever; standard potential models do not producek! hole, as indicated by
fig. 7, which shows the resu’ 3 of a Faddeev sllculltign ) for the Reid Soft
Core potential model for the scalar, vectqQr, “He, and "H densities. Unfortunately
little iz known experimentally about the “H density, except the radius. NextL to
it we have illustrated schematically what a density vith a wtrong central depreus-
ion might look like. The first observation is_that the smount of charge involved
in small (1/54), because the volume element d~r suppresses small-r contributions;
similarly, the fractional change of *he rms radius is only .008, Although
pictorislly the depression is a massive change, only a small change is made in
glibal properties such as the radius.

In order to further explore this question 1 have cooked up a moderl of two
identicai nucleons in their center-of-mass frame which is totally unrealistic
and unphysical, but has ce-tain features that are illustrative of relativistic
effects in general, and that will provide us with a numerical example and
possibly some insight. The model Hamiltonian is

2
H
- o2 172 . Mo
H=2(M + Hot) T M+ H, Zh (7a)
- 2 4 2 2
=24 +p"/M+ V-p /M - [p°,V]/4M - V°/4H (7h)
where H. = pzlﬂ + V is the nonrelativistic Hamiltonian, This mode) has bLe 'n con-

structed so ( at the ecact and the nonrelativigtic 3jolutions are identical' wore-
over the eigenvalues differ by a trivial amount (1 KeV) if Ho y Sldl the deuteron
binding energy ED (we have used the Malfliet-Tjon 1V potential ), for which

E, = 2.24 MeV). “1n addition the form has been chosen so thaL if V = 0, one is
left with the correct kinetic energy.., Terms of the form {p“,V}/M are cxtremely
common relativistic coriﬁckionn, as V°/M-terms are, although signs and factors

of two may be different”™ '""). 1In our mode! the first potential correction ir
repulsive, while the second is attractive. Cancellations of the type we have
forced in this mouel may be posgible bstween rrlqzivnstic corristienn of the
kinetic and potential types, aa nojed hy Coester ) and others "'“7). Many
people neglect terms of ithe form V', pretciring to use only one-boson-exchange
potentials. We can investigale Lhe eftrct of such an approximation in our crude
model by adding V°/4M to V and solving H, for ¢. This neglects a nuaber of
higher order (in 1/M) terms but uhouid Rive roughly the correct wave function fecr
the relativiatic model without the V°-Lerm. The diffrrence in § for the two
casen is ghova in the next figure. Although V°/4M is numerically small for large
separations, it is very repulsive for small r. Thus, adding or subtra.ling small
relativiptic terms may have nonrnegligible effecta on small parts of kgr vave
functjon '), even producing nodes from nonlocalilies In the potentjal ™) Leaving
out V°/4M in our model could be compenssted by adjusting the parameters in V Lo
reproduce E_; this would alter y(r) in yet a differept way. In the three-hody
problegy, one must also worry about three-body forces ), which have the schematic
form V° of oyr model and can have a nonrelativiatic origin. For all Lhese
reascns the “He densily Is inconclusive evidence of what we neek.
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Fig. 8. Devteron wave function with (solid) and without (dashed) the V2/hH
relativistic correction.

If there is scant experimental evidence of relativistic effects in light
nuclei, we will have to resort to theoretical studies. Of all the numerical
calculations to date of relativistic corrections in few-nucleon systems, in my
opinion only those of Tjon and his collaborators are sufficiently comprehensive
to be considered "realistic”", They include spin, for example, whic¢' is nontrivial
and probably necessary, and go beyond the ladder approximation in tuc Bethe-
Salpeter treatments. Although they do not make a pure relnlivislic-non;elnliv-
istic £9mggrison. they find small relativistic corrections forakhﬂqan-" ) and
three=""' ") body problems. In the former case, the consensus ' ') is that the
effects are repulsive. The calculations by Gross and his ccllaborators of the
deuteron form factor show relativislic corrections which are very T&mibnz7lga 50
those of Tjon. The various calculations for the three-body system '°7° 77 ' 70"
indicate a small residual attraction if the two-bedy Hamiltonian is fixed Lo
conform tao experiment 1l two-body properties. Unfortunately, the various calcula-
tions all compare thear results to different limitu. HBecause of canceilations
which occur, it is not clear that o small rosiguul1r0pulninu is ruled out,.

For pedagogical purposcs we note that <-p~/4M7> = - 35 MeV while «p™/m* =
11.9 MeV for our potential model, yielding a 3% relatiyisntic correction to the
kinetic enerpy. The two potential terms of order (1/M7) give +.35 MeV.,  These
numbers confirm our earlier estimates. Clearly much more work needs to be done
in this field.

This work was performed under the auspices of the U, §. Dept. of Energy.
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