i | CONY - FIDROS - - |

) MSTER

* LA-UR-80-3642

TITLE: A METAFILE FOR EFFICIENT SEQUENTIAL AND RANDOM DISPLAY OF
GRAPHICS

AUTHOR(S): Theodore Niles Reed

SUBMITTED TO: SIGGRAPH'S]

Dallas, Texas
August 3 to 7, 1981

OINCLAMER

By acceptance of this erticle. the publisher re-
cognizes that the U.S. Government retains a non-
exclusive, royalty-free license to publish or repro-

, duce the published form of this contribution, or to
allow others to do so, for U.S. Government

< purposes,
The Los Alamos Seientific Laburatory requests that
the publisher i2antify this article as work performed

under the auspiors of the Department of Energy.

of the University of Celifernia
LOS ALAMOS, NEW MIXICO 873 48

ETRIBUTION OF THIS DOCUMENT " UM‘!"\ L
An ANivmetive Adtien/lquel Oppertunity impleyer \

Form No. 83. N2

rf’ ."'0- 229 DEPARTMENT OF ENERCY

CONTRACT W-7408-ENQ. 30

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A METAFILE FOR EFFICIENT SEQUENTIAL AND RANDOM DISPLAY OF GRAPHICS
by
Theodore N. Reed

ABSTRACT

Graphics metafiles have been in use at the
Los Alamos National Laboratory (LANL) since
early 1977. The first metafile format was defined
in 1976 and has been revised several times to provide
efficient graphics support in the LANL computing
environment. Objectives and current applications of
the Common Graphics System (CGS) Metafile are given.
Details of the format and the random access techniques
incorporated in the CGS Metafile are described.

DEFINITION

A graphics netafile can be defined as follows: "A graphics
metafile is a device-independent description of a picture
intended for subsequent display on a graphics output device."

Two concepts are implicit in this definition. First, the
metafile is a device-independent description of a picture that is
capable of being displayed on a wide variety of graphics devices.
Second, the metafile is intended for subsequent display; thus, it
is output-only.

HISTORY

In 1976, the Graphics Group at the lLos Alamos National
Laboratory (LANL) defined a graphics metafile for the Common
Graphics System (CGS) for use at LANL [1,2]. It had 14 bits of
resolution based on 8-bit bytes. We defined this formal after
performing detailed analysis on a variety of LANlL-generated plots
and looking at existing graphics mectafiles [3,4]). 1In 1978, ue
modified this metafile to include 15 bits of resolution based on
a 16-bit word and restructured it to include the ACM/S1GGRAPH
Graphic Standards Planning Committee "CORE" capabilities [5].
This revision was proposed to an interlaboratory task group
consisting of LANL, Sandia National Laboratories, and the Air
Force Weapons Laboratory [6]. After some modification, it vas
adopted and called the Basic Graphics Package (BGP) Metafile
format. The current CGS Metafile format is the BGP format with
extensions to allow efficient random access and error recovery.

In 1979, the ACM/SIGGRAPH Graphic Standards Planning
Committee published its status report, which included a proposal
for a graphics metafile [7]. This metafile was based on a study
of four existing metafile formats. One of these was the BGP
format from which much of the command structure and format was
derived [8]. Since then, the ANSI X3H3 Technical Committee on
Computer Graphics Programming Language has formed the X3H33
Virtual Device Interface Task Group to standardize a graphics
metafile and a graphics device driver interface [9,10].

OBJECTIVES

A variety of objectives that a graphics metafile at LANL
should satisfy has been established. These objectives include:

o A metafile that maintains the smallest file size possible
while supnorting necessary resolution requirements.

o A metafile that is efficient to process.

o A metafile that can be moved across computers of different
word lengths without conversion.

o A metafile that can be moved across different operating
systems wilLhout conversion.

(o]

A metafile mechanism that allows a particular frame to be
displayed without sequentially processing preceding
frames.

o A metafile formal that is extensible.

APPLICATION

The CGS Mctafile is currently used in a varieiry of ways at
LANL (Fig. 1).

o A CGS Metafile can be directed to a graphics terminal by
using one of several graphics postprocessors. Tnese
postprocessors read the CGS Metafile and use the
appropriate CGS Device Driver to display the picture at
the user's terminal.

0 A graph'cs postprocessor that allows display of selected
frames at the user's terminal can be used to preview or
select frames before sending the output to a particular
graphics output device.

o A CGS Metafile cen be directed to the Print and Graphics
Express Station (PAGES) in the Central Computing Facility.
wnere either paper or film output is produced. PAGES

functions as a graphics device driver and translates the
metafile format to that required by the particular device
selected.

o The CGS Metafile is used in conjunction with an
interactive session at a grsphics terminal to record
selected pictures for later output on a hard-copy device.

METAFILE FORMAT

The CGS Metafile design has provided a compact format that
can be efficiently processed. This format is simple, yet easily
extensible, to allow later enhancemeznt. The format is based on
multiples of 16-bit words to facilitate processing on mest mini-
and microprocessors, as well as many of the larger processors.
This also facilitates the processing of ASCII characters, which
are packed two per word.

Coordinate Positioning Command Format

In many graphics applications, most graphics data consist of
coordinate positioning information. Each coordinate is contained
within one 16-bit word to preserve as much resolution as possible
and still keep the total size reasonably small. Each coordinate
positioning command consists of an x, y, and optional =z
coordinate (Fig. 2). Analysis of "typical" graphics output at
LANL indicates that no significant metafile size reduction
results when either the x or the v coordinate is eliminated when
unchanged from the previous position. 1In fact, because of the
extra control bits nz2cessary to identify whether a coordinate
consists of x or y or both instead of a "simple' x, y coordinate
pair, either the total size must increasc or the resolution must
decrease.

The coordinate positioning commands maintain 15 bits of
resolution. This is sufficieat for most existing graphics
devices. These cocrdinatces are transformed and clipped
normalized device coordinates. After completion of a coordinate
command, the current positinon is at the specified x, ¥y
coordinates. Either two- or three-dimensional roordinates can be
output, allowing support of three-dimensional devices. For
three-dimensional devices, a mode ~an be set and the coordinate
command consicz's cf an X, vy, and z coordinate.

Op-Code Command Format

The op-code cummand format accommodates the remainder of the
device-independent commands (Fig. 3). Although this format
provides most of the possible CCS Metafile capabilities, it
comprises a very small portion of the total graphics data in the
CGS Metafile. Since this is the casc, attention has been given

to providing a simple, uniform op-code command format that can be
efficiently processed. Each op-code contains a count of the
words associated with it. This simplifies searching the file for
particular op-code commands and allows unsupported op-code
commands to be easily skipped since the number of words
associated with a particular op-code command is immediately
available.

The 7-bii op-code is divided into a 3-bit class and a 4-bit
subclass. This allows the various op-codes to be defined in an
organized fashion with 8 major classes, each consisting of up to
16 subclasses. By dividing the op-code command in this fashion,
jump tables can provide efficient processing of the class and
subclass operations.

This format is written on disk as a "bit-stream"; that is,
there is no explicit record or file structure. Thnis allows the
metafile to be moved between compucers of different word lengths
or different operating systems without conversion. All that is
required to process the metafile is simple 1/0, allowing transfer
of a specified amount of data to or from a particular location on
disk. To avoid word-boundary conflicte, the end of each metafile
is padded with a "no-operation" command so that the file is a
multiple of 60 16-bit vords. This forces the file to align on
word boundaries for all of the LANL computers (64-, 60-, 32-, and
16-bit words). A multiple of 180 16-bit words would be necessary
to include computers with word lengths of 36- or 18-bit words.

RANDOM ACCESS EXTENSIONS

The CGS Metafile forma: allows efficient sequential
processing of the CGS Metafile. The following additions allow
efficient random access with minimal impact on the size of the
CGS Metafile or the efficiency of sequential processing.

We added an escape function and modified two existing
commands (end-of-data and new-frame) (Fig. 4). The index-block
escape command contains the 16-bit word disk addresses of the
preceding 28 frames. Each address or pointer consists of 312
tits. Word 0 indicates the escape function and that 59 words
follow. Word 1 indicates the index-blnck e¢scape command. Words
2 and 3 contain the 16-bit word disk address of the preceding
index-block entry. Words 4 through 59 contain the 16-bit-word
disk address of the preceding 28 frames. An address of zero
indicates the end of this linked list o’ index-block escape
commands .

The end-of-data and new-frame commands each consist of seven
words. Word 0 gives the command and word count. Words 1-3 are
syuchronization pattern that force the first 64 bits to a bit
pattern unique to the end-of-data anc new-frame commands. Words
4 and 5 are the 16-bit word disk address of the previous index-

block escape command. Word 6 is the current frame number for the
new-frame command or the total number of frames for the end-of-
data command.

As the file is generated, the disk address of each frame is
saved. This disk address is a 16-bit-word address independent of
the word length of the machine that is generating the CGS
Metafile. When 28 frames have been generated, the index block is
written to disk and its disk address is caved. Each new-frame
command written to disk contains the disk address of the previous
index block. When 28 more frames have been generated, the index
block with the disk address of the previous index block is
written to disk When the job is complete, the last partial
index block is w.itten to disk and is followed by an enrnd-of -data
command containing the disk address of the last index block.

When the file is sequentially processed, the index-block
escape command is ignored. However, when the file is randomly
processed, a table of frame addresses can be quickly constructed
(Fig. 5). The end-of-data command is located at the end of the
file. It is read and the total frame count is used to give the
table entry for the last frame. The disk address of the last
index block is also obtained from the end-of-data command. This
index block is read and the disk address of each frame is stored
in the frame address table. The address of the previous index
block is obtained; it is read, and disk addresses of those frames
are stored in the frame address table. This process cuntinues
until a complete table of frame addresses has been conasiructed.
Each frame can now be accessed immediately by disk address. The
frame address table can be constructed at a fraction of the cost
of sequential reading of each frame sinc> only one disk access is
made for every 28 frames. To further iuacrcuse efficiency, the
index-block escape command could te increased in size in
multiples of 60 16-bit words.

To simplify processing, the end of each frame is padded to a
multiple of 60 lb-vit words so that each new-frame command and
index-block escape command start at the beginning of a word
(independent of computer word leagth). This ensures that the
addrcsses will be at the beginning of a word on disk when the
l6-bit word disk addresses are converted to an actual disk
address for a machine of a particular word length.

Randomly Accessing a Frame

To randomly access a frame and get a correct picture, it is
necessary that the current attributes be associated with each
frame. After the new-frame command is generated, all of the
current attributces are written. These will be ignored when
processing the file sequentially, but are necessary to establish
the environment when randomly processing frames. The current CGCS
Metafile does not contain segments or color,/font definitions. A

method to suppcrt both sequential and random access of a metafile
containing segments and color/font definitions is discussed under
Future Extensions.

ERROR RECOVERY

When a job aborts, the metafile may not have been properly
terminated. When this happens, the last index-block escape
command and end-of-data command have not been written to disk.
The frame address table is constructed by searching the file from
the end, looking for the new-frame command. Once fourd, the
nointer to the previous index block can be obtained, and the
frame address table constructed. The file can be searched
forward from this index block, looking for new-frame commands to
complete the last few entries in the frame address table.

FUTURE EXTENSIONS

Segmentation

When segmentation ic supported in the CGS Metafile, the
following scheme will be adopted to allow efficient sequential
and random processing while maintaining a small file size. A new
escape function will be defined, called the frame environment
bleck. This will contain all current attributes and disk
addresses (in 16-bit words) of all segments. This escape command
will be ignored when processing the file sequentially, but will
be used to provide a correct picture when processing the file
randomly. Little additional file space would be required in the
"cypical' case where there are relatively few large segments.
This same scheme would be used for coloir definitions and font
definitions if added to the CGS Metafile.

Random Processing by Key Identifijer

An extension that would facilitate random processine is the
addition of a user-specified identifier to the CGS new-frame
subroutine call. This identifier would be writ.en as part of the
CGS Metafile new-frame command. When the framec address table is
constructed, this identifier would be associated with the frame
number and disk address. This identifier would then be used as a
key to randomly access a particular {rame, thus allowing the user
to specify a logical identifier rather than a frame number,.

CONCLUS1ONS

The CGS Metafile is efficient in file size and processing
time for both sequential and random display. We accomplished
this by avoiding an explicit record or file structure and

incorporating an escape function containing frame pointers in a
linked list. By avoiding an explicit record structure, we
achieved portability of the metafile across different computers
and operating systems without conversion. These techniques are
extensible and will be used when supporting additional features
in the CGS Metafile.

REFERENCES

1.

10.

R. G. Keller, T. N. Reed, and A. V. Solem, "An
Implementation of the ACM/SIGGRAPH Proposed Graphics
Standard in a Multisystem Environment," Computer Graphics,
Vol. 12, No. 3, August 1978, pp 308-312.

T. N. Reed, "The Common Graphics System," Computer Sciences
and Services Division Technolo Review, Los Alamos National
Laboratory, report LASL-79-. April 1979), pp 17-20.

T. Wright "A Schizophrenic System Plot Package," Computer
Graphics, Vel. 9, No. 1, Spring 1975, pp 252-255.

D. Groot, "GPGS 16 Bits Device Independent Picture Code," T.
H. Delft and Informatica, Faculty of Science, lniversity of
Nijmegen, The Netherlands, October 1975,

"Status Report of the Graphic Standards Planning Committee
of7ACM/SIGGRAPH". Computer Graphics, Vol. 11, Number 3, Fall
1977.

T. N. Reed, "The Common Graphics System - An Implementation
of the ACM/SIGGRAPH Proposed Graphics System," VIM-28, April
1978, pp 138-140.

"Status Report of the Graphic Standards Planning Committee
of ACM/SIGGRAPH", Computer Graphics, “'ol. 13, Number 3,
August 1979, Part IV

J. K. Warner, "Device Independent Intermediate Display
Féles." Computer Graphics, Vol. 13, No. 1, Marck 1979, pp
78-109,

"X3H33 SD-3 Proposal for an ANS1 X3 Standards Project for
the Computer Graphics Virtual Device Metafile," CBEMA, 1828
L Street NW, Washington, DC 20036, November 1980.

"X3H33 SD-3 Proposal for an ANSI X3 Standards Project for
the Computer Graphics Virtual Device Interface," CBEMA, 1828
L Street NW, Washington, DC 20036, Septcmber 1980.

e —

e

-

‘,,
SC—4020)
EMULATIOy @
\u
\ \
GRAPHICS \\
POSTPROCESSORS

CGS
DEVICE DRIVER
l s s l
v

CGS
METAFILE

]

__Graphical

CGS
_DEVICE DRIVER

— T T

(useRrs)\

_ (COMMON GRAPHICS SYSTEM)
\

|

| e

'

INTERACTIVE
TERMINALS

Figore 1

Software Components at LANI.

DISSPLA

T ==

CoD

OTHER
DEVICES

Vord 1

0 x-coordinate (15 bits) E
15 14 413 112 11 10 | 9§ 817|615 63t 2i10"
Word 0 '
T H
| y-coordinate (15 bits) H
| !
'15 114 113 J12 |11 {10 } 9 {1 8 { 72 1 6 ; 5 {4 13121140
Word 1 '
| IR |
: 0 ! z~-coordinate (15 bits) !
Jr15_i14I13L12 {10 19 1837161514 i31211:0:
[]
Word 2 (3D mode only) '
Figure 2
Coordinate Positioning Command Format
| | H :
I 1 | subclass] op word count (0-255) !
[} 1
%15 14 113 112 J11 110 | 9 | 8 i 7161514331241 4%
op code word count '
Word 0
T o
I op word 1 1
' :
|15|14|13|12|11|10_|91817L6}5310J3:211',0_i

|
|

|
|15 ji4 113 112 111 110 1 9 | 817161 51}41]312:121:0
o

op word n

= o e

Word n

Pigure 3
Op Code Commund Fo:mat

ESCAPE 59
INDEX -- BLOCK (IB)
MSB__INDEX-BLOCK _ POINTER
LSB_INDEX—BLOCK POINTER
MSB _FRAME POINTER
LSB_FRAME POINTER

[:
MSB_FRAME POINTER
[LSB_FRAME _POINTER

[NEW-FRAME_ | ___ 6
SYNC PATTERN
SYNC _PATTERN
SYNC _PATTERN
| MSB__INDEX-BLOCK _POINTER
H:psa INDEX—BLOCK _POINTER
FRAME NUMBER

END—OF—DATA | 6
—__SYNC__PATTERN
SYNC PATTERN
SYNC PATTERN
MSB INDEX-BLOCK POINTER
1LSB INDEX-BLOCK POINTER
TOTAL FRAMES

Figure 4
Index-Block Escape, New-Frame, and End-of-Data Commands

| ESCAPE ¢
INDEX-BLOCK
I-B POINTER

FRAME POINTER
®

o
FRAME POINTLR

NEW—-FRAME o
SYNC PATTERN
l—{"1-B POINTER
FRAME NUMBER

NEW FRAME |«
SYNC PATTERN
™ [-B POINTER
FRAME NUMBER

— ESCAPE
INDEX-BLOCK
I-B POINTER

FRAME POINTER

FRAME POINTER [~

[END—-OF-DATA
| SYNC PATTERN
I-B POINTER

1 TOTAL FRAMES

Figure 5
CGS Metafile Random Access Linked List Structurc

