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ABSTRACT
The progress of the Rayleigh-Schrodinger perturbation
theory approach to the computations of the ground state

energy in an infinite Fermion system is reviewed.
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The fundamental question which we wish to address is, '"What 1s an effective pro-

cedure for finding the lowest, Fermionic eigenvalue of a system described by the

Hamiltonian
N 2 N
H = pL+ E v(|e,-r,|) (1)
d 2m i j ?
i=] i<y

when N becomes indefinitely large?"

If V is purely repulsive, then rather good methods are availablel over a falr
range of densities and potentials, but if V is partiallv attractive, then the problem
is much more difficult, and, of coursc, more interesting. There are quitc a number
of ways to approach the question raised above, but we wlll confine our discussion to
perturbation methods, and thelr progress toward the answer to our questlion. In par-
ticular we will specialize in the Ravleigh-Schrodlnger perturbatjon theory. By way

(n

of a brief review, we start with the Schrodinger equation for the Hamiltonfan' ™7,
N N
h:' 2 Wom Y
om E VJ + E V(rlj) | EY, (2)
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wiere r,, - Irj-r y and we define the useful operators
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80 that eq. (2) may be written more compactly as
(nu + Ah)Y = EQA)Y. 4)

The formulas f the Rayleigh=Schradinger poerturbatfon theory can then be written in

terms of the enerpgy E, and wave matrix §2,
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9, = (I -PI(E = H) (b _, - E En-j Qj).
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where Po is the projection operator {or the state 9§.
The Fermi-statistics constraint is imposed by selecting the initlial wave-function
as a Slater determinant,
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where the Fl are the lcwest N eigenstates of Ho in a box of volume ' wlth puriodic

boundary conditions. The corresponding momentum representation of the potential is
<on|v|in> = r-2 f'"f d*Rd?r v(r)
Box
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where 8 1s Kronecker's delta and v 18 the momentum tranaform of v(r). The baslc¢ for-

mula for the graphical expansion of the Rayleigh-Schrodinger perturbatlion theory is

LN
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where ; and n run over the (ndlces in the Slater determinant 4 and v and “ run over
all momentum states.  The #(m -+ V) type notatic: means that k replaces k_'ﬁ In cq. (7).
This e¢q. expands hd as a sum of Slater determ'inants. v
By use of the lugenholtz factorization theorem, we can esteblish the 1inked
cluster theorem, f.co., only comected diagrams contr jute to the eneegy. This result
I1s important because before the work of Hruvvknurj, {t wan thought that perturbatfon

theory was uscless becausar every connccted part contributed a facter of N so that

ECA) = NA + N'A7 4+ N*AY 4 ses | (10)
Inatcad of the correct result,
ECA) = NA 4+ NAT 4 NA' 4 o0 | (1)

There wad a "phyntcal®” explanat fon of oq. (10). It wan thai for an attractive,
square=well potential, there war nuclear col Inp.zu-,‘ no mattgr how weak the attract lon,
#Ho of course the perturbat fon theory wan non=sennel

So what happened to this explanatlon? The anawer {8 that the physles has not
disappeared, the radius of convergence of the neries (11) for E(QA)/N in zero. Thun
it need not glve the results for a pure attraction while there fa atill the porsibil-

Ity that 1t can work for a repulaion in an asymptot e eenwe. 1t can be uhounl that



the divergence of (ll1) is no worse than
|E_/N| < M(nDA", (12)

so that the series is uniquely summable to the correct physical answer for a simple
repulsive force. Thus, for at least some many-fermion, ground-state encrgy problems,
perturbation theory can lead in principal to the correct physical answer.

There are further probhlems to be considered on our search for the ground state
energy of a many~fermion syatem with attractive forces. In particular in applications
like nuclear matter which are self-bound, we¢ know that the system must be a liquid.
Thus the saturation point lies on the liquid, coexistence curve in the (kF ~ A) plane.
It is reasonable on general grounds, and borne out in model calculations5, that the
coexistence curve 1s a line of analytic singularities so the usual procedure of look-
ing for a minimum is in principle only half correct. That is tou say the approach from
high density at fixed potentlal (or to weaker potential at fixed density) ir [lne;
the part as one passes the minimum and finds increcasing energy as the density s low-
ered further is wrong. Here we know that a two phasce system occurs. The gas phase
(absolute temperature in this problem is zcro) i1s the vacuum, and the liquid {s a self=-
bound drop. Thus the energy remalns at its minimm value and does not increase. The
perturbation approach, when properly used, has the advantage of approaching the sa%u-
ration point along a physically correct path excluslvely in the one phase region. On
the contrary a purely low density rcarrangement tends to pass through the two-phase
region and musat be viewed with great caution,

An additlional problem Is that of the hard=-corv. We know, at least for surfl-
clently low density, that on infinitely strong, repulsive=core potencial leads to
only a finite shift in cnergy. The clussical solution to this problem in perturba-
tion thecory 1s to make a change of variables. For cexample, the function f(r) deflaed

an

nter) = 1 - =V 2 - lL%%iﬁl + oo . (i3)

has the property nf(r) = 1 for v(r) = 4, and nf(r) = Av(r) for small Av(r). Thus
if we replace
Av(r) = = fnfl = nf(r)) = nf(r) + % n'f(r) + % n'rtr) + oees (14)

in the Av(r) cxpmafon we generate o new expansion in terms of nf(r) which is not
immedlately eingular for a repulsive hard core,

Brucckner had the fdea to follow Watson's theory of m%lt(p]v scattering and sum
up In a RK-matrix all the ladder diagrams (lagrams with only two hole-1lines). Thewse
dlagrams const{tute all the leading order terms In o low denaity expansion and give
goond resmults for repulsive forces at low densities.

However, it wam soon notfeed by Emery® that for a contreal repulsfon with an attrac-
tive tall that no matter how wealk the attraction, for a wufficiently high value of
the relative angular momentum, the K=matrix equat fons processced a singularity. What

then is tuv be done about this problem? Flirst, of course, it may be that the aingu-



larity comes from Cooper pairs and that it implies that the true ground state is a
"superfluid” and not a "normal" ground state. In this case the perturbation theory

which we are using

Z (2im ElEN)/N))\k (15)
k=0 ¥

does not work. On the other hand, if such a situation does not arise physically, we

need to fix our formalism to allow progress. In the context of perturbation theory
several ways have been suggested. (a) Brueckner and Gammel’ simply modified the

Intermediate state denominator as

1 1
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where even a very small A serves to climinate the problem. (It also changes the
answer, in principal, a little bit.) (b) Baker anA Kahane® solved the problem by
using a different change of variables, 1.c¢.,

O R‘.(k)/[l + (a1, - a)Rp(k)} (17)

where R, (k) (the "R matrix") is much bctter behaved. The Emery slngularitics now
occur iﬁ Kl(k) if Rq(k) <~ 0 since 1, + = as k kF. However, as any power of 1, is
integrauble, K can be expressed as a serles expansion in R with finite coefficients.
Baker and Kahane found that K itself {s satisfactory for typical potentials. (c¢)
Brandow's chofce? for intermediate-state cnergy denominators corresponds to a re -
arrangement of the perturbation series. It 1s to make the hole-lince energies sclf-
consistent in the intermediate state propagators, but to use the kinetic energy alone
for the partlicle ewergles. This procedure {8 superficially attractive, but has a
fatal flaw! 1Its advantages are: first, by the Hugenholtz factorization thecorem the
cnergy corrections to the hole lines, summed over all time orders, are on the energy
shell and don't depend on the excitatlon of the Fermi sca so that they are easy to
compute.  Secondly, ior a potential with a net attraction, there 1s a large cnergy
gap at the Ferml surface, thus climinating the Emery singu'arity problem. Finally,
the resultliag large denominators make the higher order terms smaller and thus less
fmportant. The principal disadvantage of this scheme {4 that it gives the wrong
answer!Vl  That s to say, the answer obtained in this manner using the "obvious"
cholee of the integrat fon contour over intermedlate state cnergles omits certaln
resfdue corrections: which are (ncluded by the correct cholece of {ntegration contour,
Thewe details are expluined at length by Baker and Gammel. Y0 An additional aesthetic
drawback to the method fs that ft splits certaln finlte contribut fons into the dif-
ference of two infinite ones,

In summary then, the progress thus far by perturbation methods {s: (1) The
gtrilght forward V expansion with appropriate resummations such oy the K-matrix one,

or the complete hole-line rearrangement with a symmetrical treatment of hole and

rurticle energivs appears to give satlsfactory resulty for problems with puvely repul-



sive forces. (2) The K-matrix and hole-line type rearrangements, as they stand, are
not adequate for potentials with an attractive tail because of the Emery singulari-

8 would appear

ties. (3) A good change of variables, such as the R-matrix expansion
to allov reasonablie computational progress towards our goal. Other changes uf vari-
ables could profitably be explored. (4) Modern computers would appear to make much
more extended work in this area possible than in the past.

This work was performed under the auspices of the U.S. D.O.E.
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