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THE SECOND-ORDER PARTICLE-IN-CELL (PIC) COMPUTATIONAL METHOD
TN THE OXE-DIMENSIONAL VARIABLE EULERIAM MESH SYSTEM

J. J. Pyun

Theoretical Applicaetions Division
Code Development Group
Los Alamos Mational laboratory
Los Alamos, New Mexico USA

As part of an effort to incorporate the variable Eulerian
mesh into the second-order PIC computacional method, a trun-
cation error analysis was performed to calculate the second-
order erxor terms for the variabls Eulerian mesh system. The
results show that the maximum mesh size increment/decrement is
limited vo be a(Aql_)2 where Ar, is a non-dimsnsional mesh size
of the ith cell, and a is a cén-tant of order one.

The numerical solutions of Burgers' equation by the second-
order PIC method in the variable Rulerian mesh system ware com-
pared with its exact solution. It was found that the second-
order accuracy in the PIC method wvas maintained under the above
conditlion. Additional problems were analyzed using the second-
order PIC methods in both variable and uniform Eulerian mesh
s;stems. The results indicate that the second-order PIC method
in the variable Iulerian mesh system can provide substantial
computational time saving with no loss in accuracy.

l. INTRODUCTICN

The purpose of tils paper is (1) to deternine the maximum
mash size change in the variable Eulerian mesh systea in order
0 maintain the llﬂOh?I?rﬂ.Z accuracy in the second-order PIC
computational method, and (2) to verify the above result by
comparing the numerical solution obtained by the second-order
PIC method with the known exact solution.

It is well known that the truncation orrorltz] in a finite
difference equation increase if the mesh sise changes rapidly.
sgr example, consider a simple central difZerence equation for

T at a point of r -y as shown in Fig. 1. [Expanding a function
in a Taylor serida forvard and backvard from r = Tyl gives:
LY Ar. 2 be, 2
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The expression for (920 is obtained by substrzcting Egq. (2)

frum Eq. (1) and diviiﬂiél‘t.ho resulting equation by

(8r, + bri-p)/2.
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where by O’Arz) we meen the largest of 0[2Ar13/(Ari + o 1

or 0[2:1::3 /(br Ar )]1. The finite difference Eg. (3)
maintaind the sedond—ofddr accuracy if the value of (4r, -4 f_q)
is an order of ~(Ar,)%. However, the accuracy of Eq. (!‘!)
detearistes to first order if the mesh size change is greater
or equal to ~Ar,. However, if the mesh size changes very
nlowly such thné the fine mesh is used in the region of great
interest and the coarse mesh is employed in the reminaing re-
gions, a marked improvement in the overall computational time
saving could be achieved without the expense of increasing the
density of the mesh system everywhere.

..., e, - In Section 2 of this

paper, the second-order PIC
computational method i
briefly reviewed. Truncation
exrors of the second-order
PIC computational method are
calculated in section 3, and

Rafi vy A f Nea Na the maximum mesh size change
Fig. L. Change in mesh in the variabie mesh system
spacing. is determined based on the

second-order truwncation

error terms in order to maintain ‘the second-order accuracy in
the recond-order PIC computational method. In sec:ion 4
several ssmple calculations including a simple plare shock and
a rarefaction wave are performed, and their numerioal solutions
by the second-order PIC method are compared with thuir known
exact solutions.

dme p

4. RNIVIEN OF THE SECOND=-ORDER PIC COMPUTATIONAL METHOD

gince the detailed descriptions of and applications of the
second-order PIC computational method as well as its comparison



with the first-order PIC computations mothod[7's] is given in
reference 1, only its brief summary will be given hare.

Consider a set of one-d.mensicnal (1D) differential equa-
tions for compressible fluid flow in a cylindrical gecmetry.
Assuming only one material to be present in a 1D clyinder, a
system of squations that we want to solve subject to initial
and boundary conditions are:

pt + 9w ' s p(u” + % ) (mass) (4)

u, +uwu’ s -J%- (momernitun) (S)
. P . u

It +ul’ = - ?;(u + :? (energy) (6)

P=F(,I (equation of state) (7

where a subscript, t. denotes a partiel derivative with res-
pect to time and the apostrophe means a partial derivative
with respective to r hereafter.

In the second-order PIC method the cylindur is divided
into a cell of length Ar, such that a total summation of Ar
is equal to the radius o“. the cylinder. The initial voloc:l.ty
U,, mass M, and internal ener7y I, are assignud to the ith
c&ll such t they represent the initial conditions. within
each cell, the cell mass ¥, is divided randomly among A num-
ber of "particles”" that ard§ distributed throughout the cell so
that thay approximate the density profila.

The second-order PIC method calculates the quantities at
time (n+l)At in terms of those at time nét (i.e., an explicit
time advancemant procediice) whare n is a number of timesteps
and At is a timestep. Within one timestep, thc new quantities
are computed in two phases:

Phase 1l: lLagrangian Prase n+hy
(1) Calculate Ego cell pressurs P at (n+h)st timestep from

the equation of state
n+ly n+hy _nk

Hereafter, a superscript n denotes a timestep. A subscript i
indicates a cell number, and all the variablss are cell-
centered quantities. Half timest.ep quantities iinside of pa-
renthesis in Eq. (3) are celculated hLereafter as below:

+hy .
f‘; (£ + 0.50e(2, + ut")]] (9)

where a quantity f denotes any state variable.

’

() The Lagrangian quantities, u, and Ei' at timestap (n+l)At
are calculated based on (n+k)dt tfmoltcp quantities:



AR I P’ n+k

ui ui At(;;ﬂi (10)
~ n P, .  u,,n+k

Ii = J:i - At[p(u + ;0]1 (11)

E ard total internal

(3) Temporarily assign the momentum Mi L

energy “111 to cell i.

Phase 2: Particle Transport and Remappin _

(1) Move the particles with velocity u(r_) where u(r_) is ob-
tained by linear interpolation of T, (=0.58% + 0.53,) fo the
particle position r_. Along with tHese particles, portions

of momentum and iat§rnal energy are transported across the

cell boundary.

(2) The new total cell mass, momentun, and internal energy
are calculated. Subsequently, the new velocity and total
specific internal energy are determined.

3. TAUNCATION ERROR ANALYSIS OF THE SECOND-ORDER PIC COM-
PUTATIONAL METHOD IN THE VARIABLE EULERIAN MESH SYSTEM

Let us consider the velocity and density profilas in Fig.
1 along with a set of 1D differential equations, Eq. (4)
through Eq. (7). For convenience, the velocity is assumed to
be positive. Lat li- and 2 . be the maximum distances be-
tween cell left and r?qht bo ies, and the particle posi-
tions from which the particles reach the boundary in timestep
At as shown in Fig. 1, and the particle velocity leaving a
cell (i) is calculated by linear interpolation,

u(rr) = (g - l(“r)]i+H (12)
where 2L+H - W(:r)At (13)
- Gi+l 5:1 + Ei Ari+l (14)
Uiay ® Ar, + Ar
_ i _ 1+l
u -q
- i+l i
(u_) - (15)
gl L+l 3731A:L+1 + ox,)
Eliminating E(:r) from Eqs. (12) and (13) gives
o
1+l
Expanding Eg. (16) by using a Taylor series gives:
- —-— 2 3

Here, we neglected the higher than the second-oxder terms. A
similar procedure is used to derive the expression for 11-&



and the result is

e e L = a2 3
L @ (@ - W ae), o+ o) | (18)

Let ¢m e be a mass tranaported from a cell (i) to (i+l), then
we h.lV*l

:1+H -
m, = sz/' o (x)rds (19)
LTUR P FIR
Assuming that the density, p(r), varies linearly, we have
2
g 1 3
5"‘14.1, e 2n[rpk - (rpr + p) 5+ 3 prz ]“J’ (20)
P e
il - "1
where (o ), ;, = - (21)
T’ i+l O.S(Az“_l Arl)
Let 6m by be a mass transported from & cell (i-1l) to (i), then
ve could ‘caloulata dmi_l‘ li.nzmluily
2 1 3
f - ——
Then, the net change of a mass in a cell (i), AHi, is calcula-
ted as,
Now the dansity change in cell (i) can be calculated as below
aM
n+l n i -
dogmey "m0y = 27T, ox, (a4)
From a Taylor series expansion of °:L(t + At), we have
r+l n
0 -p 2
n i 1 At n At n 3
(Dt)i * Tse T(ptt)‘. - 7e (p‘:tt)i * 0087 . (23)

Here,we truncated the higher than second-order terms. Insert-
ing Eq. (24) into Eq. (2%) and, after complex algebraic mani-
pulation, we have

)n

(Dt {

- [{pn) + Erg + AtzAl(r,t) + Ar

Ar, . = Ar
i+l
T )AtAJ(r,t) -

2 1 2
Pl Wil S 05 W Ax"*l)au =)
Ei 4!

2 2
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R e Ly e S UPUY Y7 DL 1Y
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Hers, we again truncated the terms higher than the second-
ordar terms. For simplicity, the detailed expressions for the
coefficients A, through A4 are not given. However, they are
given in referdnce 9.

Next consider the momentum equation. Let G(m;) iy be a
momentum transported along with particles from a ceiI (1) to
(i+1), then we have ’

-~ r, - -~
§ ), ;= 2«/ 11 o3rar . (27)

Loy = i

Again, assuming that the density, ef(r), and velocity, ),
vary linearly, we have,

~ -~ At~~
6(mu)1+k - 6mi+k(u - 1r4u|ur)i+k . (28)
Let G(mﬁ) be a momentum transported from a cell (i-1l) to

), thcniih could caiculate d(mu)i 1 in a similar way
-~ ~ At |~ |~ )
Slma), = bm; _, (3 - -2—|u|u.r)1_l! . (29)

The net change of a momentum in a cell (i), A(Mﬁ)i, is calcu-
lated as

Now the velocity at timstep (n+l)At can e calculated in terms
of a net momentum change,
n+l Miui * A(Hu)i

u1 + A(Mu)i/M1
ui - =5
i

v A, T+ (M) /M, y

(31)

Expanding EqQ. (31) in terms of a Taylor series results in

A(H;) -
un”' ® [y, + ~=——=](l ¢ + tz -c’) + 0(64) (32)
i i Mi

wheaze ¢ = A(MJi/Mi .

The truncation error terms higher than the third-order terms
are neglected. From a Taylor series expansion of ui(t + 4t),

we nave
n+l n
u -Q 2
n i i _ At n _ At n 3
(“t)i .S "7 (“tt)i. ~~ (“ttt)i. + 0(4%) . (33)

Here, the truncation error terms higher than the second=-order
termes are neglucted. Inserting EZq. (32) into Eq. (33) and,
sfter complex algebrsic manupulation, we have



(@) = t-wa” - B4 sels 0+ ards, (r,e)

Ar - Ar Ar, - T

141 1 1 -1
+ Ari )AtBJ(r,t) ( Ari )At33(r,t)
2 2 2 2
(8zy +0r Ary,, + Or;.,)
+ AtB, (z,t)
ir, 4
2 2
(ar, + Ar + Ar; )
A e e T RS TV L (34)

Again, the truncation error terms higher than the second-

order terms are neglected here. Again, the detailed expres-
sions for the coefficients B, through 34 are not given., How-
ever, they are given in refefence 9.

A similar algebraic manipulation could be performed for
the ener equation, beginning with Eq. (30) and replacing

Ei with I, and the results are
n P . u 2 p)
(It)i ® [=uI” - > (u” + r) + At Dl(r,t) + Aribz(r,t)
(Ax - Ar,) (Ax, - Ar )
i+l 1 i i-1
+ Ar AtD3 (r,t) - Ar AtD3(r,t)
i i
(A:i + “1“&1 + A’i-c-l)
+ AtD (r,t)
Ari 4

(Ar2+ArAr_+Ar2_) 3 n
- —-il-—-—-1-——’~—1—i!h-lkAri A=D4(r,t) + 0(a )1t

The detailed expressions for the coefficients Dl through D
are given in reference 9.

(39)

L)

Equations (26), (34) and (33) show that the first-order
error terms are identically cancelled out except those terms
containing At(Ax - Ar,)/41 ,and pt(Ar oz, ,)/4r,. 1In
order to mnintaiﬁ+%ho loéond-érdor accuflcy f&rltho ﬁzc method
in the 1D variable Rulerian mo!h system, the maximum mesh size
change is limited to be u(Ari) whers a is a constant of order
one.

4. SAMPLE CALCULATIONS AND CONCLUSIONS

To test the scuond-order PIC method in the variable Ev.er-
ian mesh system, three sample problems wesrs analyzed. Tue
first problem is Burgers' equation and the remaining p-.oblems
are the plane shock and adiabatic rarefaction wave.



4.1 Burgers' Equation

Consider Burgers' oquation[3] with the following initial and
boundary conditions:

ut - ugx = vuxx (36)
u(x,0) = uosinﬂ'x/l (37)
u(o,t) = u(d,t) =0 . (38)

The exact solution for the above squation is known and given
in reference 4.

A numerical solution for Burgers' equation was obtained
by the second-order PIC method in the variable mesh. A trun-
cation error (li.e., a difference batween an exact solution
and numerical solution) is calculated. Figure 2 shows a ratio
of velocity truncation error for doubling a mesh size. A
nunerical solution by the second-order PIC method is second-
order accurate in time and space. Therefore, the velocity
truncation error is quadrupled as the mesh 3ize is doublaed as
shown in Fig. 2. However, the velocity truncation error is
not quadrupled as the timestep is doubled. This is because
the truncation error terms ar:' dominated by a space error
term (~ i) as a result of a convergence criterion,
vat/(Ax,) "€ 0.3. Since it is difficult to double a mesh size
at the *dqcl, the ratio of velocity truncation error was not
quadrupled.

4.2 Plane Shock Wave

A plane shock wave was analyzed by using the second-order
PIC mathod in both uniform and variable mesh -yltcm.[5 ese
nunerical solutions along with their chct solutions in an
ideal gas are shown in Figs. 3 th:ou? ) The shock front was
handled using an artifical viscosity und a value of its
constant coefficient used is 0.5. Figqure 3 shows a spatial
profile of density at 14 us. As shown in Fig. 3, the numerical
solutions for a spatial density in both uniform and variable
mesh system with a=]l agree very well with their exact solu-
tions. The maximum compression ratic for this shock is 4.0
(1.a., a strong shock in an ideal gas). In addition, a com-
putational time saving as a result of using a variable mesh
was approximately 308 without loss in accuracy over a uniform
mesh case. Thls computational time saving is due to a smaller
number of meshes used in a variable mesh systsm.

Figures 4 and 5 compare the numerical solutinns for a
spatial pressure and internal c¢nergy in both uniform and vari-
able mesh system with their exact solutions. The mesh size
inorement constant, ., used here is again 1.0. Again, these
n'merical solutions agree very well with their exact solutions.
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- i) Figure 6 shows a comparison of &
= oo spatial density profile at 635 us for
- ] a stzong shock in an ideal) gas. The
variable mesh with incremental con-
3— 1 stant of 3.3 is used for this num~
-— arical solution. The maximum com-
- pression ratio if ~ 3.8% for the
numerical solution whereas its exact
mm solution is 4.0. This cesult in-
' dicates that the accuracy in the
i second-order deteriates as the mesh
Fig. 6. Density vs size rapidly increases. As shown in
R~Distance. section 3, the maximum mesh size in-
crease in a variable meszh system in

order to maintain the second-order aocu:,cy
order PIC method is limited to be ~(Ar 5 .
maximum mesh size increase of 1.1 (Ari* .

in the second-
Here we used the



4.3 Plane Adiabatic Raraefaction Wave

A plane adiabatic rarefaction wave was analyzed using the
sacond-crder PIC method in both uniform and variable mesh
lystem.[s esa numerical solutions along with their exact so-
lutions in an ideal gas are shown in Figs. 7 through 9.
Figures 7 and 8 show a comparison of numerical solutions for
a spatial density profile at 15 us in a uniform and variable
mesh system with awl.0 with their exact solutions. 2s shown
in Pigs. 7 and 8 the numerical solutions agree relatively well
with their exact solutions. Deviation of numerical solutions
from their exact solutions at the edges as shown in Figs. 7
and 8 is due to the vaccum boundary condition. In addition,
a camputational time saving for this problem was approximately
25% as a result of using a variable mesh over a uniform mesh
case.

Figure 9 compares the numerical solution for a spatial
density profile at 15 us in a variable mesh with a=3.3 with
its exact solution, The numerical solution at a vaccum boun-
dary deteriates as shown in Fig. 9. However, 2 computational
time saving as a result of using a variable mesh was approxi-
mately 50% over a uniform mesh case.

In conclusion, a substantial computational time saving
could be achieved in the second-order PIC computational method
without sacrifice in accuracy by using a variable mesh systaem
as compared to one using a uniform mesh.

OEMINTY v R=OISTANCE OENITY va R-OISTANCE OENINTY va. A=OISTANCE
Fig. 7. Density vs Fig. 8. Density ve Filg. 9. Density vs
R-Distance. R=Distance. R-Distance.
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