‘ @ Q CASY - O D - -
LA-UR -81-1024 %

TITLE: COMPUTING PERCENTILES OF LARGE DATA SETS

AUTHOR(S)Z Jo Ann Howell

SUBMITTED TO: Proceedings of Computer Science and Statistics 13th
Symposium on the Interface, March 12-13, 1981,
Pittsburgh, PA

8

S
L

- -

—

o

o By acceptance of this article, the publisher recognizes that the
> US. Government ratains a nonexclusive, royally-free license
:: 10 puhlith 0 reproduce the pubhished form of this contribu-
m tion, or to allow othem 10 «o so, for US. Govermmaent pur
Nl potes.

q>, The Los Alamos Scientific Laboratory requests that the pub:
o tiwher identity this article s work performed under the aus-

C
=

pices of the U.s Department of Energy

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545
An Affimative Action/Equal Opportunity Employer

Form No. B38 R3 UNITED 8TATES

8t, No. 26829 DAPARTMENT OF ENEROY
19170 P

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

COMPUTING PERCENTILES OF LARGE DATA SETS

Jo Ann Howell
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract.

We describe an algorithm for +finding
perceitiles of large data sets (those
having 100,000 or more points). This

algorithm does not
entire data set.
data and

involve sorting the
Instead, we sample the
obtain a guess for the
percentile. Then, wusing the guess we
extract & subset of the original data
through which we search for the true
percentile.

A. GSampling fur an Estimate

A popular method for computing
percentiles in large data sets is ¢to
locate percentiles in & randaom sample

from the data, although this
not produce the true percentile. It is
merely an estimate, whereas the method
described here locates the Tth largest
number in a set af N numbers. where N may
be very large. More detall ig given in
Ref. 4.

method may

with
analysis by
either very

We define a large data set as onc
enaugh paoints that

conventional methods 1is
difficult or impossible. The number of
points may range ¢rom thousands to
millions or more. Although the algorithm
works for & smaller number of points,
when the number is less than about 3000,
it is more efficient to sort ¢the entire
set. This cutofé depends on the memory
sire involved.

There ave scveral parameters (Tabla I)
involveas in the algorithm that the user
may viry to meet the particular needs of
the problem. They are described in more
detail in the text.

The first step in our algorithm 1is ¢to
predict the Tth largest number or the Pth
percentile, where P=100#(N-T)/N. The
prediction is made by taking & random
sample of size KBAMP from the original N
data points. The Pth percentile in this
sample is used as an estimate to find the
Pth percentile in the original data.

TABLE I
ALGORITHM PARAMETERS

Parameter Description

N An integer: the number of
input data oints.

T An integer, we compute the
Tth largest number from
the large data set.

P Pa100# (N~T)/N; P is a
percentile.

Y An array of lenath WKSAMP
of data points that have
been sampled from the
large data det.

KEAMP An integer) length of
the array V.

PCNTL A number from 0.00 to 1.00;
used to construct a
window in the large data
set.

PCNTH A number from 0.00 to 1.00:
used to construct a window
in the large data set.

INDEXL An integ:t. index into the
array V.

INDEXH An integer index inte the
array V.

CUTOFL VYC(INDEXL): defines the lower
bound for the deta to be
extracted.

CUTOF{ VY(INDEXH): defines the upper
bound for the data to be
extracted.

I An integer, the number of
data points larger than
CUTOFH.

ICTR An integer: the number of
dats points extracted.

KBUF An integer; the size ot the
buffer area used to move the
large date set in and out of
memory (typically 3000
te 10.000).

In our program we call the array
containing the sample Y. Assuming that Y
is sorted from smallest to largest. we
compute the indices INDEXL = max ((N -

T)/N @& KSAMP -~ PCNTL & KBAMP , 1) and
INDEXH = min ((N -~ T)/N & KSAMP+PCNTH +
KSAMP . KBAMP),

These indices mark positions (100#PCNTL)%
below and (100#PCNTH) X above the
estimated percentile.

For example, if we select a sample of
1000 points from a large set of 100,000
data points, and we want to find the
50, 000th largest number (th~ S0th
percentile), then

N = 100000 .
T = 50000 ,
KEAMP = 1000 . and
P = 50 .
J¢ we let PCNTL = PCNTH = 0,03, ¢then
INDEXL and INDEXH are respectively 430
and 350. The max and min are included to

prevent the indices from pointing ocutside

of the array VY, that is, to exclude
nonpositive indices or indices larger
than KSBAMP.

Next, cutoff values are computed wusing

the indices

CUTOFL = Y(INDEXL)
end

CUTOFH = Y(INDEXH).

These values are used as cutoffs on the
original large dats set to extract some
data that is then searched for the true
percentile.

In our example: the number Y(500) i¢ the
estimate for the 30th percentile for the
large data set. The upper and lower
cutoffs are VY(3550) and Y{(450) which we
u1: to extract data from thy large date
set.

If we want to be reasonably sure that the
Pth percentile for the large data set
lies in the inter-'al (CUTOFL, CUTOFH), we
m.st use some care In the selection of
PCNTL and PCNTH. These values can be
chosen by constructing e
dxltrnbution-droo cenfidence interval for
the Pth percentile in the sample (Ref.
3). I¢ PR is the probability that the
percentile P uf a set of size N lies in
the interval (CUTOFL, CUTOFH), then

INDEXH
N i N-§

PR = E i P (1-P)

{= INDEXL

Using the ajproximation,

b 2
~t /2
PR = 1/GGRT(2#PI) [] dt
a
where

a = (INDEXL-N#P)/SQRT(NaP&(1-F))
and
b = (INDEXH-1-N=#P)/8GRT(NeP®{1-P)),

we construct a table of values (Table ID)
to use for PCNTL and PCNTH for the case
KSAMP=1000.

TABLE II
SUCGESTED WINDOW VALUES
KSAMP P INDEXL INDEXH PR PCNTL PCNTH
1000 0.%0 448 %32 0.9% 0.032 0.032
1000 0.75 720 77% 0.95% 0.030 0.035
1000 0.90 @381 919 0.9% 0.019 0.019
1000 0.93 936 964 0.93 0.014 0.014
1000 0.%8 970 987 0.93 0.010 0.009
1000 0.99 984 998 0.96 O0.00&6 0.008

B. Locating the True Percentile

From the original data. we extract all
data points that are greater than or
equal to CUTOFL and also less than or

equal to CUTOFH. We have considerably
fewer data points in this extracted data
set than in the original set. I# the
sample of size MKEAMP closely rrsembles

the original large data set in
distribution, then the extracted data
will probably contain the true
percentile. That is, the interval
(CUTOFL. CUTOFH) contains the Pth

percentile of the large data set. We can
then use thic smaller set to begin our
search for the true percentile.

The number T is adjusted by the number of
points in the original data set that were
larger than CUTOFH, That is, if I is the
number of points larger than CUTOFH, then
we let ¢t = T - I and search for the t-th
largest number in the extracted data set.
For this se4rch we use the Blum
algorithm. (Bee Rels. 1, 2, and 3.)

C. Error Conditions

Several error conditions are signaled in
the program by an error ~essage. One of
these it a missed true percentile in the
extracted datae. That s, I)T or
I + ICTR (T. At this point, the wuser
can increase KBAMP in the hope of getting
a more representative sample or increase
PCNTL or PCNTH. it is easy to determine

by how much we missad the percentile and
in which direction we missed it.

REFERENCES

(1] A. V. Ao, J. E. Hopcroft, and
Je D. Ullman, Tne Design and
Analysis of Camputer Algorithms,
Addison-Wesley, Reading, MA, 1974,
pp. 97-99.

(21 M. Blum:, R. W. Floyd, V. Pratt,
R. L. Rivest. and R. E. Tar jan,
Time Bounds for Selection, J.
Comput. and Bystem Bci. 7 (1973),
pp. 448-461.

£33 H. A, David, Order &Gtatistics,
John Wiley, New York, 1970, pp.
13-15.

41 J. A. Howell, An Algorithm for
Computing Percentiles of Large Data
Sets. Los Alamos National
Laboratery. report LA-UR £1-179.

S D. E. WKnuth. The Art af Computer
Programming. vol. III,
Addison-Wesley. Reading, MA, 1973,
pp. 216-217,

