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THE EFFECT GF GEOMETRIC SHAPE ON TWO-DIMENSIONAL FINITE ELEMENTS

by
W. A. Cook

ABSTRACT

Three quadrilateral elements are defined. These are an eight-nodal-pcint
serendipity element (QUADBs), a nine-nodal-point serendipily element (QUALYS),
and a nine-nodal-point quadrilateral element composed of twe Six-nogal-point
tr iangular elements (QUAD9t). The effect that the geometric shape of the
element has on the approximation function of each element is discussec. Tws
beam problems demonstrate that wher the shape of the elements becomes skewed,
the QUADIt element signitficantly improves the colculateu resulits. Finully, a
recommendation is made for the QUADE. and QUADYL to Le used tougether for the

mest efficient and accurate rewy'te,

o INTRCDUCTTON ARG SEME Y

Tre serencapity edemonty are ute ¢ ortensively 0 Stress atalysre
eloment corputer progrars,  Ghe Such progran as ALThey whioh v Geserite
Ret, [ 1) andt s e ootoraavely at the oo wlares hatier el catoratorys T
theory for the torenaipity elements was tirst precertec in Foty [0 ara o
precer tee more corpleto by an ket [afe The dicdlee corputor prom g was oo
for this study,

In 1477 J. AL Strdck land and his gssocrates at Texas sbbh showed that the
eight-nodal-point serendipity quadrilateral two-dimensional isuparametric

element (QUADBS) becomes very stift when ity geometric shape s distortea |4,



He explained that others had also seen this effect and suggested using another
element, the six-nodal-point linear strain triangle (subparametric element).
This element has straight sides and will not accurately model problems with
curved boundaries. L. N. Gifford [5] showed in 1979 that this same loss of
accuracy occurs for twelve-nodal-point serendipity elemerts, and J. Backlund
(in 1978) showed how reduced integration improves the accuracy of skeweg
elements [6].

I will show that a narked improvement is made in the serendipity quadri-
lateral two-d‘mensional isoparametric elenent (QUADYS) by acding a center nodal
point. However, even with a very careful placement of the center noual point,
this element is affected by the geometric shape nt the element., C. M, Stone
of Sandia hatior.al Laboratories, Albuquerygue, suggested tnis e]ement.*

I will alsu present a nine-nodal-point quadrilateral two-dinensional ele-
nert that consists of twou six-noaal-point triangular isoparame tric elemerts
(QUADYt). When the sides of these triangular elements are straight, they are
equivalent to the elements suggested by Stricklana, et al. (4],

Three plane<stress bear problems are used to evaludie the CUalvy, GUADGG
arg QUADaE e derente, Tihe first oroblem is a londiiuginal Lear vty corstart
strain, A1l three elementy solve this problen exactly uning three eletents
for beth rectar quler ard skeved=shaped elements,  This problen proved that 1
QUALYL elemert must be integrated as two trisngles,  Solving this problen wath
trianqgular dntearation gave (ract displacem nts, bue solving with guadriletoral
integration gave meaningless displacements,  The two other bhoan problents were

solved with both quadrilateral and triangular intearation of QUADYL, anu the

* (. M, Stone, Sandiu National Laboratories, Albuguerque, personal communica=
tion, August 1979.



displacements were nearly identical. The second problem, a cantilevered beam
with a shear load, was used by Strickland, et al. [4]. A1l three elements
solve this problem very accurately using three elements when the quaarilaterais
ore rectanqular; however, when the elements are skewea, the errors are 56% for
tre maximum displacement for QUAD8s, 17% for QUAD9s, and 4% for QUADYt. The
third problem is a circular beam problem. Again, all three elements solve

this problem accurately using six elements when the quadrilaterals are unitorm
circular segments. When thece elements are skewed, the errors in the maximun
radial disulacement are 23. for QUADRs, 15 for QUADYs, and 3% for GQUADYL.

] conducted this study for two reasons, First, in nonlinear analyse. tiat
use a deforming confiquration technique (updated Lagrangian in ADINA), the
finite elements may become skewed and complicate the sclution techrique.
Second, three-dimensional prohlems with complicated geometries are limited in
The numher of elements that may be used for solution in a reasonable amcunt ot
calculation time ana cost.  Therefore the nost efticient finite elerents

possitile are needed for these analytes,

Ve DERINIITORG OF TRDANG LA RN SERTRETRITY L RERTS

I will define two typey of elerenty by presenting the chape functicns wne
in cach element ard aroribivg the pumeracal intea atior o The o twe e lerarnd
tvpes are the triargular fsoparametric elements and the serenmipity isopara
mtric elemerte,  Thewe two typet of elements are nere general tha tre actaal
elementy that are conpared later in the paper,  The dittererce is the migoade
nodal poirts, which are optional in the presentation but are usee for the tea .
anqular element QUADUL and the two serendipity element  QUADES and QUADUS

discussed later,

S



A. Triaggylar Elemerts

The trianqular element shape functions are h;(r.s). where the superscript
i refers to ''+ vlement this shape function represents and the subscript j re-

_fers to the nodal point in the element that this shape function represents,
These shape functions are derived for triangular-shaped regicns with three to
six nodal points. The corner nodal points are required, whereas the midsice
nodal points are optional. These triangular elements are used in pairs to
mooe1 quadrilateral regions. Quadrilaterals can ve tormed from triangles ir
two ways: by placing the diagonal between nodal points z ang 4 (shuwr in
Fig, 1), anc Ly placing the aiagnnil between nodal puints 1 &nd 3 (shown ir
Fig. 2).

For the corfiguration in which the diagonal 1s between noael pointy ¢ erc

& (Fic., 1) the element | shape functions are

r. 1: a -l ( r * ¢ ) - -‘1: h ||. - % .'I :._ »
) 1, 1.1 1.1

'( - .( | - r) - -: 'lf. - : 'Is. ’
1 ! 1.1 1

RS LR AR

by oo (1 e rjlr o) or O (if 10 node dess Eot ety

(r * )1 . «)or . ar.

~
[

Similarly, ciemnt 1] (alue showm in Fig, ') haw the thape tunctaons

e 1 1,0
h? . % (1 ¢ 5) - ? h: =

y
6~ 3Ny

L\ JE]

(1 = r)(l = u)or v, Yy



2 1 1,2 1
h3 .- (r +s) - ?'he - ?-h

b2 mg (14r)- 5 h2 - > h

o N
-

hg u={r +s)(1 +s)or 0 ,

h; m ~(r +s)() +r)or0 , and

hg s (1+r)(1+s)or0 . (¢)

For a configuration where the diagoral is between noaal points 1 arna 3 (as

shown in Fig. ?2), the element 111 shape functions are

3 13 1.3
= rr)-shy-zhy
3] 1.3 1,3
hymy (er*8) -ghg-ghy
3] 1.3 1,3
R I R R
?
by e far ¢ <)V 4 r)or G,

T I Y N Y N VRN TN

(e =g)or O, -

Carilin ly, elerer U1y (shone an Fde o) haw shape turctaors

[ 1, 1.4 1 .4
hymg (s) oy -ty
4 4 4
h3 = ; (] - r) - ; h7 - % h9 '
a 1.4 1.4
hgeg (r=8) =wty-ghy



h; = (r-s)(=-r)oro ,
hyg = (r - s)(1 +s)or 0 , and

hg= (1 -r)(1 +s)or0Q0 . (4)

o bH [e JF -3

(rys) are natural coordinates that vary as

-151‘:1 and -1 <5 < 1 .

The number of integration points used for the triangular elements is either
one or three. These are listed in Table 1. The single integration point is
exact integration for a linear approximation function, whereas the three inte-
gration points give exact integration for a quadratic approximation function.

The criterion used for dividing the quadrilateral region into triargular
elements is the shortest diagcnal. Thus if the distance between the nodal
pcirt 2 ard nccal point 4 is shorter than the distance batween noual poirte 1
arc 3 then the triangular elements are | and 1] (as shown in Fig. 1). C(on-
versely, if the diegonal distance between nocal points 1 and &z is the shertest,
trer the triangular elerents are I1] and IV (es shouwn in Fig. ¢). 1f the tw
giagonal distances are the sane, the user may specify elemerte | anc Il or i
and 1V or average 811 four eienents, However, averaging all four 15 a pow
choice urless the elements are rectangles.

Thus the QUAIYt elenent consists of a quadrilateral region with nine rocel
points (shown in Figs. 1 ard 2), which consists of two six-ncdal-pcint tri-
angular elements., All midside nodal points are centered, anc the ninth ncdal
point is centered on the diagonal.

Consider a reyion to be analyzev. This region has many elements; sone¢ are

in the interior of the region to be analyzed, &nd some have boundaries that

T o



are on the boundary of the region to be analyzed. The midside nodal points,
which are in the interior of the region being analyzed, are centered on
straight lines, whereas those midsiue nodal points on the boundary of the
region being analyzed are centered on the boundary, which may or may not be

curved.

B. Serendipity Element

The serendipity element shape functions are hj(r.s), where the subscript
J designates the nodal point that this shape function represents. This is a
four-to-nine-nodal-point element. The corner nodes are required, but the

midside nodal points and center nodal point are optional.

ny=g (12 r)(1 s  mgh = ghg-ghy
hymg (1-r){1%8) =gh-ah -2h
hy=g (1-r)(i-s) - 7 he- % hy - 7 hg
by =3 (14001 =) - L % hy =7 Py s
hb--;-(l-r?)(1+s)--;—hgnr(i ,

he = ; (1 =r)(1 = ¢¢) - ; hy ot G,

hy = % (V- r )1 = ¢) - ; hy o G,

hF . % (V+r;(1 - s;) - ; Ny s OF G , anc
hgs (1-7)(1-sf)oro .

The numerical for serendipity elenents is discussed in Ret,

[7].

integration used

()



The QUADBs element referred to in this paper consists of the first eight
nodal points shown in Fig. 3 (h9 = 0 in Eq. (5)). The QUADY9s element A,
includes all the nndal points shown in Fig. 3 and 211 the terms in Eq. (5).
The location ot nodal point 9 is at

e TRt Xyt Xy X5t Xg t X T X (6)

9 4 Z

NPTV ¥3% Y Y5t Yty Yy
Yo = - z Z -

This location is the location of r « 0, s = 0 using the first eight nodel
points in Eq. (5) (h9 = 0).

The midside nodal points are centered for both serendipity elements in the
same manner as those discussed in the previous section. This region has mary
elements; some are in the interior of the region to be analyzed, anc some tave
boundaries that are on the boundary of the region to be analyzed. Those
midside nodal points that are in the interior of the region being analyzea are
centerec on straight lires, ana the midside nodal points on the boundary of
the reqion being analyzed are centered cn the boundary, which may or may nct
Le curyec.

111, APPRGIIMATION FUNCTIONS

An urde rstanding of the approximetion functicns tor triarcular anc
serendipity elements will clarify the resuits of the two transversely loaueu
bear. prol:lems discussed in Sec. 1V,

The shape functions defined in Sec. Il are usec to estal.lish the trane-
formations x{(r,s) and y(r,s) from the natural coordinate system (r,s) to thc
global coordinate system (»,y) and also for the approximation functions for
displacements (1 will use u(r,s) as a representative displacement). When the

same shape functions are used for boti: transforrmations and approximation



functions, the elements are isoparcmetric. The shape functions definea in
Sec. 1l were derived to maintain a compatibility between elements for the

geometry (x,y) and displacement u. But what limitations do the resulting

approximation functions have?

To approximate a general function, I would recommend using a Taylor's
series expansion, which suggests a polynomial series. The polynomial terms
should be complete to assure the same degree of approximation for each
possible deformation state (include all terms of the same degree). (See
Ref, [8] for a discussion of complete polynomials for finite elements.) Thus

for two dimensions, the ideal approximations are

u(x,y) =cog *cyx*+coy ...(linear) and

u(x,y) Co*+Cyx+tcpy+c3 xZ + cq xy + cg y¢...(quadratic)

The approximation functions for triangular and serendipity elements will be
compared with Eq. (7).

A. Triangular Elenent

Eletent 1 (shown in Fid, 4) has the tollowing transtormaticn tor x(r,s): A
] ] 1 1 ] 1 .
X = h] X + h2 x2+ h4 Xq + hb Xg + h8 X + h9 Xy - (¢)
In Fig., 4,
X, *+ x, X, * X X, * x
Ay = —]—? 4 a;) ’ x“ = —4—2—-—] + a“ , and ';9 - -f—-,:,—-a . {4)
Thue
h] + h] h] + h] h] + h]
X e h.l s\ 2t X, * h 4+ —ELT——ﬁ x, + \n!+ 8 2 | x
1 ? 1 l ? q v 4

+h a *h,a . (10)



Substituting the shape functions (Eq. (1)) into Eq. (10) gives

X *t X Xy = X Xy = X
R +,(_l_2__2+a5+a8)+5(_1_2_ﬂ+35+38)

2
~r 3 -rs (a5 + ae) -s" ag . (11)

Similarly, y(r,s) is

Yoty B AT Yy - Y
y . 2 4+r(1 2+b5+b8)+5(] 4+b5+bb)
2 2 .
-r b5 - rs(b5 + b8) - b8 . (12)

Using the same six-nodal-point triangular shape functions (Eq. (1)) as

approximation functions for displacements,

-—
—
-—

z Y2

When the boundaries of the triangular element in Fig., &4 are straight arc
the midside rocal pointe are certered, the a's and b's are zero and x(r,s¢),
y(r,s) in Egs. (11) and (12) are linear functions of (r,s). Thus wher Ege, (11)
and (12) are substituted into Fa. (7), the displacerent functior of ta. (7)
(quadratic) has the sarme polynomial terms as Eq. (13). Conversely, when the a's
and b's are not zero, the toundariet are curved, or the midside nodal points
are not certered, and x(r,s) and y(r,s) in Eqs. (11) and (12) are gquadratic
functions of (r,s). Thus when Eqs. (11) and (12) are substituted into Ea. (7),

the displacement function (1linear) has the same polynomial terms as Eq. (13).



Summarizing, when the geometric boundaries are straight and the midsice
nodal poirts are centered, the displacement approximation functions are
quadratic in (x,y), but when the geometric boundaries are curved or the
midside nodal points are nct centered, the displacement approximation
functions are linear in (x,y).

Three-nodal-point triangular elements have linear shape functicns (see
Eg.(1)). Thus both the transformations x(r,s) and y(r,s) and the approxima-
tion functions u(r,s) are linear in (r,s). From Eq. (7) we car see that the
approrimation function is alsc linear.

B. Serendipity Element

Using the element in Fig. 5, the transformation for x(r,s) is

6
X = h, x. . (]L)
, i
i's 1 !
In Fig. 5
Yy, ot x x, * X, + X
¢ 4
Y, = ‘. a, , o = - 34 y X = 3 e,
1 I'4 4l b e t 7 ¢ i
+ + + + x + + “+
Y %4 ,]. + 3 ard oy o= ] ,‘ ,3 "4 4 o di °7 % !
¢ 5 T T 9 et Yy T 4 T ‘

i (a5 tagtayt aB) hg (16)



Substituting the shape function (Ea. (%)) into Eq. (16) gives

K]’lz’la"la ds‘ab"a?*ae‘r(l]—lz-x‘—"’il‘ ab-ab)

+

r = 1 7 4 ¢
X, *+ X, = X, = X a, - a a *+ 2 Xy = X, * X, =X
+s('I 34 3 q ., 52 7)_r2(5‘ 7),“(1 24 3 4)
a, * a a, - a a, - a.
- s? (—2——6 l")* rzs(—é——7 5)* s%r (—-—b - c) . (17)

Y

Usirg the nine-nagel-print serencipity shaps fur-ctians (£g. (L)) as

approxiret for furctiony for uisplaecererte,




When the boundaries of the serendipity element in Fig. 5 are straight anao
the midsice nodal points ar: centered, the a's ano b's are zero and x{r,s),

y(r,s) in Eqs. (17) and (18) are

x(rys) = p, + pyr* P, s+ pyrs and

y(r,s) = Q*ayr q, s * agrs . (20)

Wren Fg. (20) is substituted into Eq. (7), the displacement functicn of
EG. (?) (guaaratic) has the same polyncmial terns as fa. (19). Conversely,
when the a's and b's are not zero, the boundaries are curved or the n.idside
nocal points are nut centered, and x(r,s), y{r,s) in Eqs. (17) and (1¢) have
all the quadratic terms and two third-deqree polynomial terms. Thus when
Ecs. (17) ara (1F) are sutstitute inte £q. (7), the cisplacenent turctiicn
(1'near) has the same pelynorial terns as Fq. (19) except that the
fourth-dearee term (r?s?) is net needed,

Wher the shepe ot the serencip ity elenent 14 o parallelearar arg the
rrcaace nocal poirty are cettered, the a's ane t's dare 2600 arg aj{rys), vr o
in Fav, (17) ave {(1F) are hinear,  Thiw can Lo showe by reginzirg that the

Mauctale of 4 parailelograr irtersect al thoe o (enter poarte,  Thge

’] * ). >y, * II' v‘ 4 y. .v 'y ).

L o L B .
or

S T S L S B PR PR S oo )

which are the coefficients of the (vs) terms in Eqe. (17) and (1R).



Therefore x(r,s) and y(r,s) are linear.
x(r,s) = Pop * Py T +p,s and

y(r.S) = \10 + q" r o+ q2 S . (23)

When Eq. (23) is substituted into Eq. (7), the displacement approximation
function of Eq. (7) (quadratic) has fewer terms than Eq. (19). Thus, for a
parallelogram-shaped element, the displacement approximation function has
three terms more than are needed for a quadratic approximation in (x,y). The
(r2s), (rsz) and (r2s2) terms are not needed.

Summarizing, when the geometric shape of the serendipity element is a
parallelograr and the midside nodal points are centered, the displacement
approximation functions have three terms more than are needed for a quadratic
approximation in (x,y). When the geomet: ic boundaries are straight and the
midside nodal points are centered, the c¢isplacement approximatior functions
are quadratic in (x,y). However, when the geometric boundaries are curves or
the midside nodal pcints not centered, the displacement approximation func-
tiore have ot¢ terr more than is needed for a lincar approxinatior in (x,v).

wher using the elerert in Fig. 5, if the ninth nodal point s igrorec, tr:
trancformations for x(r,s) and y(r,s) are identical to Eqs. (17) and (4.

1f the eight-nodal-pcint serendipity shape fun~tions in Eq. (5) are con-
sideress as approximation functions for cisplacemerts, the ninth nogal point ve

aj2in ignored, and




Again, the transformations x(r,s) and y(r,s) are the same for the eight-
and nine-nodal-point serendipity elements; however, the displacerent approxira-
tior functions are different., Thus when the boundaries of the serendipity
element are straight and the midcide nodal points are centerec, the a's and
b's are zerc, and the transformatiors for x(r,s) anc y(r,s) are Eq. (2C).
However, when Eq. (20) is substituted into Eq. (7), the displacement function
of Ea. (7, (quadratic) has a fourth-degree term that Eq. (24) does nct have,
Conversely, wher a's and b's are not zern, the bourndaries are not straight or
the rideide nodal points are not certerea, ang x(r,s) and y(r,s) in Eqs. (17)
ant (18] have all the guadratic terms and two third-degree polynorials iden-
tic2l tr the QUADG, elerert, However, when Eqs. (17) and (1) are substitutes
irte Fa, (70, tne digplace ert functior (linear) hat the sare polynorial terns
- IO AP R

Ay chrwr for the QUAlws elerent s the parallelogran=shape elermert reaults
in o Ninear trarcfereration for x(r,8), vir,e). Thus Ea. ({40 hay twe terme
more thar are nNecoert for @ quodratic displacerment approviraticr an (v, fror
ta, 7,. The ’r?s) ar:! (r',?) terms are not needed,

Sumrarizira, wher the genretric shape of a serendipity element 15 a
parallelograr and the midsiar nodal points are centered, the displacement

approximation funrtiony have two teems more than are needed for 8 quadratic

approrimation in (x,y). When the geometic houndaries are straizi¢ and the



midside nodal points are centered, the displacement approximation functions
'ack the fourth-degree term (r252) to be quadratic in (x,y), but when the
geometric boundaries are curved or the midside nodal points are not centerea,
the displacement approximation functions are linear in (x,y).

For a four-nodal-point element, the transformation equations x(r,s) ana
y(r,s) are identical to Eq. (20) for a skewea-shaped element and identical to
Eq. (23) for a parallelogram-shaped element. Using the four-nodal-point
serendipity shape functions in Eq. (5) for approximation functions for

displacemerts u(r,s),

Thet wrer bo, (¢C) s sulvtituted into Eq. (7) (linear), the divplacerernt
furctior of Eu, (7) (lirear) has the same polynonmial terrns ay La. (¢%).
Kowever, when fa. (e4) 99 substituted into £q. (7), the ¢vsgp laternrt turcty e
of fa. (7) (linear) dues not have the (rs) tern,

Sumrarizing, when the geone tric shape of a four-nudal-peart serendipity
element is a parallelogram, the displ~rcement approximation function is linear
in (x,y) plus an (rs) term. When the shape in shewed, the approximation
function is linear ir (x,y). The element approximation functions are listed

in Table 1].



1V. APPLICATIONS

In this section 1 will present three beam problems: a longitudinal beer,

a cantilevered beam, and a ci-cular beam. Fach problem has been analyzed witr
the three elements defined in Sec. 11,

The longitudinal beam problem has linear displacementis and was solved
exactly by all three elements independent of whether their shapes were rect-
angular or skewed. However, my original intent was to use the same integra-
tior for QUADYt ac ] did for the serendipity elements. Tric was satisfactoury
for the other two beam problems, hut the calculation using the QUADYL elemer.t:
gave nearingless answers for tnis pooblem until a triangular integretion scherc
was developed for this element, This integration scheme is documerted in
Sec. 11,

The cartileverea bean problen iy igentical to the problen usec Ly brofessor
Strichlanc, et al., in Ref. [4] except that the material properties, loads, anc
¢i2e5 have becr aiven metric values., This problen is illustratea in Fig. 6,
ard the theoretical and calculated results are tabiulatea ir Tatle 11,

Fror the ocrivatiore dr Sec, 111, we carn interpret thewe results, for o tn,
case where the guacrilateral elerent. gre rectangular, the ap,rexiration
tuncticor © are Quatratic plus adcitional terme for the cerercipity elemorte
with (AbUc having one more terr than QUALEY.  The Coalut kac ider taical
quadratic apjproviretrore,  Thut QUADGY gives the best renudte] (LS the
secong best revults) ard CUADGYL gives the third best resulty however, thet
results have lesvs than 3.4% error,  Independint of what protler v solveu, it
the quadrilateraly are parallelngrams, the QUADYs element will approximate the
solution bettcr thar or as weil as the QUATES element; and the QUADES element

will approximate the solution better than or as well as the QUAD9t element,



For the case where the quadrilateral elements are shewed, the QUADEs approxima-
tion functions are lacking a term to be able to approximate quadratic func-
tions. Also, the region for approximation is large; thus the calculated
results are very stiff. The QUAD9s element does have quadratic approximation
capability, but its region for approximation is also large conipared with the
QUADSt element, which breaks each quadrilateral region into two triangular
reqions each with quadratic approximation capability, Thus, when the quadri-
lateral elements have skewed shapes, the QUAD9t elements are good, the QUADYs
elements are poor, and the QUADBS elements are very poor. Indepenoent of what
problem is being solved, if the quadrilaterals are skewed geometry, the QUALYL
elemert will approximate the solution better than or as well as the GUADYs
element, and the QUAD9s element will approximate the solution better tnhan or
as well as the QUADus element,

The circular beam problem is illustrated in Fig. 7, and the theoretical
and calculated results are tabulated in Table IV, The horizontal displacement
is used as a gauye of the solution because it is proportiunal to the potertial
enercgy of the problem. This problem was chosen beceuse it i, similar in thich -
ness, length, material properties, and loads to the cantilevered bean probler,
] studied this problem to better understand curved boundaries. A check of the
theoretical snlution of this problem and the previous probtlem shows that the
displacements to be approximated are similar [9). However, it required six
quadrilateral elements to get as nmuch accuracy for this problen as thet
obtained with the previous problem with only three elements, This confirms
the lower degrec approximation functions for displacements when the toundarices
are curved; this was discussed in Sec. 111, Also, for this problem, the QUALY-
elements are not as much better than the QUADBs elements as they were in the

previous problem. This 1s because the QUADHS element has a linear approximation



function for curved boundaries and the QUAD9s element had the same, with ore
additional term. Again, the QUAD9t element is much better than the other twc
elements because the region it approximates with its linear approximation

function is much smaller than that of the other two elements,

V. CONCLUSIONS AND RECOMMENDATIONS

From the definitions in Sec. I, the derivations in Sec. 11l, and the
problems in Sec. 1V, I conclude the following.

(1) Whenever elements are rectangular-sihaped or uniformly curved (diagy-
onals are equal), the QUADEs element should be used. The QUADYSs element is
more accurate for these element shapes; however, the ninth nodal pouint is of
mirimal importance for these elements, and the efficiency gained by dropping a
nooal point 15 worth it.

(¢) A1l other element shapes shoulc use the QUADYt element.

Ideally, these elements could be designated with a mesh generator, It
should mesh as mech of the reaicn to be aralyzes « possitle usinu rectaraular
elements with eight nodal poirts for QUADFs elements. The rest of the reqicn
shouln Le meche! with pine -neaael-poirt quaorilaterals for (LEDWL elemcnte,
These NHADGUL elemerts should have straiqht boundaries unless straight bou c-
arie« siarificar tly <harus the geumtry of the region; ther they shoula Lo
curved. Wher curved boundaries are used, the analytt shoula remerjar trat tr,
Accurac_ of the apyroxinatior furctions is reducec.

] would libe to emphasize that when these higher-deurer elerants are used,
it 1y very important to center the niagside nodal points, The results calcu-
lated for the hear problems in S2c, IV would be much less accurate 1f the mid-
side nodal puints were moveu even a small ampunt. This implies a special
handling of the midside nodal points for Eulerian-(updated Lagrangian) type

finite element nonlinear geometric programs.
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INTEGRATION FOR TRIANGULAR ELEMENTS

Integration

__Element
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TABLE 1

I

1/3
2/3
2/3
-1/3
-1/3
-2/3
-2/3
173
-1/3
-2/3
-2/3
1/3
173
2/3
2/3
-1/3

lwn

1/3
2/3
-1/3
2/3
=173
-2/3
1/3
-2/3
1/3
2/3
-1/3
2/3
-1/3
-2/3
1/3
=2/3

Weighting

Factor

2

2/3
2/3
2/3
?

2/3
2/3
2/3

-~

[4

2/3
2/3
2/3
2

2/3
2/3
2/2



TABLE 11
ELEMENT APPROXIMATION FUNCTIONS

Element and

Number of Nodal Points Shape? Approximation Functionb
Trianqular
3 Triangle Linear
6 Triangle Quadratic
6 Curved boundaries Linear
Serendipity
4 Parallelogram Linear + 1
4 Skewed Linear
g Parallelogram Quacratic + 2
g Skewed Linear + 4
3 Curved boundaries Linear
Parallelogram Quadratic + 3
Skewed Quadratic
Curved boundaries Linear + 1

“These shapes are assumed te have all micside nodal points certered,

b + indicates the nurter of accitioral terns,



TABLE 111

PLANE STRESS CANTILEVERED BFAM WITH TRANSVERSE LOAD®

Element
Type
QUADSs
QUADSs
QUADSt
QUADEs
QUADSs
QUADAg
Theoretical

Element

Shapes
Rectangular
Rectangular
Rectanqular
Skewed
Skewed
Skewed

8See Fiq., 6

Vertical Tip Deflection

% Error

3.10
1.5¢
3.38
56.03
16.90
4,3t
0

Meters

.03€76
.03937
.038€%
.01759
.03324
.03e2%
.0400



TABLE 1V
PLANE STRESS CIRCULAR BEAM WITH TRANSVERSE LOAD?

Element Element Horizontal Tip Deflection
Type Shapes % Error Meters
QUADSs Uniform 2.48 .02380
QUAD9s Uniform 1.99 .02352
QUADGt Uniform 1.42 .02406
OUADE s Skewed 22 .56 .0189C
QUARAg Sk ewed 15.39 .02065
QUADGt Skewec 3.14 02364
Theoretizal 0 02441

See Fiag. 7



FIGURES

Fig. 1. A quadrilateral element composec of twe triargular elenents (ciagure)
between nodal pcints 2 anc 4),

Fig. 2. A quadrilateral element composed of twe triang.lar elemerts (aiagorel
between nodal pointy 1 and .).

Fig. 3. A quadrilateral serenaipity element.

Fig. 4. Element | with two Curved boundar ies.

Fig. 5. Nine-nodal point serendipity elerert with curves boulGar ies,

Fig. 6. Plane stress cantileverea tiean protlen (see Pef, [4]),

Fig. 7. Flare stre<s circular bean prot:len.,



NOMENCLATURE

a - x-coordinate distance of midside nodal pnint from the center point (see
Figs. 4 and §5)

b - y-coordirate distance of midside nodal point from the certer point (see
Figs. 4 and 5)

¢ - constart coefficients usea in fq. (7)

E - VYouna's modulus (material property)

h - elemért shape functions

p - constart coefficients used in fqs. (20) and (23)

F - prescure loac

qQ - corstart con fficierts usea in Fgu. (2G) ard (2X1)

r - naturel ceoorairates uted in elerent description (see Figs., 1 arc ¢)

$ - natural coordingtes usec oo elencrt description (see Figs, 1 anu o)

u - & aisflacermert; u represents the displacensrts in the x and y coerdinate
Cirectaer

yo- Carteniiar coaretrets fane Fige, 1oare

v cantenam corrdingte taw Faan, 1 oard

v brvearte raty (Paterial property!
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