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IApplicetions end-Gererslizations—of Verietdonel — 1
4H0thod| for Generating Adaptive Meshes
Jeffrey Saltzman and Jeremiah Brackbill l

Los Algmos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
|

IINTRODUCTION

Generating computation meshes for irregular regions have been of interest to
F fot of pe.ple 10 many areas of research for s long time. One technique that
|has met with success over the long run has been to generate meshes using sn

jelliptic equation or s system of elliptic equations.

i
IThe techafque {n 1ts sisplest form, uses a system of Leplace equations which

-4

'nro solved by direct or iterative methods. As people gained more experience
‘jvith this mechod, source terms were added to the Laplace equations to gninl
udditional control of the mesh. 1Ian addition, variable coefficients of the
Jdorlvntlvol wvere sdded for further flexibility, '

|

¢lliptic equations without having to explicitly perturb a set of Laplace,

in thies paper we work with s method that systematically generates a set of

requations with source terus and varisble coefficients. This technique uses the

v

.1vnrlnttonnl methods often associasted with elliptic equations. }

Following this dntroduction, we will briefly discues the varistional,
foraulation {in tvo-dimensional cartesian geometry. Then the formulation will’
be genaralized to three dimensions. Next, eevaral three-dimensional tcct;
proeblems will be shown., After displaying these three-dimensional results, v-‘
will then exhiibit an sppificstfon of the mesh generation technique in two'

1dtnonnton-. This application 4involves generating sn adaptive mash for a;

&‘x'gu ;{lupcrnonic flow past a step {n a wind tunnel. I

| |
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iFinite diffevence schemes on nonuniform meshes all have the obvious

chqrnctotintic that the independeat varisbles in the calcuiation must ba kept;»

track of as well as the dependent variables. This 1s usually done by

- \
introducing an indexing scheme that tags the independent variables in the sane

vas as the dependent varisbles. PFor example, in two dinensions, this {s done !

,_by;nnliguing two indices to a varisble such as the fortrsa dimension statement

dimension x(30,40), y(30,40)

; ;

‘This 1s qifite suggestive of a wmapping. This wmapping is one from a
rectangular array of integers to a set of real coordinates. By filling in
between the pointa using an interpvlation scheme of some sort we novw have a
continuous uepping of a rectangular regior into some two~dimensional region.
This napping is {llustrsted in figure 1. To be more systematic we will call the
coilcct!on of points formed from the indices of the grid points the parameter
space vhila we will call the collection of points formed from the grid points
the physical sprce. With this mapping, we now have a tool to describa
qualities of the given mesh in a quantitative manner.
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{two-dimensional parameter space (u,v) to the space (x,y). We can quantify a'

- lléping between these two spaces using the following functionals.
; |
2 2 ixé
] ‘ I, o ] Oy, yw?+ @,y )2 axay )
I

— 2
B ' 1, = // (x,yu * Vg, yv)° dxdy (2)

L, =[] w(x,3)] dxdy (3
" ]where o
- )
- 3(x,y)

J=35
- U,V (4)
. L.
T|and v 1s & given function of x and y.
—
't]Hc now describe the meaning of each functional,

] The {nregral {n equacion (1) measures the smoothness of the mapping from’
-4{(u,v) to (x,y). In particular, tne gradients in the intagrand measures the

- c———

f spacing of the constant u and v lines. 1t seems piausible that a mesh that has
-{emooth changes 1in spacing woild have s functional vaius legs than a jeggedly

~ |opsced mesh. We will call this fotegral the smoothness functional. The,

L

integral in equation (2) measures the crthogonality of constant u and v lines.|.
11 the sesh were perfectly orthogonal then the integral would be zero, We will

o

call this iotegral the orthogonality functional. The integral 1o equation (3)

"Wloluurcn hov well the volum¢ elements are conforming to a given weight fusction

1

w(x,y). If we were to minimise this integral, ve would predict that vhere w is
"{large J should be small anu conversly wherv J is large ¥ should be relatively
~{ewall. Purther, 1f J 1s esall in & neighborhood of some point P then the grid.
should have many points close together in & neighborhood of the point P, We
will call thie last fintegrsl the volume weighting functionsl.

L

LINFe T =T
g The functionale in tha first three squations all wassure useful qualities of:
t

4
5'1 sesh. Both smoothnesn and orthogonality of a mash are important to saintain
accurate differencing. The volume weighting functional {s useful {n measuring

l

l
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Jeqiations. Next we take a linear combinstion of the integrals. The laabdss:

fby' the term 33 to counter problems with rounding errorsa. This new term
) slightly slters the effect of the functicnsl in that regions where J (e large

%v"mmmmmw ~wesh
I

qualities, these functionals can be used to generate meshes as well. This is

doge Ly deriving a system of elliptic «quagions from the functionals. This

|

5
[

précouu is broken into several steps. y
iThe first stup in this process is to write the integruls using (u,v) as thel

1n§epondcut variables. This 1is useful later on when we will difference some’
!

|
are all chosen positive and their relative size determines the importance given
3

to each integral. With a single sum defined, we can minimize this integral,

“lusing the methods of the calculus of variations.
i
D1 el # A 1, +2,1, (s)
? a9 3 3
s g 70 6
? I 3 9
- - -0 7
{5y = 5y r“._}yv F ()
where T is the {ntegrand of the right hand mide of vquation (%), [
L
To do 80 we calculate the Euler derivative of the integrand of the sum in
equation (35). These expressione are listed {n equa-ions (6) and (7). Notice

that having written the integrals in terme of (u,v) we can now difference the
corresponding elliptic equstions using symmetric differences on & rectangular
region. We have chosen to solve ths equationa using an {Zerative schema. This
scheme is the claseical Gausn-Jacobi {iteration which 4{s very amensdle to
vectorisation. Nov that we have giver a asketch nf the two dimensional
equations, ve wove onto three dimensious. Referencer [1,2] cover ths :vn[
dimensionsl equatiocas in more detail. One particular detail that should eot be
left to the references is that in practice the ortiogonality term is sultiplied

are orthogonalized more thaa regions where J ‘o small,

LY RUE Y VL
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“{taken and the Euler derivative of the {ntegrand of the sum of these intagrals
- {ie cslculated. Zquations (12) thru (15) list these expressions.

-

(ERALTZATION -OF—THE - VARIATIONAL PORMELATION TO—THRES D MBS TONS

The variational formulation essily generalizes to three dimensions. The
first step in generaliring the equations is to define the appropriate mapping.
Thﬁo 1s simply done by adding one space dimension to both (u,v) and (x,y) to!
get (u,v,w) and (x,y,z). Equations (6), (9), (10) snd (11) are the appropriate’
gnqernlizntionc of equations (1) thru (4).

e ——

L= ] Gy e+ Oy g M2+, w0 dxdyée (%)
| Yo = JIS O y,e0* Yy,

2
! * Oxy,e¥) * Vx,y,eW)

|
{
|
I
|
i
[
i

+ (vx'y'gv) . vl.y,z')z dxdydz 9)
I, = JI] w(x,y,2)J dxdyde (10)
ivhere
J - i(x,y,2) (an '

u,v,vw |

The only resl additional cowplaxity is found in the orthogonality functional
vhere twu sdditional tarms must be added to fnsure that orthogonality of all

coordinate lines sr? wmeasured. Again linear combioations of the integrals are

Lo Ty + a1 %A1, (12)

——— . — —— ————— - =

] [ . | [ I L .}

lﬁ'ﬁi‘“'%‘?b‘"f"?"" reo (1)
9 ) F ?
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Agiin, ip practice, the ‘ategrand of the orthogonality term is wmultiplied by 3
to ireduce problems with rounding errors.

—_ i

1 To demonstrate how these varistional principles work in three dincnnionl.

N N W ;

several model problems will be presented. The firat problem has a cubic,
physicnl region. Within this region a spherical exponential weight function 13'
{defined about the center of the cube, This problem will show hov the vetght'
“|functional influences the mesh. The racond problem has a physical rcgion that
:looku 1ike an inverted pyramid with the tip cu: off. This frustum problem will

use the orthngonality functional to show its effect on the mesh. The last

-
4model problem uses the swoothaess functional to generate s wmwesh around a
“levylindrical fuselage and an attached wing.

'Pigure 2 shows the mappirg for the firs¢ wodel problesm. The figure fs a bBit
jminleading siace the cuba actually rests at the origin. There are 20 noints lni
each coordinate direction yielding a total of 80GO points. However only 18 L
17 x 18 (5832) poiats are sctually iterated on since the others are fixed at,
the boundary. Ve use the following weight function. In this problam the'
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:thd orthogonality functional will be set to zero. The weight for the voluIe!

1. J

weighting functional will vary between rero and ose. To be able to show the
full variation in the effect of the weight function while varying the pctl.eter?

i
betwveen zero snd one s geometry dependent normclization was introduced for bo:h:

thé weighting functional and the orthogonality functional. Thele:

i1 g

ncénnli:ntionn are igpgtroduced by dividing the lamsbdas by the lambds pr!nclf
introduced in equations (16), (17) aad (18). i

- 1,7 I
Ag -(.f) (16) f
i
. 1,5~
A, -(TJS. an !
i
v = % JI] wix,y,2) dxdyde as) r
! !
i ]
]
where

V 1is the physical volume region. |

) 1 {s the physicsl length scale.

- Y 1s the parameter langth scale (number of points {n a direction).

!

rlThauo sormalizations were arrived at by using dimensional analysis. The
"dimensions” of the weighting functional and the orthogonality functiunal were '

normalized to those of the smoothing functional. TFinslly the weighting,
_|function w(z,y,z) is defined in equation (19).
4 i

8w 1 k) = 1000 expl(0.25 - (x2 + y2 + 1)}/2)2 1 0.05) (19)
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" nlbdn. The behavior of the curve is whst one expects since ss more weight 1-[
iven to the functional its influence ghoull be felt more.

~ 1050 ~ ~ 32000
b 4
N , s
1 | 1000 - |
i
] - 23000
- 950 *
]
-4 ———-a——
4 ! 900 14000 »
] 0.0001 0.001 0.01 01 1
] )\ w &
| rig. 3 [
7 The trizngies mark values (right axis) of the volume weighting functinnsl {
and the aquaves mark values (left axis) of the smoothing functional.
i
~fFigure 4 shows various cross-sections of the merh vhen A, 1is set to one. i

i

IFigure > f{llustrates the frustum used in the second model problem. Thcl

coordinates of the bottom plene of the frustum are (x,y,z) = (0.25,0.25,0.%),

L

-—(0.25,0.75,0.5), (0.75,0.75,0.5) and (0.75,0.25,0.5). The coordinates of ther

top plane sre (x,y,2) = (0.0,1), (1,0,1), (1,1,1) and (0,1,1). 1In this problcul

the weighting for the smoothness functional is set to one while the weight of,

!

"Jthe orthogonslity functional varies between O and 1000 . The volume vnightlngk

g

functional is not used and subge. :nyly hae weight zero. PFigure 6 showe :heE
qbchuvlor of the orthogonality functional as a fuanction of Ao for the given'
~{range 0 to 1000 . Again the curve axbibits a predictable behavicr. rigure 71
14 shows several cute made 1nto the frustum. The cute display how the lcnh%
generation algoriths pushes the grid planes upvard to mske ac msny poiats as:
orthogonal as possible.

L
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14t becomes :lear by using electrostatic snalogies that the mesh lines should

_‘wolght function appropriately. Figura 11 shows the ragion ‘here the veightl

:F1§A11y figure 12 shows a cut made in the same marner as in figure 10,

Fig. 8

The fuselage 1is extended so that the cylinder extecis -90 degrees from the

horizontal. 1In addition, a wall 1a constructed perpendicular to the wing.

With these extensions a rectangular grid 1is wrapped around the wing as

—

illustrated {n figure 9 . 1In this problem the smoothness functional will first

[

be used without either of the other functionals to generate a regular mesh, In

1figure 10 a cut, seen from the front of the fuselage, of the grid is lhovn;

after 350 {teraci.as. The mesh appears to be regular but has one troubling.
characteristic. One notices that the mesh is tightly spaced around the edge of '

the wing. After examining the squaticns derived from the smoothing functional
b

t

buach around the sharp wing edge much as potential lines concentrate about a!
lightning rod. L

'One possible “ay to fix the problem at the edge is to use the weighting
functional to redietribute the grid pointe away from the edge by choosing a

function is large. Elsevhere the waight function is very small or zero. The..
form of the function is unimportant. However, its location is away from the
edge making it a good canlidate to pull the mesh lines -way from the wing edge.




.

Fig. 9
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|In this section we will show how the mesh generator csn bthe combined nith nt

tv&~di-¢noionn1 cartesian hydrodynsmics code. All three functionals will be |

uuﬁd to make the cartesian code sdaptive. The step in s wind tunnel problem’
1}1 be solved aumerically to demonstrate the power of the method. This
prqblc- has been etudied by many people and more information about 1ts

adkground can bde found in references [2,3]). We first discuss the

ydrodynamics code,

iAn appropriate model for the wind tunnel prodlem is the compressible

iaviscid fluid equations in two dimensional-cartesian geoaetry. These

chltionl are listed below using a lagrangean formulstion and an i{deal equation

of istate.

dat

v
i T
dl +

. w0
pz? +pV u

| P -1l

(which could 4nclude viwcous contributions), u s the velocity,
internal energy, t is tiwe and gamms is the ratio of specific heats.

Q0

(21)

(22)

(23)

|The standard variable names are used. p 1s the density, p .s the pressure
>

1 1o the
Although

th? fluid equatfons are inviscid, a viscous pressure will be added to prevent

risging at shock fronts.
|

Mlu hl')"" ~

L

L-

v

!

t

|

’
|
|

|




—BE T K e eeuatioas—will be differesced Lu two staps. The firat step, cailed tha..

-1 L

1

o
£
-r
7
‘()
[T RE T N

_4
_Wun‘d. Becaune of length constraints on this paper, we cannot go ianto detail on}
.
"diflforcnein..

7 In the Lagrangean phase a conservative differencing scheme is used on a
{staggered quadrilateral grid. The velocities and massss are vertex centered
Jjvhile pressure and internal energy are cell centered. Differencing 1s explicit
4in time and stability is mgintained using a courant limitstion on the time
“|step. More details can be fouad in reference [2]. The remep phase of the

11

"jcentral idea employed in the remap phase i:¢ the utilization of the !ullyA

-

Lagrangean phase, will approximate the above equations. VTollowing the
Lagrangean phase a remap phase will follov allowing an arbitrary mesh to be

thq' differencing. However, eome general comments should be wnade sbout the

’,_,

calculation is aleo conservative making the entire scheme conservative. The

3

two~dimensional PFCT algoritha of Zalesak generalized to an arbditrary

INFLOW PARAMETERS

R <ETO
R uann
O W=
= I=I=-1

rig. 13




~850 20 yuadriiotoral-neoh (references {274 v—The renspphose—to—dissipetive—iasuring |

Cingr T T

BTN

LI

-
}%ndjuccnt boundary points. The outflow boundary conditions simply set sll

;4th¢ flow. FPFurther comparisons can be made at fixed times to shov that the grid

| -

~  Pigures 14 and 15 are saapshots of the computation at times 0.5 and 2.0
A_roopcctlvoly. The primary purpose of thesc illuetrations /s to show that the

’_,
.lvhich enhances the resolution more than if the celle shrunk {n a uniform

J

Do~ e

stabiliy.
i .
Pigure 13 1s s schematic of the initial conditions and boundary of the wind
tanol problem. Pree slip boundary conditions are used on the top and bottom |}
boyndaries since the model is inviscid. At the corners of the step, the

velocities are constrained to a direction parallel to a chord formed using

normal derivatives to zero. As it turns out, the flow is slvays supersonic at
thi outflow boundary making the boundary conditions irrelavent. The inflow
bodndury is set to make the flow Mach 3 . The interior initislly also has a
unf!orn Mach 3 flow 4n the horizontal direction. Next, the initial wesh (120 x

40 icells) i@ created usirg the smoothness functional. Piunally we introduce the

kclght function used in the volume weighting fuanctional. It is well known for}

this problem that multiple shock structures develecpe throughnut the region. To |

resolve these structures we have chosen the gradient length of pressure liutod'

—in equation (24), |
1 |
' !

wix,y) = IVTN’ (24)

Jlrld changes drastically over time ip order that it may follow the structure of

is concentrated around gradients in the pressure. Another property of the
computation mesh that is obewrved is how it aligns iteelf with the gradients of
the pressure. The cells contract in a direction parallel to the gradients

masner, Computations were carried out without using the weighting functional
nn? wvell, The prizary shock wstructures were otill recognized 4in this
co#putution. but ehock thicknesses wvere doubled. Also finer atructures that

appeared near the shockn were lost completely. In this particular problcl.‘

very little extra computation time wvas expended {n ruuning with an adaptive

4loqh for two reasons. The first reason is that the adaptive algoricham adds
\ [
|
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stg¢p. A more important factor vas that the Coursnt condition for this problem

va$ most limiting at the step corner. As & result both problems can with'
almost the same number of time ateps for a fixed intervsl of tiwe.
CORCLUSIONS

|
'To conclude, we summarize our results. We have shown that the variational

NN NE RN

|

formulation for generating meshes can asasily be axtended to three dlncnltonu.}
1 v
—JPurther the mesh generatiosn equatiins bahave in an easily predictable manaer as
1llustrated with the three wode: problams given. We have aslso outlined s

lu&c.llf“l twvo-dimensioncl application of the mesh gengrator to s problem vitht
L

[

no*ing multiple structures. The merh generator moved the computation grid with
Jthe shock fronts and ephanced ths resolution of the 1ifference schume!
1 ci‘nif&clntly.
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