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IINTRODUCTION

.1 Generatin8 computation mesheo for lrre8uler re8iona have been of interoct to:

{a lot of Pe.ple in many .reas of rasearch for . lon8 time. One te.hniqu. that

]has met with succeea over tho long run hes been to 8enerste methes urln8 an

I
●lliptic ●quation or ● ●ystem of ●lliptic equations.

{The techniqu~in ftn simplast form, Uoem ● System of Lcplace ●quation. which

I
●re solvod by direct or Iterative methods, As people Rained more experience

lwith thio merhod, ●ource term were ●dded to the Laplace ●quntiono to 8ain

judditional control of tho ●eth. In addition, variable coefficients of the

I

derivative- were added foi further flexibility.

in thio peper ue work with ● mathod thet syotematicslly Ueneratcc ● ●ct of

alliptic ●quationo without havir@ to explicitly perturb ● aet of Laplec*,

~equationo with oourca termo ●nd varlabla coefficient. Thio t~chnique use- the

“1
variational methods often ●ssociated with ●lliptic ●quat!onc.

!

1
Pollowin8 thic introduction, we will briefly dlscu~o the variational

fnrmulotion in two-dimensional cartenian 8eometry. Then the formulation will

be ~eaeralimd to thr~e dimcnoions. Next, ●everel three-dtmenoional test

preblemo will be ehoun. After displaying theee threo-dimensional results, wo

1

will then exhibit ●n ●pplication of the meeh :eneration technique in two

diuensione. T’hio ●pplication involves 8eneretln8 ●n ●daptive mesh for ●,

b ‘-”JU
i

~ supersonic flow past a stop in ● wind tunnel.
r I

::



-...

I

I
— . . . .

~~ “-------~

lFinite difference ●chemem on nonuniform meshes all heve the obvious 1-

l--_ chmacteristic that the independent variables in the calculation gust ba k.?rt ;

- track of ●s well ●s the dependent variables. Thit is usually done byi
}introducing ●n indexing ●cheme that tags the independent varlableo in the same,

vaa ●r the dependent variableo. For ●xample, in two dimension, this is donei

. bytae@igning two indicee to ● vmriable such ● the fortrso dimension statement

I
dimenoionx(30,bO), 7(30,40)

\

:This Is qtite ●uggeatlve of ● 9apping. r
This Mppins ie one from a:

- rectangular ●rray of integers to ● ●et of real coordinate. By filling in

- between tha pointe using ●n Ioterpolaticm ●cheme of come sort we now have a

- continuous meppinb of ● rectangular regior. into ●cme two-dimenaionel region. i

I- This cupping is Illuotrstgd in figure 1. To be more systematic we will call the,.

collection of pointt formed f?om the indicee of the grid points the paremctcr
}

. @pace whila we will call the collection of points formed from tho grid polntm ‘

‘the ph~elc~l op~ce. With thic meppin~, we now have ● tool to describa ~

i
qumlitiec of the given me-h in ● quantitative unner.

I

I

I
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1
twbdimeneional parameter ●pace (u, v) to the space (x,y). We can quantify a’

- mapping between thece two #pscee u-lag the following functionele.

1, -JJ

( 10-JJ

&?-J/

“ where

QX,7U)2 + P WV)2 axay (1)

Q U“v 2 dxdy
X*Y x,y*)

(2)

w(x,Y)J dxdy (3)

4~-a(x,y)
WT

●nd w 10 ● given function of x and y.

We now deocribe the meaning of ●ach functional,

I

1“

t-
The integral in ●qustion (1) messureo the amoothne8s of the mapping from’

(u)v) to (x,y). In particular, tne gradiento in the int~grand meamurec th~~

cpccing of the constant u ●nd v linee. It oeemo piaucible that ● meoh thet hat;
}

omooth change. in spacing wo!lld have ● functional value lQOO than ● jrnggedly,

-paced mesh. We will call thic integral the ●monthneso functional. The I
i

integral in ●quation (2) ●easures the crthogonality of conotant u ●nd v line~. .
I

If tha ●esh were perfectly orthogonal then the inte~ral would be sero. WCwill’

tail thio integral the ortho~onslity func?iomel, The integral in cquetion (3)1

●osoures how well the volumt ●lemente ●r@ conforming to ● given weight fuoction~

w(x,y). If we wero to minimise thie inteRral, we would predict thet whero w 10
t

large J should b~ cull ●n. converely who~~ J ie large w should be relatively~

cull. ?urthtr, if J lB ●U1l in ● neighborhood of some point P then tho grid;

should have merty point. clooe touother in ● neighborhood of the point P. W.
I

will call thio laat intest’al th~ volume weightin~ functional. I

t
The functionslc in th first three ●quetiorm ●11 meaeure oceful qualit$ea ofl

● mesh, Both smoothneca end orthogonality of ● ●esh ●re importent to metntein;

●ccurete dif:erencing. Th@ volume weighting functional 10 ueeful in ●eeourtna I

I
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Iuilities, theee functienels cm be ueed to generate meshee ●s well. This is t

lone by deriving a eystem of ●lliptic aquetlone from the functional. Thie
1

lroceeo 10 broken into ●eversl ●tepe.
I

1
~The first stap in this proceso Is to write the integrals uoiog (u,v) se the

~ndepentetit variabloe. This is useful latex on when we will difference ●nme 1

)qJatione.
i

Next we take ● linear combination of the integral.. The laabdssi

lro ●ll choeen positive ●nd thei? relative size determines the importance given
b

:0 each Integtal. With ● ●ingle sum defined , we can minimize this integral

Ising the method. of the calculua of varintione.

I I -A,x, +Xoxo +Awq (5)

(6)

(7)

there F 10 the integrsnd of the riuht hand mide of uquation (5).

To do ●o w. calculata the Euler derivative of the integrand of the sum in

●qoatlon (5). Thes@ ●xpre.clon~ ●ro linted in ●qum:ione (6) ●nd (7). Notice

that having written the Integrels in termc of (u,v) we cen nou difference the

corresponding ●lliptic ●qurntionc uolng o~etrie difference. on ● rectangular

re8ion. tic heve chooen to ●olvs ths ●quationa using ●n I:eretive ●cheaz. Thle

scheme is the claecieel Cauen-Jacobi iceratioo uhich Ic very smeneble to

vectorisation. No< that we heve given ● sketch nf tho two dieansionel

cqamtions, we move onto three dimensions. Rsferencec [1,2] cover the twn

dimensional ●q-tiorie in more detail. One particular detsil that ●hould ●ot be

left to the rofarencca is thet in practice tho ortlo~onality term is multiplied

by th~ te~ ~’ to counter problemo with roundlns ●rrors. Thie now term

oliahtly ●ltero the ●ffect of the functional in that reniono where J ie Iarne,

●r~ orthogonallzed more thaa regione where J ‘,0 cull.
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PO variational formulation essily generalizes to three dtmencione. The 1

1
fl~mt ●tep in gencralifiing the ●quatlono is to deffue the ●ppropriate mmpping.

bile ie ●imply done by tdding one space dimension to both (u,v) and (x,y) to

ge (u,v,w) ●nd (x,Y,z). Equatione (6), (9), (10) ●nd (11) ●re the appropriate
1

gederalizatione of ●qustione (1) thru (4).

<
I, ‘j~~ @x,y,zu)2 + @x,y,zv)2 + ~x,y,zW)2 dxdydz

..

1 i ‘O-f~~ @X,y,#”vX,y,~v)2

+ Cx,y,zu) “ vx,y,zw)2

+ ~x,y,z v) “ Vx ,y,zw)2 dxdydt

(9)

(9)

-{

-~

Iv ‘j// w(x,Y,Z)J dxdydz (10)

here

4

i

J -a(xty.z)
VT

(11)
i

I

I

The only reel ●dditional coxplaxfty ie found io the orthogonality functional’

whore two additional terxe ●et be added to lnnure thet orthogonelity of ●ll i

{coordinate linee ●re ●eecured. Again linaer combinations of the integrelo •r~~

~teken ●nd th ● Euler derivative of the integrand of the ●ux of theoe intagrelo L
I

“1ie calculated. Itquatione (12) thru (1S) liet thene ●xpreeoiona. ~

“1 I = A,l, +AOIO *AVIV t

1

(12)

[

(t])

(14)

I
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Again, 10 practtce, the ~.~togrand of the orthogoos~ity term is multiplied by J3

tO Iredur-e probleme with rounding mrrore.

I ‘
.

!To demnnetrate how theee varietionml principle work in three dimeneione

i ●e?eral model probleme will be preeented. The firet probl?m hee a cubic

phyeicnl regxon. Within thie region a ●phericd ●xponential weight function Ie’

. defined ●bout the caoter of the cube. Th!e problem will ●hou hm the weight

“ functional influeocee the mesh. The cacond problem hee ● phyeical region that !
t

. looko like ●n ioverted pyramid with the tir CU: off. TMe fruetum problem will I

uee the orthogooality functiomel to show ite ●ffect on the ●eeh. The laet ‘

. ●odel problem ueee the swothoeee functional to 8enerace ● meeh ●round a 1

- cylindrical fueelage ●nd ●n ●tteched wing. I

i

1

‘Figure 2 ●hove the meppirg for the firet model problem. The figure 11 ● bit :

misleading ●i~ce the cube ●ctually reete ●t the origio. There are 20 ?ointe in

jaech coordi nate direction yielding ● total of 8000 pointe. Rowe*er only 18 x

I

1P x 18 (5832) pointe ●re sctuelly iterated on ●ince the othere ●re fixed ●t ,

the bouodary. We uee the following weight function. In thie probltm the:

,l.,!l. . . -.

b “’. IU
I

r

~

z (-Yx

?16. 2

I
i
1t
I

i

I
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thd orthogooelity functional will be ●et to zero. The veisht for the volume

weighting fuoctionxl will ?ary between zero aod ooe. To be ●ble to ●hou the
-,

full variation in the ●ffect of the weight function while vmrying the psremeter

betvaeo zero ●nd ooe # geometry dependent norulizetion wte introduced for bozh

~

y weighting fuoctionel ●od the orthogooelity functional. Thee@ ,

aorulizetionn ●re introduced by dividing the lambdae by the lambde primes ‘

introduced in equetioor (16), (17) sod (18).

I
I

{
{ ~o --(+7

I‘1
.1 A“’ - ( +J %

i

(17) I
t

J

!
+Jf W(X,Y,Z) dxdydz (18) :

I

1
!

~wh.re

!

V la the
I

{ 1 is the

-i

~ ie the

I
6

f

i
\

physical volume reginn.

!
physical length ●c~le.

I
para-ter length •csl~ (number of points in ● direction). 1

! I
,These no~lizationc were ●rrivad ●t by ueing dimensional ●nalyois. l-he

-1“dl8enoiono- of the waighting functional ●~d the orthogonality functiun~l wert’

norulized to thoee of the _OOthifijJ functional. Finelly the ueightingi

1- function w(x,y,8) ie

1’‘, “’ ;
B.””v

f
lt(x,y,c) - 1000

defined in ●quation (19).

●xp[(O.25 - (Xz+yz+zz)liz)z /0.05]

t

~
(19)



s●dxla. The behnvfor of the cufie is what one ●xpectt since S* more weight i- I

i-n to the functional its iafluume ahoulJ be felt mre. t

10501 r 32000

1000

950

900

The

●nd

-T
igure 4

c1-

0.0001 0.001 0.01 0.1

A.
P16. 3

1

i

. .

tritiogles mxrk VSIU*S (right axfo) of the vohmz weighting fooctirmal !

the aquaree merk mlues (left ●xic) of the ●moothing functional.

i
showc varlouo crooo-sectlono of the merh wheo Av ie ●et to ona. I

I

1
lFigure > illuttretee the fruetux ueed 10 the ●econcl ■odel problem. The

/
coordlnatea of the bottom pleme of the fruetue ●re (x,Y,z) - (0.2J,0.2S,0.5),

(0.25,0.75,0.S), (0.75,0.75,0.5) ●nd (0.75,0.25,0.5). The coordinates of the t

top plane sre (x,Y,z) - (0.0,1), (1,0,1), (1,1,1) and (0,1,1). In this problem~

the weighting for the ●moothneeo functimel ie ●et to one uhile the ueiuht of)

the orthogonaiity functional vmrlee between O ●nd 1000 . The volume weighting’

functional 10 not ueed ●nd subee. :ntly hm weight care. ?i~re 6 ●howe the ‘

behsvior of the orthogonality functional ●e ● function of A. for tha given
I
I

rangeO to 1000 . Again the curve ●xhibits e predictable behavior. ilgure 71

.lu~~ 1“C , ●h&@ .ev@ral cute mzde into the fruct~.
r“-”>u The cute dieplay how the me-h,

i
~ generation ●lgorithu puehec the grid planer upward to uke ●O many pnints ae~

4 orthogonal as poeeible.
,

1.

t
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The triangles mark valuea (right axis) of the

100 1(
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‘2

“1
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orthogonality functional

and the squares mark values (left axia) of the smoothing functional.

I

I
Fig, 7
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generator. This figure ●howa e cyltndrmal fueelage with ● wing ●ttsched.

T

4’ Fig. 8 I

.1 ~
i

The fuoelage ie ●xtended ●o thet the cylinder ●xtec~o -90 degrees from the’

- horizontal.

\

In ●ddition, ● wall ia constructed perpendicular to the wing.

With thete ●xtencione ● rectangular grid ie wrapped around the wing ae

illustrated in fignra 9 . [In this problem the ●moothneas functional will firet(

be used without either of the other functional to generate ● regular mesh. In!

fi8ure 10 ● cut, ●een from the front of the fueelage, of the grid la shown

~after SO +:era~i.no. The mesh ●ppests LG bc regular but hes one troubling:

character:otic. One noticen that the meoh i~ tightly zpaced around the edge of’
tthe wing. After exsmlning the ●quetiono derived from the cmoothing functional!

“1

‘it becomeo :leor by uring ●lectrootetic ●nalogiea that the meoh lines should’

bunch ●round the sharp wing ●dge much se potential linen coflcentrate ●bout e:

‘1
lightning rod.

~One posoible :ay to fix the problrim ●t the ●dge ie to uee the weighting

functional to rediatributo the grid point. ●way from the ●dge by chooming a

weight function ●ppropriately. Figure 11 ●howc tha region ~here the weight

function i. lorge. Elaevhere the wtigkt function is rery ●mzll or zero. The

form of the fuoction 10 unimportant. However, ite locatinn t- ●way from thel

1●dge making it A goo~ canJidate to pull the ●ath linen ‘way from the wing edge.

Finally figure 12 rnhowo ● cut made in the ●eme mznner ●m in fi~,Jrn 10.
—7
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1
1[In this section w. will rnhow how the ●oth gen~rator can be combirmd with ● ,

. two~irnnnional cartaaian hydrodynamic cod.. All thrbo functionslo will be’
t

“ue:d to make the cartgtian code sdaptiwe. The step in ● wind tunnel problem)

ui~l be ●olved numerically to demonstrate the power of the method.
‘hi’ l..— prdblcm has b-an ●tudied by uny poopls snd nore infomatioo ●bout its

background can b. found in rofwances [2,3]. We firet di~cue~ the!

hydrodynamic code.

1.

ji ‘An appropriate model for the wind tunnel problem 10 the compressible!

~inviseid fluid .qu.tionm in two dimoneiooal-carteoian goomstry. Those

1●quatlona are listed balow using s lagrangoan formulation ●nd ●n ideal equation. .
of ~otat~.

.-

-

4 +Vp-o

I
dI

‘n
+ pv ● t- o

IP=(Y-l)PI

(20)

(21)

I

(22)

(23)

JThe ●tandard variable names ●rc ua.d. P 10 the doncity, p .s the pra.wreA
.-@hich could Includo viutoue cnntributionc), ~ 10 tho velocity, 1 10 the

~inttrnal .n.rgy, ticti.a and`a-i. theratio ofspacifichaata. Althou#h

4’th~ fluid ●quations ●r~ inviocid, ● VIDCOUOprcesurc will b. ●dded to provont

I

t
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Lagrangeaa phama, will ●pproxi-te tho sbovs ●quations.

- LaSrang@an pham ● remep phase will follw ●llowing ●n ●rbitrary ●omh to be

— uead. Becwne of length constraint on thie paper, we cannot go into detail on

- thq dlffe?anciag. Howev*r, come generel couente should be &ade ●bout the

- di~ferancing.

,

In the Lsgrangean phase ● conservative differencinfj scheme ie ueed on s

- ●ta8germd quadrilateral grid. The ?elocities ●nd maonee are *ertex c~nterod

while preewre ●nd Internal ●nergy ●re cell centered. Differenclng 1. ●xplicit

- in tin ●nd stability is ●aintained using a courant limitation on the time

ctep. More detsile can be found in rafer@oce [2]. Tho ramap phase of the

- calculation is *1OO conservative mckin~ the ●ntire scheme coneervmtive. The

““ cgntral Idea ●mplo>od in tho remep phaee it the utilization of the fully

- two-dimensional FCT algorithm of zalesak generalized to ●n arbitrary

INFLOW PARAMETERS

6 = 1!4
= Lo

u = 3.0
= O.O

; = 1.4

Fig. 13

..

I
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Figure 13 is a schawtlc of th~ initisl conditions and boundary of thg wind !

Itu n~l problam. Fr@o cllp boundary conditions ●rt umod on the top ●nd bottnw -

bo nderian mlnca the modol 18 invimcid.

1

At tho cornors of the stop, the I

.- va ocir.ltc ●ro conmtralnmd to ● dirmction parallal to a chord forwad ucing

●djacent boundary points. iThe outflow boundary condition- simply ●et s1l ,

“ normal dsrivativos to aero. A. It turns out, the flow i- olvayn euparoonic at

!’
tha outflow boundary aaking tho boundary conditions Irrolavant. Th@ inflow’

bodndary is ●ot to make the flw Nach 3 . Tha Interior initially also has ● r

unffora Mach 3 flow in tho horizontal direction. Next, tho initial wsh (120 x

40 c~lls) i- croatad uoir,g tho smoothncso functional. FirJclly w, introduca thg I1
●ight function uo~d in thr voluma w~ighting functional. It is well known for

t
thfo problom that multiple shock structural dwolrpo throughout tha raglon. To I

Iromolva thaat ●tructuroo wa havo chooon the Cradiont length of prosmre liotcd ,

in ●quation (24). !

i }

W(x,y) - 1+12
~

(24)

I
I

~’
lFiCuroc 14 ●nd 15 ●rc ●napohots of tho computation at timoc 0.S ●nd 2.0

r~cpoctivaly. Th@ primary purpomo of thaso llluotratlonc fs to show that th-
I

grid chan80@ drastically ov~r tim~ in ordmr that it maY follow tha ●tructura of

I.. tho flow. Wrthar compariaonc can b~ mada ●t fixad timoo to show that tha grid,

io concontratcd ●round 8radionts in th~ prcomro. IAnothor proparty of th~l

computation wsoh that 1s oboumvcd 10 how it •li~nc itstlf with tho grmll~ntc of

tho prosaure. Tho c*I1o contract ~n ● direction parall~l to tha gradlanto
!

, which ●nhancaa tha rasolutioa sore than if tho cttllc ohrunk in ● uniform

●aonsr. Crnputatlono w~ro carried out without uoing tha wtishtinn functional.<
. ●, ; V811 , Tho pri-ry shock ●tructuras w~ro @till rocosnisd in thin

tMt: ‘o -, computation, but shock thfcko~scos wmra doub18d. Also flnor ●tructuras that I
g:? 1,lM I

c .PPa~r@d naar tho ●hockfi Wer9 108t C_PIQtQIY~
5

In thio particular problcm,

r very littla ●xtra computation tlma was ●xpandad in ruunint with ●n adaptivm I

‘. moh for two roaoono.. -. Tho firmt r~aoon im that tho adaFtiv9 ●lgorithm ●dds
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A mora i~portant fsctor vac that the Coursnt eondltion for this problem,
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most li8itin6 at the ●tep corner. At & result both problems can wlth~

~al~st tha ●ame oumber of time ztepe for ● fixed interval of time. \
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i~oconclude,

t
we ●.umerize our r~sults. Us havo ●hewn that the variational

‘ formulati~n for gmermtiog ●qehse c-o 8s81XY be ●xtcndsd tn th?ee dlmensionu. l

\

i

?u~thar the meh Eenaratim ●qusti~no bmhav~ in ●n ●asily pr~dlctable mmnmer ●s’

1il uatratod with tha thrge sod,i problams Riven. rWe have ●lso outlinod ●,

+su cmoful two-dimenaioncl ●pplication of tht ●esh generator to ● probl~m with’

tIIO ing multiple structures. The serh Reneretor movod the computation Brid with t

th~ shock front- sad ●nhancad ttia resolution of the liffarenco ochamei

&- ●i oificantly.
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