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STABILITY OF PLANAR MULTIFLUID PLASMA EQUILIBRIA BY ARNOLD'S METHOD

Darr~l D. Holm’

ABSTRACT. A method developed by Arnold to prove nonlinear
stabilitv of certain steady states for ideal incompressible flow in
two dimensions is extended to the case of barotropic, compressible,
multifluid plasmag. This extension is accomplished by constructing
conserved functionals derived from degeneracy of Poissor brackets.
The results are applied to planar shear fl,ws of the plasma.

1. INTRODUCTION. Arnold [1965a,1969) formulates a method for establishing
sufficiept conditions for stability of staticnary (i1.e., stesdy) motions of an
idesl fluid against disturbances of small but finite amplitude. Scabality 1is
established by finding a priori estimates (expressed in a certain norm
depending on the problem being considered) that place bounds on the s.bsequent
size of the disturbances, as they develop ‘n time. These estimates apply f-r
as long as the solutions of the disturbed flow continue to exist. When such
estimates have been established, the stationary motions are said to be "stable
by Arncld’s method.™

Arnold's method is based on the construction vf s conserved functional (a
constant of the motion) that has a given statinsnary flow ar jits extremum
(critical point). If this extremum is & true minimum or maximum relative to
prearby flows within a neighborshood whose topology must be determined for each
problem, then the corresponding staticpary flow is stable in that topology.
Such stability can be understood geometrically by s heuristic argument.
Imagine the level surfaces of the conserved functional in function space, in a
neighborhood of the point representing a given stationary flow. For a maximum
or minimum, these level surfaces will be nested and closed, surrounding the
equilibrium point. If the steady state flow is disturbed at some jnatant, the

corresponding phase point in the function space will shift onto « nearby .evel

1980 Mathematics Subject Classifications: 58F03, 58F10
! Work performed under the auvspices of the U.S. Department o° Energy under
contract W-7405-ENG-35 and the Office of Basic Energy Sciencyvs, Department
of Applied HMathematics.
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surface and will remain on it throughout the subsequent time of motion, by
conservation of the functional. If a priori estimates can establish that the
distance in an appropriste norr from the equilibrium point to the nearby level
surface upon which the disturbed motion takes place subsequently remains
bounded, then the equilibrium point is stable by Arnold's method.

Bounded in a certain norm, motions stable by Arnold's method are also
stable in the sense of Lyapunov: for each € > 0 there exicts a & > 0, such
that if che initial values are disturbed by less than 6 (in the Aorm
determined by the a priori estimates) then the solution deviates from a
specified solution (e.g., the stationary one) by less then € during the entire
subsequent motion. Having found by Arnold's method a norm [+l in which the
perturbations 6xo st time 2ero, and Ox at time t satisfy [6x| < Kléxol, with

K > 1 und for all time, one may choose |6xo| < &; then |6x] < € = KI. This 1s

the type of stability result derived by Arnold’'s method.

Arnold [1965a,1969] studies incompressible planar fluid mnotion, where
stability is established, among other examples, in the case of stationary
flows satisfying Rayleigh's inflection point criterion. Dikir [1965] shows
this type of stability for incompressible zonal circulation on a spherical
surface, provided the stationary flows there satisfy a spherical analog of
Rayleigh's criterion. Holm et sl. [1983] establish conditions for stabilaity
by Arnold's method for compressible (barotropic) planar flows. Abarbanel
et al. [1984) prove stability criteria by this method for two and three
dimeasional, stratified, incompressible flows, with buovancy effects included
Holm et al. ([1984] deal with addit nal examples of stability of stationary
flows by this method: three dimens onal adiabatic compreisible hydrodynamics,
magnetohydrodynamics, and multifluid plasma dynamics; twc dimensional
megnetohydrodynamica, both compressible and incompressible; Poissou-Vlasov,
and Maxwvell-viasov plasma equations; and multilayer quasigeor.trophic systems
Wan et al. [1984] prove stability conditions for incompressibie circular
vortex natches in the pluene by a method similar to Arncld’s, but requiraing
more delicst~ analysis.

Arnolc's stability method is assembled frum several well known elements-
extremal principles for conserved functionals, definiteness in sign of their
sccond variations, and convexity arguments that establish a priori estimates.
However, the success of this method in fluid dynamics derives from a less
faniliar element: degeneracy of Poisson bracketa. Degeneracy of Poisson
brackets for & given dynamical system means that certain quantities - the
so~called "Casimirs"” - are constants of the motion for any Hamiltonian. Thus,
the Poisson Lracket vanishes when taken betwesn a Casimir and any other

quantity depending upon the given dynamical variables. Casimirs are discribed
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from a geometrical viewpoint with finite-dimensional examples, in Weinstein
[1984], in these proceedings. Construction of degenerate Poisson brackets for
various fluid theories and their associatico to certain Lie algebras is
treated in Marsden, Ratiu, and Weinstein (1983), Holm and Kupezshnidt [1983],
and Holm, Kupershmidt, and Levermore [1983]). Explicit derivation of Casimirs
for Poisson brackets in fluid theories is discussed in Ratiu [1984], in these
proceedings.

Arnold's setaobility method wuses the Csavimira to consi:"~t conserved
functionals. It imposes the Canimirs (as well as other constants of motion)
essentially as Lagrange multipl!ier constraints for a variational pranciple
that seeks conditiovnal critical points of the energy. Denote by H thir
constrained energy, so that H i1s the sum of the =2nergy and certain conatants
of motion. For stationary states, the firast variation of H vanishes, i.~., H
has a critical point, for appropriately chosen Lagrarge multipliers. This
critical point is locally a minimum, a maximum, or s saddle point, depending
on whether the second variation of H at the crit.cal point is, respectively,
positive definite, negative definite. or indefin.te.

Under certain counditions on the stationary states, the second variation
at the critical point may be definite in sign. Under tnese conditions, the
second variation defines a norm, which induces & weak type of stabilaty,
called "formal stability.” Formal atabili*y 1mplies ljinearized stability
against infinitesimal disturbances at the critical point, since the norm of
the second variation 1s preserved by the linearized equations. This is only
neutral stabality, though, since the spectrum of the Jinearized 1ideal fluid
equations lies on the imaginary axis. Formal stability in fluids and plamucs
had been coniidered by a number of authors, even before Arnold ('965a]). For
plasma theory, see, e.g., Kruskal und Oberman (1958], Newcomb (in Appendix I
of Berstein, et al. [1964])), and Rosenbluth [1969]. For incompressible planar
shear flows, forma: stability is discussed in ¢ geophysical context by Blumen
[1971), and, mcre recently, for multilayer quesigeostropiz flows, t: Benz:
et al. [1982].

Fortunately, the conditions on the staticnary states that give fo-mal
stability via definiteness in sign of the mecond variat:ion, can often be
strengthened sufficiently to provide th: desired a priori estimates; thereby
expressing Lyapunov stability against. disturbsnces cf small but finite
amplitude. These estimates are obtained via convexity arguments invclviug the
constrained energy, H.

The present work establishes sufficient conditions for stability by
Arnold's method for planar utationary plesma equilibria, as described by the
ideal, compressible, multifluid plasma equations. This problem exemplifies
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the kind of results available for stability of fluids that are coupled self
consistently with other fields, and displays the role in Arnold's method
played by degenerate Poisson brackets possessing Casimirs. In the next
section, after s brief introduction of energy principles in the context of
potential €flows, this role is reviewed for vort.cal incompressible flows in
three dimensions (Beltrami flows) and in two dimensions (Arnold’'s cuse). In

seczion 3, we study the multifluid plasma problem.

II. HOMOCENEOUS INCOMPRESSIBLE FLOWS

I1.A. Potential Flows. The problem of eatablishing sufficient conditions for

stability in ideal incompressible hydrodynsmics can be introduced conveniently
by recalling a result due to Lord Kelvin. Kelvin [1849] shows that 1ideal
incompressible potential flows (v = Vp, div v = 0, v the velocity, 0 1its
potential) satisfy a minimum energy principle among divergenceless flows in a

3

simply connected domain DC IR with prescribed normal flux at the surface.

Euler's equations for an ideal incompressible fluid are

4
<
n

“(y - Dy -9

Q.
-
<
<
]

o,

where p 1s pressure, and the constdnt fluid dens.ty has been set equal to

uaity. These equations conserve the kinetic energy

E=/8iviZ &
D

In Kelvin'se minimum energy principle for potential flows, the kinet.c energy
is minimized subject to the two conditions that div v = 0 in domain D and
v *' o = Q(x) on the boundsry 2D, where n is the unit vector nurmal to the
boundary and Q is the prescribed normal flux consistent with conservation of
energy. These two conditions wiil be imposed by choosing Lagrange multiplier

functions, ¢,X, respectively. Thus, one considers the functiopal

H (v) =]J !Hlxlz + o(x) div !]dal + [ x(x)(v *n - Q(§))d2x



PLASMA STABILITY BY ARNOLD'S METHOD 5

The first variestion of H° X is, for arbitrarv variations 6v, 6¢, 6%,
H]

4|

®.x DHO,X(!) . (5!- 60, 6x) ,

J [(v - Uo) + 6v + 66 div v] a3x
D

+f [0+ x)6Y *n+dx(v * n - Qldx . (2)
aD

The first variation 6H° X vanishes for an equilibrium velccity, Vo which 1s a

statinnary potential flow,

v = v.(x) =0 »
Ye ~ IPX
under the conditions imposed by the Lagrange multipliers,

divv =0 inD ,
~e

!e *n-Q=20 on 8D ,
provided also o+x = 0. Note that if Q & 0, e.g., for a fixed, i1mpermeable
boundary, then the equaticns 4¢ = 0 in D and n - Vo = 0 on 3D irply that ¢
will be constant, so !e will wvanish. Plainly, this static solution !e 2 0
would be a trivial minimum of Ho X' We seek nontrivial minima.

Taking the second variation of H. x leads to

2 2
28°H ;@ D Ho.x(!e) (8v, 60, Ox)

= f (Ibgl2 + 260 div 6!)d3x +2f 8xb8v 'n da%x

D 8D

which is positive definite in the clans of divergencelass velocity varjations
(div 8v = 0 1n D) for the prescribed flux (v * n = 0 on 8D). So the kinetic
energy has a conditional wminionum for potential flows. This is Kelvin's
minimum energy principle.

Kelvin's mynisum energy principle indicates how to estsblish stability of
these stationary »jotential flows. ANoting that H. x(!) is conserved, the

following quantity is also consarved

H..x(O!) - “O.x(!c + 8v) - “0.1(!') - D"o.x(!e) + (8y, 8, &)

- [ 18vi? ¢’ . (3)
D
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Letting 620 denote the initial value of a velocity perturbaticn that takes a

value &v at a certain time t later, one has

fevi? &

x=[ |a!0|2 x>0 . (@)
D D

Thus, Euler’'s equations conserve an energy norm (3), which is an I.2 norm 1n
6v. ir this norm, ideal, stationary, poiential flows ere stable, according to

the a priori estimate (&).

II.B Beltrami Flows: Introduction of Casimirs. For Beltrami flows, the

velocity is 21 eigenfunction of the curl operator:

curl v = av , 0 = const. (5)
Thus, expressing Euler's equations (1) as

d v=yvxuw- V(ivi/2 « p) (173

where w = curl v is vorticity, cne sees that Beltrami flows are stationary
states of Euler’'s equations, when g(|3e|2/z + pe) vanishes. We shall show
that Beltrami flows extremalize thke kinetic energy, constrained by the

"helicity", F definad as

h'

Fh = fv-uw d3x , vV o= -a"! curl w o, (6)
D

i1 a finite domain DC:IRa. with vanishing normal flux at the fixed boundary,

8D. However, we slall see that this helicity -onstraint will not be enough to
establish the porm required to prove stability of Beltrami flows in three
dimensions by Arrold’'s method. Nevertheless, stable Beltrami flows may still
exist. We wish to use this appareutly negative example to emphasize that even
when succemnrful, in most ces2s Arnold’'s method provides conditions that are
only sufficient, not necessary and sufficient, for stability. This example
alio introduces the use of Casimirs, for a Poisson bracket in terms of the
vorticity.

Euler's equatious are Hamiltonian in terms of the vorticity. Namely.

upon taking tne curl of | 4 identifying v = 0™ cun w in D, one finds

b w= {w, E(w)] = <url (v x w) (1)
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vwith Hamiltonian

E(w) = [ w - (-8 'wdx
D

and Poisson bracket {-,'} defined by

x curl %E)d3x . (8)

{F,6} = [ w + (curl
D

€15

for functionals F(w) and G(w) of w, where &6F/6w and 8G/6w are variational
derivatives, defined by

la% F(w + £9)] L *q a3x

(
e=0 D

15

for an arbitrary function, q. The time developr'nt of a lucctional F(w) thus

obeys

3. F = tF,E(w)}

The helicaty Fh in (6) 18 a Casimir for the Poisson bracket (8), i.e.,

the Poisson bracket {Fh.G} vanishes for every Hamiltonian G(w),

{F,.6] =0 , V6w

In psrticular, the brzcket th.E(g)‘ vanishes, s0 the helacity is a coanstant
of motion for Euler's equations (7) in D, with the boundary conditions of gzero

normal flux on 8D. In addition, the Hamiltonian formed by the sum
HA = E + hrh s A = comst,
that ia,
-1 3
HA = [ [yw * (-0 'w) +Av * wld'x (9)
b
also generates the FEuler equations (?7) via Poisson bracket (8), with E

replacad by HA for any value of A, which we now regard as a Lagrange

multiplier for the conserved constraint, Fh.
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Taking the first and second variations of the constrsined kinetic energy

HA in (9) yields the formulas

BH, = J (-Alwe+ 2y - Bwdx=f (v+2Acurly) - by ek, (10)
D D

26%H, = [ [8w - (-87'6w) + 2ABw - vldx (11)
D

with definitions

6H, = DH, (w) * &w
2. _ 2. . 2
26°H, = D°H,(w) * (&) ,

6v = -A-l curl dw ,

and with surface termsc having been set equal to zero whenever they appear due
to integration by parts, according to the boundary conditions. From the farst
variation, GHA. whirh vanishes for equilibrium velocity v_  such that
Ve * 2A curl Ve = 0, one sees that Beltrama flows do extremalize H,, and for a
given Beltram flow (5) with eigenvalue a, one has A = (21:).l for the Lagrange
multiplier, A.

The second variation 62HA 18 indefinite unless A = 0, in which case the
equilibrium flow 1s static. Indeed, GZHA is equal to the following conserved
Quantity

HA ‘= “A(ﬂe + Sw) - HA(ge) - DHA(Qe) + Su,

where w_ is the equilibrium vorticity distribution and 6w can now be a finite
perturbation. The quantity HA is conserved, since H,(w + 0w) 1is conserved
for any Ow, HA(EQ) is merely . constant real ogumber, and i, (w, ) - Sw
vanishes. U{Lh the quantity "A indefinite, no norm 1s established and
constancy of HA do«s not restrict the growth of perturbations.

'.lid’l introducing Casimirs into the construction of the conserved
quantity HA' this example illustrates tie following point: when H, is
indefinite, no conclusion 1is indicated by Arnold’'s wethod about either
stability, or instability. In particular, one cannct drav the conclusion nrw
that al]l Beltrami flows with o # O are unstablc, cf. Arpold [1965b]. Such
indefiniteness, though, does suggest ewploying 2 complementary technique. For
exasple, one could seek sufficient conditions for lioear inpstability cf

Beltrami flowa, using, say, normal mode snalysis.
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11.C. Arnold's Theorem. Arnold's theorem uses an exiremal energy priaciple

to obtain stability criteria for stationary, planar, vortical flow of an
ideal, incompressible fluid. Arnold [1965a,1965b,1969] considers incompress-
ible fluid motion in a fixed domain DC IRZ, in the (x,y) plane, with velocity
tangent to the boundary, 8D. In this case, vorticity is defined by s scalar
function w, as
curl v = z w(x,y,t) ,

where z is the unit vector normal to the (x,y) plane. The Poisson bracket (8)
becomes

F.%g]dx dy (12)

£ls

{F.G}] = [ wl
D

for functionals F,G of w, with [-,*] being the jacobian (or the canonical

Poisson bracket), defined by

af dg _ 3g 3f (1)

for functioas f(x,y), g(x,y). Also, the energy E in (7) becomes

E(w) = 4 f w(-A-lw)dx dy ,
D

whereby the equation of motion results,

Btw = {w,E} = [-A-lw.w] 14)

using (12). Defining the stream function & such that w = -Ay leaas to the

standard formula,

dw= (w,w]

Consequently, s certain functional dependence exists for stationary flows

we.we. expressible as

b, s W) (15)

since the jacobian l*e'wbl vanishes for staticvanary flows.



10 Darrvl D. Heclm

A Crsimir for the Poisson bracket (12) is, with an arbitrary function

*(w),

Fo(w) = f o(w)dxdy . (16)
D

By direct computation, one shows that Fo satisfies {F¢.G} = 0 for every

Hamiltonian, v,

(Fy().6) = § wE Eax ay

J %5 [w,®' (w)]dx dy
D

0, V6w, ¢w ,

upon using the properties of the jacobian (13) and integrating by parts. In
particular, the bracke. {FO'E} vanishes so that F° in (16) 15 a family of
constauts of motion for the two dimensional Euler equations.

Followins, Arnold [1969], one defines the sum
H¢(W) = E.w)+ F¢(w) ' (17)

which is a conserved functional. Taking the first and second variations of

Ht\w) yields

6H, := DHy(w) * bw = [ [-8" W + @' (W) ]bw dxdy . (18)
¢ D

zozu. ;2 Do (w) - b)) = § [6w(-0"16w) + & " (w)(w)Pidxdy . (19)
D

The first variaticn GH’ vanishes, provided w takes equilibrium values, W

satisfying

-A-lw; +0(s)=0 . (20)

That is, fcr stationary flows GH. vanishes, and O(ue) is determined for a

given stationary flow satisfying (15), by

o' (w.) = -G(w.) 21)
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As mentioned in the 1introduction, either negative, or positive
definiteness of the second varistion Gzﬂo suggests that Lyapunov stability can
be established. Both cases are shown to be possible in Arnold [1969]. In
each cas—, a convexity argument for the function $(w) is used in combination
with the conserved quantity QO'
H° 1= H¢(we + 6w) - H¢(we) - DHO(me) > bw (22)
to establish Lyapunov stability in a certain norm. Here, &w is considered to
be a vorticity disturbnncs at a certain time, t, which has the value Gwo at
time zero. The quantity H¢ is conserved, since H¢(u:e + 6w) is conserved fcr
any Ouw, HO(me) is merely a constant real number, and DHa(we) + 6w vanishes, by
(20).

Case 1. According to (19), the second variation 62H¢ will be positive

definite, provided

® " (w) >0,

since (-A_]) 15 a positive operator. By using (15) and (21), this condition

can be expressed as

- Yo,
T (w) = -v (we) = Voo

>0 . (23)
e

For example, rlows parallel to the x-axis In the strip [Yl <y < YZ} and

peri1odic i1in x have

v, = we(y) , !we =viyly o =V (y) , \_7Awe = v''(y)y
Consequently, for such flows (23) becomes

' - v N
® (We(v)) - v 0 » (24)

vly) ,
U (y)
provided an inertial frame can be chosen so that the sign of v is everywhere
the same as tke sign of v''. Thus, ull flows having no inflection points have
GZHo positive definite.
Positive definiteness of dzﬂ.. by 1itself, does not imply Lyapunov
stability. Arnold [1969]) wsuppliec s convexity argument which does fprove
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Lyapunov stability criteria in this case., Strengtheningz the condition (23) to
0<3<®'"({)<Aco (25)
and extending the definition of @®(l) over the entire { axis subject to

inequality (25), implies that, for any h,

2 0% coten) - o(0) - o (Db < B 07 . (26)

Hence, according to the definition (22)

[ [8(-0""6w) + a(6w)?]dxdy > 0

2H, (¢)
®
D

v

1)

[ Na)

o -1 2
zHQ(o) J lbwo(-A 6wo) + A(Gwo) ldxdy

D

and H¢(t) = HO(O)' so that the growth of a disturbance 6w is bounded 1n terms
of its initial value Gmo. The estimate (27) implies Lyapunov stab:lity of
stationary flews with Ywe/!Awe > a>0.

Case 2. (Consider stationary flows with Ywe/YAwe < 0. Let a stationary flow

he such that

0<ac<-e'({)<A<C™ (28)

and extend the definition of ®({) over the entire { axis, subject to (28].

Then one bounds -2H¢, to find

-zﬁQ(:) > ,rD [-8w(-2"16w) + a(bw)?]dxdy > fD (-k2 s ) (6w) dandy
(29)
-2H,,(0) < £ [~bug (-0 6wg) + Albwr)?1dxdy < s A(Bw) 2dxay
where kiin is the minimum eigenvalue of minus the Laplacian (-4) in doma.n D.

Consequently, 1f

-2

U AN (STIET S

then perturbation growth is bounded, since again HQ(t, = H¢(0). The estimate
(29) establishes Lyapunov stabilyty of stationary flcws with

-2
" /0, 2 8> k.
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ITII. COMPRESSIBLE HMULTIFLUID PLASMA STABILITY IN TWO DIMENSIONS

The wultifluid plasma (MFP) equations describe motion of a system of
ideal, charged fluids interacting together via seclfccnsistent electromagnetic
forces. The fluid species are labeled by superscript s (Note: no summation
convention is imposed on the supsrscript s in this section.); each species is
composec of particles of mass a® and charge q', with charge tc mass ratio
a® = q'/m'. Dynami-al fluid variables are: fluid velocity !.; nans density
p® (with barot.roric partial pressure p' = p'(p') and specific internal energy
ed = e'(p'). each depending only on p'): electric field E; and magnetic fi=ld
B.

The MFP equstions consist of dynamical Maxwell cquations for the
electromagnetic fields; s continuity equation for each species; and the MFP

motion equations:

8 B=-curl E

t—
8,E = curl B - I a%"y’
]
(30)
8 o® = -aiv %"
at!s - !u x (W® + aB) - _% vk - ~!|!n|2 . .IE
(o]
The static Maxwell equations
divB=0 ,divE-Za"" =0 , (31)

although nondynamical, are compatible with the flow, i.e., if true initia'ly
(31) will remain true under MFP dynamics.

The MFP equations are shown to be Hamiltonian in Spencer [1982] with
Poisson bracket {F,G] defined in te:ms of {p'.!':Ip'!',E.gl by

(F,6} = 1 J a’x lp'(—gg . v -9§ - _QE . v _ég)
. o1 6p" oM 60
e g B
o oM, oM OH}
(32)
s Pp8(0F .86 8G O&F, o OF, &G
o' ot EC gt
+ [ d3x (%% « curl gﬁ - gg . curl 3_B)
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and Hamiltonian energy function

E= [T 1= 1812 « 0% + MEI? + niBiiex . (33)
8 2p

The time development of any functional, F, of the MFP dynamical variables

obeys

BtF = {F,E}

Moreover, one readily shows that the static Maxwell equations (31) correspond

to the following Casimirs,

J o(x)(-divE + 2 a® p')d3x
= 8

[~}
n

f $(x)(-div B)d’x

(4]
n

Each of the quantities GE' GB, for arbitrary functions ¢,$. Poisson commutes
using (32) with every ‘Hami1ltonian H[ps. !s' E, B). Thus, not only the
equations of motion, but the Poisson bracket (32) itself preserves the static

Maxwell equations.

II1.A ~lanar MFP Flows. We consider now planar MFP motion 1n some domain

D CZIR2 in the (x,y) plane. In order that such motion remain planar, each of
che dependent variables {p'.g’.g,g} must be functions only of (x.y t); !s and
E must lie in the (x,y) plane; and E' and B must be directed normally to the

plane, along 2z,

E' =z w'(x.y.t)
- (34)
B =z B(x,y,t)
The plarar MFP equations are
8B -z - curl E = l-.‘.l.2 - 52.1 '
BE=VBxz-1 n'p'!'
]
(35)

8,p" = -div p"v"

E ,

B v" = -+ a'B) £ x v* - ThIYIZ 4 n*(0") + a
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vhere h°(p*) is specific enthalpy, related to pressure p® and specific

internal energy e® by

] es + p'/pn

(") Yap®

h

h® (36)
d

For a single fluid species and when |E| and B are absent, these equations
reduce to the equations for planar motion of a barotropic fluid, whose
stability criteria are proven by Arnold's method in Holm et al. [1983].
Taking the curl of the planar motion equation and using the continuity
equation leads to the advected quantitites 0®, the so-called "modified
vorticities”,

A 0% z0 , 0% := (w +a"B)/p" (36)

dt.s

with species maierial derivative

+v® . ¥ (37)

slong the flow lines ot each species. In view of (3€) and the continuity
equation for each s, for every real valued function of a real variable ¢S(C),

each functional

F @%) := ff p"®" (0®)dxdy (38)
¢

if ccnserved by the planar HFP equations (provided the integral exists and the
solut.ons are smooth; N® would be created at a discontinuity). Another

conserved quantity 18 the energy (33 expressed in two dimensions,

E -= ff {Z [%0°1v"12 + p%®(p")] + MIEI® + 4B )dxdy
D »

Either by direct computation from the Poisson bracket (32) specialized to
planar motion, os by showing invariance under the coadjoint action of the
semidirect product group whose Lie-Poisson bracket is a key 1ingredient

of (32), one may readily show that each Zunctionsl F '(Q') in (38) 1is a
®
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Casimir,

{F I'G} =0 ’ v Glp" !.! E- B]
¢

Likevise, Gauss's Law in (31) corresponds to the folluwing Casimir,

Gg = J 0(x)(~div E + I 2%p°) dxdy . (39)
= D L |

The Casimir Gy mentioned earlier is identically zero in two dimensions with B

normal to the-blane.

Equilibrium States. The equilibrium states p:. !'. E , Be' of the system (35)

e' —e
in the (x,y) plane are the stationary, two-dimeasional, barotropic MFP flows.
For such stationary flows, one has _he relations

Ee = - goe

VB xz2=13 a'p'v'
-"e 5 e-e

div p:!: = 0 (40)

8,2 s, 8 [ -
V. Vhly 1"+ hi(p) +aTe,) =0

According to the last two equatinns in (40), the gradient vectors gﬂ: and
!(5I!:I2 + h'(o:) + lloe) are orthogonal to the equilibrium specier velocity
!:. Consequently, these two gradient vectors are collinear, provided they or
the velocity do not vanish. A sufficient c-ndition for such co) inearity in

the plane is the functional relationship
MyS12 s 0 %) + a% =kt (e1)

for certain functions k®({) , { € IR; these are called ihe Bernoulli functions
and (41) represents Bernoulli's Law for each species. Either apply‘ng the
operator (ﬂ:)-l g x ¥V to (&41), or simply vector wmultiplying by 2 the
2*ationary motion equation,

(Wl +a%,) £ x vbw -ThIvEI?2 e 0t pl) ¢ 2%y (62)
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glves the relation

K@% . R
p%v® = € sxwm = -L 2 xwt@® , (43)
e—e QB e Q' - e
e e

vhere prime denotes derivative of a function with respect to its stated
argument. Substitution of (43) into the second equation in (40) (i.e.,

Ampere's Law) leads to another relation for stationary flows,

8
vB, = -3 L0kl . (44)
s Qe

Relations (43) and (44) will be wuseful in establishing the following
proposition.

Proposition. Frr smooth solutions with velocity fields parallel to the
boundary and fixed circulation on the boundary, a ataticnary solution (!:. p:.
5., B.) of the ideal plansr NFP egquations is a conditional extremum of the

total energy E for fixed Casimirs F s and GE’ and an absolute extremum of
0 —9

HF = E » F@' v GE' where ¢ = 0. and
(] ¢ k'gtz
e (L) = {(S 7 dt + const) (45)
t

K* being the Bernoulli function of species ».
The functional HF in the P-npoaition is, expiicitly,

He(v®, 0% E. ) = IID (2" 1v* 12 + 0%®(p%) + p'e® ("))
[

« MEIZ + AB% + 00 (-d1v E + I a%")) dudy . (46)
[ ]

After integration by parts, the variational derivative CHF in the direc. on
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(6!', Gp'. 6E, 6B) becomes

SHp

DH (v, ", E, B) - (8", 60", 6E, 8B)

SIUE 12 + °(0%) + % + 6% (@") - 0%® %)) &°
D

Ip%* -2 xve® (")) - &" + [B+Ia%" ")) 6B (47)
[ ]

+

+

(E~ Vo) + 6E + (-div E + I a®p")80} dxdy
8

S 2% (%) ev® - d2 + | e8E + (z x d8)
8D s 3D

+

where df is the line element along tL boundary 8D. For a stationary
solution, the connected components of the boundary 8D are beth streamlines and
equipotentia) lines. Thus, Q: and °e are constants on 8D ana the boundary

integrals become

2 o"(n:) J 6!' +de + 0 J O6E - (z x d42) . (48)
s ap 8D €lap ap

s .
df = 0 and IBD 6E * z =

Let the variations 6v' and OE satisfy Jap Ov
df = 0, respectively. Then the boundary integrals in (48) each vanish In
equation (47), the Gp' coefficient vanishes for a stationary flow obeying

(41), provided that ¢* is related to the Br.rmoulli function k® by
K + 0% -t =0

.om which equation (45) in the Proposition follows. Differentiaticg with
-1 K*'(0) -¢"()= 0. Then the &v" and &b
coefficients in (47) each vanish, by (43) and (44), respectively, since
v’ (a) = (@) v k*(}). If e =e,, the SE coefficient vanishes Finslly,
the 80 coefficient in (47) vanishes, by Gauss's Law in (31). a

respect to { implies

The quadratic form defined by the »second derivative of HF at the

statiopary solution is

2 s _8 . ] » 2 5,,. 8 s, 8 82
DHyp(v,. P+ E,o B * (8v, &, 8E, OB)" = é lfloelbg * v o0 /e,

« 0% D) - 101202 (80")7 + o #"-(al)(eaH?)

+ (88)2 + |8E12 + (-div OF + I 2"0p")80)4xdy
8
(49)
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The last term vanishes for variations that satisfy Gauss's Law. Sufficient

conditions for this quadratic form to be positive definite are:

2

, s, .2, 8 8.2 [}
(i) nh'(p) - Ivel /pe = ((ce) |

vl )/p: >0 , (50)

vhere c: is the sound speed of species s tor the stationary solution, defined

by p:h"(p:) = (c:)z. i.e., the stationsry flow 1is everyvhere subsonic; and

s.~1
(i1) (ﬂe)

") = "0 >0 (51)
e e

i.e., the two collinear gradient vectors !(\Ig:lz k h.(p:) + a'Qe) and !(Q:)2

point in the same direction throughout the flow. For a sipngle, incompressible

fluid without caarge (s u 1, p: = 1, Bp' =0, SB =0, OE = 0), formula (49)

reduces to Arnold’'s formula, equation (19) in Section I11.C, discussed

earlier.

A priori estimates expressing stability. Lyapuno stability «criteria for

planar stationary flows of MFP in the smooth regime can be proved by
establishing sufficient conditioas that imply certain a priori estimates
bounding perturbation growth in terms of the Bernoulli functions k®. These
estimates can be obtained readily by following the rame convexity argument as
in Theorem 1 of Holm et al. ([1983) for planar ba-octropic flows. Thus, one

obtains the fullowing result.

THEOREN. Assume that each Bermoulli function k® in (41) and internal energy
density function e? s p'o'(p') satisfies

0<q® <t k(@) <qQt ¢ (52)

where q' and Q' aro positive constants and sim..iucly,

0+’ < c'"(t') < R < » (53)

with constants r",R", and for all values of the arguments. Let (6!', 80", 6E.
82) be a amall, but finite, smooth perturbation of a stationary solution (!:,
D:. !.. l.) and d:roto its value at t = 0 by (Ov', 6p;, 6!0, dlo). Let the
circulation IOD G!O + d2 and integral IOD 6!0 « 8 x di sach vanish. Ther ihe

perturbation (6!', Op', 8. 08) of the stationary solution (!:. p:. 5.. l.) at
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any time i ir estinated in terms of (8v,, 8p,, 8, 4B, by

—o
1&(o"v")1 1o* 12 _
J 1zl s (* - 2y80")% + *(p? + 8" ("))
D sp]+6p po+op” ¢

+

(68)2 + |8E]%}dxdy

L0 TN N [ LN
< JEl— — * (R" - ——)(8p) (54)
D s pe * 6p0 pe+ﬁp°

+

s, 8 8 2.2 2 2
Q (p, *+ 8py)(8007] + (6By)" + I8E | }dxdy

whei'e 6(0'!') and &* are defined by

. 8 8 s 8., .8 ] s 8

8(p'v") = (p, + 8P )(y, *+ 6v) - p v,
60" = (Wl + a"B, + &" + a"6B)/(p] + &%) - (W) + 2“8 ) /0]

Jus as 1n Holm et al. [1983], the proof of the Theorem proceeds by

showing that a conserved functional

He(8v", &%, OE, 6B) = M (v] « A, o} + &, E_+ 6E, B, + &B)

. 5 8 - ] 5 ] 8 . 8 \
He(vq. 9o+ E,o B) = DH (v , p_. E . B)) « (6y". %", 6E, 6B)  (55)

18 bounded from below (above) by the le’t (right) hand side of (54). The a
priori cstimate (54) then implis=s Lyspinov atability for smooth solutions,
provided p: + Op. remeins finite and tounded away from zero. Under such an

additional hypothesis on the denwity, one has the following result.

Corollary 1. Let a stationary solutiorn satisfy (d4l) for amouvth functions
k°(L). Assume that

ceq® <t M) <Q® e (56)
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and
2 s 2
«* «€*
0 < .-12__ < e (%) < __;!!!_- < = (57)
P max P ain

| 2 2
for all { @ IR and U svch that 0 < po < T° < p - < ® where . o',

(c:in)z' (C:.x)z. p:in' p;.l, are positive constants. Also assume that

s )2/pl

0 <A := (Cnin |ax

- I!:|2/D:1n <A <o (56)

for somw other positive constants A',A'. Then with ths same definitions as in
the T..eorem, the following estiwmates obtain,

16(p°v*)12

JRl———— + A%8p")% + o8 _csa™?] + (6B)% + 16E(% andy
D » plilx
2
16¢e"v*) 1
R ¥ ., 8.2 s 8 8.2
< £ lfl Tt A (80,)" + Qe (82)°]
pnm
2 2
+ (680) + I6§ol }dxdy (59,

for solutions with densities satisfyinrg p:in < p' < p:‘x.

Corollary 1 follows immediately from the Tiheorem by replacing (53) by
(57), imposing (58), and bounding p..

Remark. The a priori ecstimate (39) in Corollary 1 implies stability for
smooth, planar, MFP solutions, in the sa.se of a norm estimate of smsll, but
finite, circulation-prererving perturbaticns obeyirg Gauss’'s Law, that develop
from a perturbed, initislly steady flow. Because of the method of proof for
the Theorem, the right hand lidg_of the inequality (59) in Corollary 1 can be
ninimized by replacing it with Hrldv'. dp;. 6§0. GBO). Thus, we have stcwn

another corollary.
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Corollary 2. Under the assumptions of Corollary 1 and the The~rem, the
following a priori estimates obtain,

= s s |6(p'!')|2 s,, 8.2 s s s 2
HF(GXO. GPO. GEO' 530) 2 g {1 . + A (8p ) +gqg P‘in(ﬁﬁ )7]
' Pgax
2 2
+ (6B)% + |8E)%}axdy > 0 . (60)

When there is only a single fluid species and eclectromagnetic fields are
sbsent, the result of the Theorem reduces to the ectimate in Holm et al.
(1983] for planar barotropic flowv. These estimates can breaz down when smooth
solutions cease to exist; for examnle, upon occurence of cavitation, and/or
the formation of shocks irom an initislly-smooth, steady flow. When these
phenomen. occur, bdowever, it is Juestionable whether the barotropaic
epproximation should still be used. One could exclude cavitation by replacing
(54) by an estimate as in Holm et al. [1983], modeling an elastic f.uid. None
of the estimates i1n this section apply to three-dimensional phenomena. That

topic 1s discuased in Holm et al. [1vB4j.

Example. Subsonic Shear Flows. A stationary solution »>f the MFP equations
(35) in the strip {x,v)C IR2 | Y1

x, admitiing arbitrary velocity profile !:(x,y) = (;'(y).O). electrostatac

<y« Yz} is & plane parallel flow along

potential oe(x.y) = ;(y). and density p:(x.y) = 5'(y). The density prof:le is

subj :ct only to the subsonic condition (50), expressible as

dp® =8, 2
Py - N e (61)
dp

and depending on the barotropic relation 5' = p'(B'). In this domain, the
independent variaple x can be either unrestricted on the entire real line, or
periodic. The former case requires that initial perturbations be sufficiently
- s s
integrable for Hr(ﬂv ' dpo.
meaningful upper bound in (60).

Ggﬂ. OBO) to be finite and, thus, give a

To determine the limits cf stability for suvbsonic stationary plansr MFP
flows, we proceed as follows. (i) Choose profiles ;'(y). ;\y). and 5'(y).
satisfying the subsonic condition (61). Relations (43) and (44) then imply
y-dependence only, {or magneti: field and modified vorticity: Be(x.y) = i(y).
0:(l.y) = ﬁ'(y). (ii) Use Ampere’'s Lav in the form (44) to determine B(y)
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from 5'(y) and ;'(y). then compute 5'(y) from its definition (36) in terms of
E', ;', B. (iii) Solve for an expression for the quantity (ﬁ')-lk"(ﬁ')
appearing in condition (52) of the 3tability theorem and consider its signm,
thereby determining the limits of stability in terms of the profiles 5'(y),
- -
v (y), B(y).

Given the profiles ;'(y). s'(y). and ;(y), one finds 5‘(y; and 5'(y) from
their definitions

w: = z * curl !: = - ;"(y) =: 5'(y; (62)
and
al = (e 7MWl v ") = PN () ¢ 2By = B . (63)

Equations (43) and (44) give the relations

'y Yy = - o k@) 2%y (64)

f

and

B (y) = % a’p"(y)vi(y) (65)
|

which determine i(y) and (ﬁ')-lk"(ﬁ'). Solving (64) gives the formula

(an)-l dk'gﬁ'! . - é'g!ZC'g!g
dﬁ' dﬂ'/dy

-3.2 -8
o) v - . (66)
N O 730 U I (3 - Wi )

where, e.g., Vo dZ;.(y)/dyz. B' = di(y)/dy. etc. Thus, control of
positivity of (a‘)-lk"(ﬁ') in (56) and, henc:, of stability for MFP involves
an interplay awong velocity, density and magnetic field profiles, through the

positivity condition,

-8
rl o . (67)
%y
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Given that an incrtisl frame can be chosen so that condition (67) holds,

plans- MFP flows will be stable, provided
' (y) 20 . (68)
We consider several cases.

Case A. In the case of neutral fluids (a. = Q) and stationary flows with

constant density (B"(y) = 0), positivity of (5')_1k.'(5') (67) reduces to

V) >0 . (69)

Provided an inertial frame can be chosen so that (69) holds throughoutr domain
D, one recovers Rayleigh’'s criterion (24) for stability of shear flows: all
flows in this case with no inflection points in their velocity profile are

stable.

Casse B. For the case of charged fluiads (a® # 0) at constant density
(5"(y) = 0), positivaty in (67) reduces to

-5 2-»
v

v

Provided an inertial fram® csr be chosen in which (70) holds throughout D, one

obtains the following craterion for stability in this case,
;.“(y) ® A'i'(y) . (71)

Case C. In the general MFP case, vith charged, ccmpressible fluids, (a* =20,
B"(y) ¢ 0), vhen an inertial frame exists in which (67) holds. the stabilaty
condition (68) becomes

Ve e - a%B) + 2B (72)

which involves all three stationsry profiles.

Note that the conditions obtained here by Arnold's method are sufficient
for stability. Thus, violation of these conditions would be necessary for the
onset of i1astability but not necessary and sufficient, except in the fortunate
event where they coincide with instability conditions found by linear

snalyais.
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