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Extended Abstract

1. Introduction

Most numerical methods in fluid dynamics can be classified as being
either Lagrangian or Eulerian. An important grour of methods, however, is a
combination of both. These methods generally derive from the ALE (Arbitrary-
Lagrangian--Eulerian) method of Hirt et al. [1]. A computational cycle in
these methods 18 divided into two main phases: a Lagrangian phase and a re-
zone or remap phase (these two terms are used interchangeably). The remapping
phase conservatively transfers quantities, calculated in the Lagrangian phasc,
from the Lagrangian mesh to some other specified mesh. For example, in a
given time step the remap phase may be omitted, in which case the computation
is purely Lagrangian, or the remapping may be back to the original mesh, in
which case the computation is Eulerian, The remapping step, therefore, corre-
sponds to the effect of the advection terms in Eulerian equations. It may al-
80 be viewad as a conservative interpolation procedure from one mesh to anoth=-
er, and so it is also us=ful in other more general applications, such as in
adaptive mesh computations.

Formally, such a conservative remapping procedure may be specified by

A% 'ﬂka az) dv , (1)

where Q typically represents cvne of the conserved quantities (mass, compo-

nents of momentum, total energy) associated with cell k of the new mesh, q(r)



represents the corresponding density distribution (mass density, momentum den-
city, etc.) in the old mesh, which is assumed to be known or specified, and
the integration takes place over the volume of the new cell Vk. These inte-
grals must be evaiuated for each cell of the mesh and for all variables to be
remapp-a. In general, such a procedure is too formidable, and so instead it is
in practice replaced by a "continuous" remapping in which the time step 1is
limited in such a way that relative mesh displacement is small (a velocity
Courant condition). This permits the approximac.ion of the changes in Qk in
terms of fluxes across cell faces, a clear connection to the differencing of
advection terms. This procedure, as compared to Eq. (1), has two main disad-
vantages: it can limit the time step, and it can be very diffusive because of
the high frequency of remapping (every time step).

The alternative procedure of applying Eq. (1) 1is very complex for the
case of two arbitrary meshes. The classic problem in Lagrangian hydrodynamics
involves constant cell density and a two-dimensional mesh of arbitrary quad-
rilaterals. For this case Eq. (1) reduces to evaluating the volume of overlap
between cells of the "wo meshes. Even for this relatively simple case the
probleu is logically very difficult because of the multiplicity of special
casegd to be cunsidered. One published algorithm [2) uses a form of Monte-
Carlo integration (a parricle counting technique) to simplify the logical dif-
ficulties at the expense of substantial computational work and storuge which
are needed if large numbers of particles are used for accuracy.

A recant development (3] has permitted exa.t and efficient evaluation of
Eq. (1) by convarting the volume integral to a surface integral by a clever
use of the divergence theorem. This reduction in dimensionality greatly re-
duces the complexity of the problem., The method has hmsan worked out and dem-

onstrated for the common case of constant cell dens.ty. This {s the lowest



accuracy option for the density distribution in Eq. (1) sincec it leads to a
large amount of numerical diffusion (corresponding to a donor cell or upwind
differencing of the advection terms), which is however _-meliorated by the fact
that fewer remappings are necessary.

In this paper the new method is sxtended to the case of a more accurate
density distribution: the dencity distribution within a cell is allowed to be
linear, while preserving the average velue of density over the cell. The
orientation of this planar surface is given by the average local density grad-
ient, Such a linear distribution, while more uaccurate in general, can cause
undershoots or overshoots in regions of rapidly changing densities. This is
avolided by placing monotonicity limits on the allowable gradients, similar to
those used by Van Leer in one-dimension [4].

2. Outline of the Basic Mathod

We wish to find a vector function F such that we can write
V « FdV = v
ffv* v+ F ffj;* q(r) d (2)

for any volume V*. Given such a function we can apply the divergence theorem
7 « FdV = n « F dS ' (3)
[, 2ozevsff e

to evaluate the integral afficiently. Here Sk is the surface of volume V‘.
and n is the outward unit vector normal to the surface. The necessary and
sufficient conditions for Eq. (2) to be valid for arbitrary volumes of inte-

gration are

v e Fmq(n) (4)

and



E'EI'E'EZ . (5)
That is, the normal component of F across any surface must be continuous (any
discontinuity can only cccur in the tangentia’ component). Thus, the proce-

dure is to find a funct.'on F vhich setisfies Eqs. (4) and (5), and then use it

in Eq. (1) to obtain

Sk

However, Eqs. (4) and (5) do not determine F uniquely. A practical method 1is
obtained by making the choice F = (P, 0, 0), i.e., F has only one component.
As a result, condition (5) requires .hat we use a transformed coordinate sys-
tem in which cell faces are perpendicular tc coordinate directions.

To simplify, we now confine ourselves to two dimensions. wé introduce a
coordinate transforwation fruom (x,y) to (1,j), characterized by the Jacobian
J(1,3). The simplest such transfor .ation is a bilinear trensformation which
takes an arbitrary quacrilateral into the unit square. The method is now sum-

marized by the following, corresponding to Eqs. (4) and (6),

= eIy (1

- Pdy , (8)
% fck

where the integration takes place around the cell contour Ck in the positive,
or counterclockwise direction. The procedure is to use Eq. (7) to evaluate
P(1,3J) in each cell of the old mesh (P is typically a simple polynomial), and

then to integrate P according to lq. (B8) over tha faces of the cells of the



new mesh. This is done efficlently by computing the integral numerically as
one sweeps along the entire length of the mesh lines of 1 and j constant.

The more accurate, linear deneity distribution in each cell is given by
Q(x) =q+a3q«(x-T1) , (9)

vhere q is the average density in a cell.:E 1s the cell centroid, Yq is a lo-
cal gradient determined from average densities in neighboring cells, and o« 1is

a limiting coefficient (0 { a £ 1) determined by enforcing local monotonicity
\
such that the density within each cell does not lie outside the range of the

average densities in the neighboring cells. We specify a to be

« = min {1'[aﬁax - min(qmax,E)

]/(q -E):

max

[Emin - max{\—min'a)]/(qmin - q)” ’ (10)

where Eﬁa are “he maximum and minimum values of q in neighboring cells,

x'dmin

and q are the maximum and minimum values of q in the given cell.

max’3min

J. Computational Examples

To illustrate the technique we will consider the case of simple advection
of a scalar, The initial) density distribution is shown in Fig. 1. Thig 1is
advected with a circular motion such that each point traces a circle with a
radius of 5 units, Th2 following figures sliow the results following the con-
pletion of a full revolution. Figure 2 shows the severe diffusion which takes
place for the came of constant cell density at a Courant number of 0.2, Fig-
ure 3 shows the much better results with the present, more accurate technique,
also at a Courant unumber of 0.2. Finally, Fig. 4 illustrates the further im-
provement possible with the present technique by reducing the number of re-

mappings, here using a remapping Courant number of 1.
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Fizure Captions

Fig. 1. 1Initial density distribution for the advection problem.
Fig. 2. Remapping uring ccnstant density in a cell, Courant No. = 0.2.

Fig. 3. Remapping using linear density distribution in a cell, wich monot-
onicity constraints. Courant No. = 0.2.

Fig. ¢. Remapping using linear density distribution in a :zell, with monot-
onicity constraints. Couren: No. = 1,0.
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