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Summary

Anelastic studies, aithough they have provided an important method for investigating
the mobility of point defects in solids, have often been ci‘ficult to analyze when a
continuous spectra of relaxation times controls the anelastic response. This paper describes
a new method for obtaining accurate estimates of relaxation time spectra bv'direct analysis
(without prior assumptions) of the data using a aonlinear regression method. Applications
to internal friction and anelastic creep results are described with empaasis upon the internal
friction technique.
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Introduction

Studies of relaxation process ‘.« a~slast c methods provide an .mportant method for
investgating the mobihity of 8atomic ueieces d.-t 50lutes in crystailine sohids. T-vo ma.n kinds
of anelasuic experiments arc used to study relaxation phenomena. nternal friction referred
to as dynamic mecasur-ments and apeiagtic creep or quasi-Static measurements The many
investigations using these methods cover a wide range of materials. species of defects end
kincs of relaxations. For an excellan: review cuvering the breadth of this arca the reader 18
referred to the booa by Nowick and Berry (1).

One of the man goals in both internal friction and anelastic creep mesasurements ;s to
determine the -elaxation ume. t. This time can ofteg be associated with some average jump
tume of a point Jefect or solute atom Knowiedge of this ume tlen provides informatuon
about the atomic mobility or diffusivity of the relaxing entity. For exampie. with the Snoek
relaxation. whi-h 1s the stress-.nduced mouon of interstitial solutes in body-centered cubiIc
metals, the diffusivity can be obtained directly from the relaxation uime t by the reiation D =
a’ 1367). where a 13 the iattice paremeter Simple well-behaved relaxation processes such as
the Snoek relaxation may be characterized by a singie retaxation ume If this s the case. the
value ol t 13 easily obtained for eitner the internal friction or the aneiastic <reep
measurements For the former it 1s obtaned (rom the reiation ot = | which applies for the
maximum 1n the i1ternal frictiorn, peak with o being the angular frequency of the erperiment
For the anelastic creep measurements, the creep foliows simple exponential decay so that t
18 obtained simply as the uume constant for decay.

The above analyses become consmderably More complicated when th= relaxation
process involves either muitiple relaxations or a spectrum of relaxation times astead of a
single ume. It then becomes necessary either to determine each oi severa| discrete relaxation
times when the number of discrete relaxations i3 unknown or to determine the spectral
density for what may be a relatively complicated distribution of relaxation times. The
purpose of this paper 13 to present a new method for direct analys.s of relaxstjon data which
yields s cluse approximation of the actual spectr m of relaxation 'mes. This method s
unlike convantional methods because i1t directly analyzes the data without making [riofr
assumptions concerming the form of the spectrum. Convantionai methods. on th¢ other hana.
usually assume various spectra and then choose the hsst one based upon goouness-of-fit to
the data.

This new method has praviously besn presen:ied and vahidated for a widu variety of
relaxation time spectra appl »d to the flrst-order kinetics of anelastic creep (2. 3) The main
thrust of this papsr wiil be to apply and validate the same¢ :etnod for internal friction
resulls. With the avajlability of this method. future internal frivtion measurements may then
be directly analyzed to obtain the appropriate relaxation titae spectrum and thus help 1o
avoid the controversies whizh tend to deveiop becauss daca have been force-fit to assumed
spectra This capability hi.s aslready been used to resoive s long-standing controversy
concerning t.ae analysis of unelastic cresp megsurementa (4).

Computer analysis of anelastic results » .5 airesdy teen used extensiveiy: however, the
method described here and n Ref. (1) 15 the firct to directly yiweld .he relaxat.cn time
spectrum. A possible rvason why direct analysis methods ha/e nut besn developed :n the
past 18 because 1t was feit that such methods would onlv be useful lor data which had
unsttainably migh accuracy An impartant part of this development oi the method
assesamaent of its applicability to data with various amounts of experimental error
Intereat.ngly. 1t will be shown that the mathod s net highly sensitive 'c the magnitude oi the
random error Instead. subtle differences :n the overall shape of an aneiastic response curve
are most :mportant for the analysis.
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Background

For a discussion of the problems which develop when a spectrum of relaxation times is
involved instead of a discrete relaxation time, it is first necessary to briefly describe the
experimental methods and the relationships which govern the anelastic response. This will
be done for two main anelastic methods, internal friction which describes the dynamic
response and anelastic creep which describes the quasi-static behavior. These descriptions
will necessarily be abbreviated, and the reader is again recommended to the definitive
treatment by Nowick and Berry (1). Their terminology and symbols have been used through
most of this chapter. In order to discuss the.internal friction and anelastic creep behavior it
is necessary to make use of a simple model, the standard anelastic solid, to fully describe
anelastic behavior in its most elemental form.

Standard Anclastic Solid

The standard anelastic solid is a two-spring, single-dashpot model in which one spring
is in paralliel and the other is in series with the dashpot. The dashpot has a time constant t
which determines the rime-dependent or anelastic behavior of the model. As it will he used
here. t is the relaxation time at constant stress, refer~ed to as 1, by Nowick and Berry.

For a standard anclastic 30lid upon application of a constant stress g at t = 9, the
dashpot resisis extension of the spring in parallel and the spring in series er:~1ds elastically
to strain ¢,, so that the unrelaxed compliance is J, = ¢,,/0. Similarly, at t » t the dashpot is
fully extended so that the anelastic or time-dependent strain €,, has occurred and the
compliance is the relaxed compliance J, = (€, + €,,)/0. The diffcrence J, - J, = 6J, which is
the compliance of just the parallel dashpot and spring part of the model, is a measure of the
strength of the anelastic relaxatiorn. Thus the standard anelastic solid is a 3-parameter
model which can be fully described by J,, 8J and t for both internal friction and wnelastic
creep behavior.

Internal Friction

For dynamic experiments the stress is applied periodically at frequency @ so that for
an anelastic system there will be phase lag of the strain behind the stress. The angla of this
phaso lag is ¢, the loss angle and the compliance is described by two dynamic response
functions, s real part J, (o) and an imaginary part J, (»). The internal friction is given by

tan ¢(@) = Jy(w )], (@) (1

For the standard anelastic solid model responding to a periodic stress, the two dynamic
response functions are given by

a
J,(m)']u*m (2)

J,(m)-&n%'—), (3)

which are the equations derived by Debye to describe dielectric relaxation as a function of
frequency w. These two equations, which are for a single relaxation time. will later be
modifled so that they apply to & spectrum of relaxation times. It should be noted that Eq. (3)
describes the familiar internal Niction peak which has a maximum at wt = |, Also. il J,(w)
for a standard anelastic solid is plotted as log wt, the curve is symmetrical about log @t = |.



The above description is for measurements at constant tr of tan ¢ (@) as a function of
frequency; however, internal friction is more conveniently measured as a function of
temperature at constant (or nearly constant) frequency. This is possible since the relaxation
time can usually be assumed to obey the Arrhenius relation,

T, eQtT ()

where T is absoiute temperatures, t, is a pre-exponential fxctor, Q is the activation energy,
and k is Boltzmann’s constant. Eq. (4) may be substituted into Eqs. (1)-(3) to give an
expression for the internal friction a3 a function of temperature. For this case the internal
friction is plotted versus 1/T so that a Debye peak will still be symmetrical about its
maximum, Such a plot will scale according to the previoualy-discussed plot versus log o but
with scale factor Q/2.3K since

log(wt) = log(wt,) + (Q/2.3k) (1/T) (3)

The reader is referred to Ref. (1) which discusses in detail the corrections that are required
due to problems such as variations of o, §J and J, with temperature, Because of the
importance of the measurement of internal friction versuy temperature (as opposed to
frequency) the final goal of the analysis described in this paper will apply to that case.
However, the analysis method which is to be described for treating internal friction
controlled by a spectrum of relaxation times i3 equally applicable to the isothermal
measurements described by Eqs. (1)-(3). Since this method avoids the currections required
with varying temperature, it will b= used in most of the portions which follow. Thus, it may
be considered that the subsequent plots of internal friction veryus log w can equally be
considered as plots versus |/T, but with an appropriate scale factor Q/2.3k as given by Eq.

(35).

Anelastic Creep

The quasi-static behavior of a standard anelastic solid will be described for the
experimental condition of measuring strain versus time at constant stres. (The analogous
experiments of measuring stress at constant strkin yields a similar treatment but will not ba
discussed.) Thus, as with the internal friction measurements the subscripi o indicating
constant stress w.ll be assummed. i.e., T = v,. The strain measuremsants to be described are
all at constant temperature and are made with t = O the time at which s new slace of stress g
18 applied after equilibration for a time t,, » t at a prior stress. Typically the experiments
measure either anelastic creep following aa equilibration at zero stress or the recovery of
this anelastic creep fcllowing removal of the equilibration stress. In either case for a
standard anelastic solid the fractional change in the anelastic strain c(t) is given by

"’(')'h_—'ﬁ-l—up(-t/r) (6)

G-

where ¢, and ¢, are the initial and final (eauilibrium) strrins. Eq.{6) indicates that the
normalized anelastic creep obeys simple (irst-order kinetics for both the load-on and
the load-off experimzuts describad above. Since cnly a single relaxation time controls
the response, the vajluc of tis obrained directly from the time constant for this decay.



Relaxation-Time Spectra

We now consider how the internal friction and aneiastic creep behavior as
cescribed in the previous section are affected when a distribution of relaxation times
replaces the single time constant Consider N(£n t) a distribution function for a
ipectrum (on a logarithmic scale) of relaxation times which governs the anelastic
response. Here t is taken as a ratio to some reference value and thus is uniti~«s. Also,
N{2n t) is normalized to unity such that

J:N(lnt)dlnt-l (m

This and subsequent integrations are over £n < rather tnan t follcwing normal practice
for presenting relaxation time spectra.

Applying this normalized reclaxation time spectrum to the real and imaginary
compliances which define the internal friction we obtain

J|(m)-1u+5j J-_: N(!nr) l—::l_;f-)-’ dine (8)
“ wt
Lw)=&) [m N(4n 1) m dint (9)

Thus the internal friction tan ¢ = J,/J, has an integral in both the numerator and the
denominator. [f the magnitude of the anelastic effect is small, i.e., if §J €« J,, as is often
true, then J, = J, so that we can eliminate the integral in the denominator and from Eqs.
(1) and (8) obtain

tan o(w) > A _!_m N(‘I‘IT)I—%—)) dinr< (10)

Here we use the substitution
A mdl/l, {10a)

where A is referred to as the relaxation strength. Applving the same method as was used
to obtain Eqs. (8) and (9) we outain for the fractionsal anelastic creep

$0=1- [ Nne* dtnc (1)

For both the internal friction and the anelas’ic creep the data snalysis has
become considerably more complex for a relaxation time specttum compared to a single
time. It is now necessary to unfold the integral equations to obtsin the spectrum. Eqs.
(8). (9). and (11) are Fredholm equations of the flrst kind. Such equations typically

present difficulties beceuse the problem may be ill posed so thet thore may be no
solution or if a solution exists, it may not be unique. Also, even if the probiem is well
posed it mesy be ill conditioned bacause the rancdom experimental error of the

measureinent may cause widely varying solutions. An important part of the analysis
which fullows will he to determine the extent to which experimental error affects the
calculated N(#n r) spectrum. Also since the inteyral equations each have different
kernels and the unfolding can be markedly seniitive to the kernal. it is important to
validate the procedure over various regimes for each kernel.



Direct Spectrum Analysis Methed

The unfolding method to be described s referred to as Direct Spectrum Analysis
(DSA). It involves making a sum approximation of the integral and then using a
modified nonlinear regression rather than a linear least squares technique. thereby
avoiding the highly oscillatory solutions which tend to occur with the latter with an
increased number of bins (i.e.. maximum iadex {or the summation). It 15 equally
applicable to the internal friction and the anelastic creep analyses. In the discussion
which follows the emphasis will be upon analysie of internal friction resuits. A detailed
description and validaticn of the method for the first-order kinetics of anelastic creep
has previously been published (2).

A key requirement of any method for unfolding an integral equation such as Eq.
{10) is that the method give only approximate solutions since true solutions may not
exist. especially because of the random experimental error 1n the measuremenr. We
then seek to establish that these approximuite solutions are indeed unique. This is dune
by using DSA to analyze internal friction data which have been generated from a known
N(£n t) spectrum and to which random experimental errcr has been added. The
comparison between the approximate solution from the DSA and the input N(fn 1)
distribution function then allows validation of the method.

To obtain the DSA approximation of N(£n t) we first determine the range of ¢
over which the spectrum will be considered. i. e., we specify the lower and upper t
limits, t, and t,, respectively. As an initial approximation a wide range is chosen, then
an analysis is done. Subsequently the spectral limits may be adjusted keeping the upper
and lower limits so that there is room for the tailregions of the spectrum. These limits
then become the integration limits in Eq. (10). W next divide the range of log t into n
bins of equal width 6§ £n t = Ln(t,/t,}sn and designate that the relaxation tme
associated with the i'" bin will be t,, the midpoint value (log scale) of the bin. The
number «f bins, n, which is chosen depends upon the resoiution that may be required for
the particular spectrum; typically 10 < n < 100, but with the constraint n s m, wherem
is the number of data points.

For m datas points and n bins the sum approximation of Eq. (10) gives

mne(@) X8 Y Al el (nsm) (12)
b | * ™

Here, the relaxation strongth A is defined by Eq. (10a) and

A mN(nt)0 bnt (12a)

is the fractional contribution to the total relaxation from the i'® bin, N(£n t,) is the
spectral amnlitude of the i*" bin, and 8 fn t is the previoursly defined bin spacing. Eq.
{12) is the same equation that Nowick and Berry give ir discussing multiple relaxation
with descrete spectra (1). When we apply this same bin method and sum approximation
to analysis of anclastic creep. Eq. (11) bhecomex

Yiy) s - \_ A exp(=t,/t). (julum).(nsm) t
L]
where A, has the same definition as 1n Eq. (12a). Thus for either kind of anelasticity
experimen. the goal of the analysis is to obtsin the A, 1n Eqs. (12) ar (1)),



At this point the DSA method makes a significant departure from traditionsal
unfolding methods. Although Eqs. (12) and (13) describe a linear set of equations
which can be solved for the A, bty standard techniques e¢.g.. linear 'east-squares. a
modified nonlinear regressior. least-squares method is used in order that the approx-
imate solution not become highly oscillatory. This oscillatory behavior is a well known
difficulty with solutions to this type of problem. It tends to occur when the number of
bins is set large enough to be useful for resolving details in the spectrum (roughly n >
10). With increasing n the oscillations in the A, tend to become extreme and produce A,
values which sre either positive or negative and which have absoluie values which are
orders of magnitude greater than the expectation values. This tendency is due to the
low amplitude high frequency noise which is present because of the randomn experimen-
tal error. The oscillatory solution is preventsd by the combined use of the iterative
nonlinear regression and the constraint A, 2 0. (In some cases the constraint A, 2 €.
where ¢ is some small negative number of order ~10"*, was used: only negligible
differences were observed in the results using this instead of the zero consiraint.) The
combination of the iterative method and the constraint prevent highly oscillatory
solutions because between successive iterations the A, do not change markedly and
thus can be prevented from taking veiues which with later iterations will lead to the
large negative values and concomitant oscillations.

The nonlinear regression method which is best suited to the analysis we have
described is a modified Levenbzrg-Marquardt aigorithm (5). It has an advantage over
other nonlinear regression methods because it has the capability of varying the
multiplying factor for adjusting the Levenberg parameter and thus decreasing the
number of iterations. Even with this improvement the method tends to require a
relatively large aumber of iterations. often mo e than 10’ depending upon the con-
vergence criteria. Several different termination criteria were used. With the preferred
one a tolerance is chosen (typically tol = (machine precision) with0.50 s r g 99) and
then termination occurs when the estimate of the relative error between A, and the
solution 13 less than tol for all A,.

Either of two methods were used to force the constraint A, 2 0. With the first. a
substitution method, a non-negative function is substituted for A, and then after
iteration 13 compiete the A, are back-calculated. With the second method the constraint
was obtained by modificennon such that any A, < 0 is set equal to 0. This method.
aithough it is actusally an improper use of the algorithm for the nonlinesr regression
because it modifies the solut:on between i1terations. 18 workable because the drastic
oscillatory behavior requires several iterations to develop so that after a given
iteration any A, < 018 still small enough so that setting i1t 10 zero does not appreciably
alter the iterative approach. This modification method 13 the better of the two and has
been used in all the examples which follow For a more detailed discussion of the use of
this constraint and the termination criteria the reader 1% referred to Ref. (2).

Valijgtion of the Method

The validation method consists of generating artifical sets of aneiastic response
data from known reiazation time spectra, adding random (Gaussian) experimental
error with a desired standard deviation @ (0 the data, and then applying the DSA
method to the daia (o test how well the input spectrum 13 recovered. [n the examples
which follow the input distribution of relaxation times was either a single or
combination of several lognormai (Gaussian 1n log 1) distributions given by

NiBnvie L(Pym) expi-Bnite yp " (14)
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which is a single-peak distribution centered and symmetrical about a logarithmic mean
relaxation time v, and with width parameter such that the full width ar i ¢ of the maximum
is 2f. Multiple-peak input spectra were also checked. The dat+ were generated irom a
spectrum composed of lincar combinations of single lognormai distribution functions. Such
a spectrum requires an extra parameter @ which gives the {ractionai contribution 0 the totai
spectrum of each lognormal peak.

Internal Friction

Single Peak Spectra. Fig. | shows an example of an internal friction curve which has
been generated by computer. In this figure tan ¢/A, the internal friction normalized by the
relaxation strength is plotied logarithmically against frequency on the top scale and against
reciprocal temperature on the bottom scale. As previously discussed. these plots are
equivalent and diffcr by a scale factor Q 2.3k according to Eq. (1. Thus the top scale 1s for
internal friction measured isothermally at constant relaxation time, t = 1.0s, whiie the
bottom scale corresponds to measurements at constant frequency, w = 1.0 s'. with the

[AT CONSTANT RELAXATION TIME, r= .O sec]
FREQUENCY.w (s )

oslo-! IO-z 0" IO° 10 102 no3
e Y e had i D
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) 24y 3723w/ T) / 1
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Figure 1. Internal friction (normalized by the relaxation strength) versus
both frequency (log scale) and reciprocal temperature. The solid curve 1s
for s Debye peak. i.¢.. for a single relaxation time. The dashed curve is for
a lognormal distnibution of relaxation times as described 1n tite text. The
peaks are symmaetrical on both the log frequency and the | T scales. The
values shown (or r, and Q were chosen (o give a convenient scale factor and
peak position for the 1.'T plot
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Arrhenius relation being given by the pre-exponential z, = 10~'*s and the activation energy
Q = 31.9 kcal-mole. The mare narrow of the two internal friction peaks in Fig. 1 is a Debye
peak (single discrete relaxation time) while the broader peak 1s calculated from a single
lognormal distribution of relaxation times with midpoint z, = 1.0s and width 3 = 1.0. The
close similarity of these two curves in Fig. 1 which have actually markedly 4different
distribution functions provides an indication of the appreciable difficulties involved in the
problem of obtaining the relaxation time spectrum. Also. it shouid be pointed out that the
analysis method must be sensitive to subtle differences in the overall shape of the curve
irrespective of the scale factor for vertical scale. This is because in any exper.mentally
measured situation the magnitude of the relaxstion strength A is unknown so that the
measured quantity is tan ¢ instead of the normalized quantity tan ¢/ shown in Fig. 1.

Fig- | shows a continuous piot of the normalized internal friction. Discrete data pairs
which have been compuier generated for analysis by the DSA method are shown in Fig. 2 for
the same input lognormal distribution as in Fig. |. In this and subsequent sets of compuler-
generated dota to be analyzed. m = 50 data points have been generated. Also. to provide
reaiistic simulation of experimental results, these data have been chosen at unequa:
intervals on the log w or 1T scale and random (Gaussiar) experimentul error has been
added to the exactl.y-calculated data points. In this and &ll subsequent internai friction
validations in this paper, the srandard deviation for the fractional experimental error was
chosen as o #= 0.01. which 13 a generous estimaie of the fractional error 1n a typical
mecasurement. Evidence for the rindom scatter in the data may be observed in Fig. 2.
especially in the region of the maximum internal friction.
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o | m=S0 DATA POINTS
- FOR FRACTIONAL
< 04f ° ERROR*0.OI . ® *
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FREQUENCY, w (s™')

Figure ) Computer generated internal friction versus (requency (log
scaie) plot for the same lognormal distribution peak shown 1n Fig. . bul
with randem fractional errc” having standard deviation a » 0.01 added (0
the Jdata
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The starting condition for DSA of the data in Fig. 2 is shown in the histogram of Fig.
3. Here the spectral amplitude of the i'" bin, N(£n 1,). is plotted versus rhe relaxaticn time
on a logarithmic scale. The upper and lower spectral iimits as are shown by the dotted
vertical lines have been chosen as t, = 0.G3s and t;, = 30s. The number of bins has been set as
n = 40, and as shown the 3pectral ampilitude is initially set equal in each bin. N(£n z,) =
1/%n(t,/t,) = 0.1448 suck that the area of the histogram is 1/2.303 (area of 1.0 plotted on a
natural logarthmic scale). At this point the system is ready to begin the iteraiion process to
obtain approximate solutions for the A, according to Eq. (12).

The DSA histogram approximation after 500 iterations of the data in Fig. 2 is shown
in Fig. 4. Also shown in Fig. 4 as a smooth solid line is the input spectrum used to generate
the data of Fig. 2. The histogram has an area such that LA, = 0.999 in excellent agreement
with the definition of A, as the fractional contribution to the relaxation from the i*® bin.
Qualitatively co'aparing the output histogram with the input distribution function in Fig. &
we see that tie histogram approximation provides good reproduction of the original
spectrum jud-,ed by amplitude, width. position, area and general shape. This resuit that the
DSA method is capable of approximating the input spectrum with such good accuracy with
only 50 Jata points and with random fractional error of roughly 1% is strong evidence for
the cnpability of the method. It is, in fact, somewhat unexpected rhat a set of data to which
apyreciable disorder in the form of random noise (experimental error) has been introduced
can be processed to re-establish the original information (input spectrum) which is inherent
in the system. This ability to filter the high frequency noise as a part of the process of
deconvoluting the data to obtain the original spectrum is an important strength of the DSA
method.
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Figure 4. Histogram of Fig. 3 but after 500 interations using the DSA
method. The histogram shows good agreement with the input spectrum
(solid line) used to generate the data of Fig: 2.

A more quantitative measure of the agreement between the input spectrum and DSA
approximation is desirable. This may be obtained by determining the position and width of
the histogram by fitting a lognormal curve through the output histogram to obtain the mean

relaxation time t,, and the width paramete: B. The results for such a fit to the data of Figs. 2

and 4 are shown in Table [. Here we see (for B = 1.0) that the position of the outout spactrum
is 1.021s compared with 1.0s for the input. Similarly the width parameier 5 has been

reprodiuced within roughly 3%.

Table I. Irput and Qutput Parameters for Lognormal Relaxetion Time Spectra

INPUT* OUTPUT (DSA)® COMPARISON®
_tm(8) B Area Tm®) B LA, [Iteration _tm(%) B(%) LA (%)
1.0 0.1 1.0 0929 0290 1000 500 7.1 190 0
1.0 0. 1.0 1.006 0.289 1.008 500 0.6 3.7 0.5
1.0 1.0 1.0 1.021 1030 0999 500 2.1 3.0 0.1
1.0 2.0 1.0 1015 197% 1001 200 1.5 1.3 0.1
1.0 3.0 1.0 C.848 1185 0995 100¢ 15.2 6.2 0.5

*Used to generate intarnal friction Jata with 50 Jata points to which random fractional experimental error with
standard deviation @ = 0.0 (s added.

*From direct spectrum analysiv of the computer-generated internal friction data using 40 bins followed by a (it to a
lognormal Jistribution.

*Percent difference between input and output parameters.
‘Smoothed data.
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A final feature of the DSA histogram opproximation in Fig. 4 which should be
mentioned is the existence of the small sidepeaks which occurs at roughly 10~' and 10s.
These peaks tend to show up in most DSA results. They tend to hav: magnituces which
increase with increasing experimental error (or for the anelastic creep analysis, when there
is error in the measurement of the initial and final values for the anelastic strain). Also,
these sidepeaks are stable for a given calculadon in that they do rot change with further
iteration. Interestingly, these peaks tend to vary markedly in position. shape. and amplitude
depending upon the choice of the calculation parameters t,, v, and n. The main spectral
peaks, on the other hand, do not tend to show this variation. This resuit th.at the input
spectrum is reproduced consistently independently of t'ie calculation parameters, while ths
sidepeaks are not. is important since it provides the capability of determining whether a part
of the spectrum approx.mation is intrinsic or merely a non-reprcducible artifact of the
calculation.

Effect of Width of Spectrum. It is desirable to know the capability of the DSA method
for determining spectra of various widths. This was done by generating and anelyzing sets of
internal friction data from input spectra with various B, but with constant t, = [.0s. The
range of B was 0.1 to 3.0. Each of the data sets w1s again generated with m = 50 data points
of tan ¢(m)/A vs o spaced at unequal intervals of log w. Also, the same standard deviation,
a=0.0l, was used ‘or the random ‘ractional error added to the tan ¢/. values. The internal
friction data for f = Q.1 are nearly undistinguishable from data for a single discrete
relaxation (Debye peak), while those for p = 3.C give an internal friction peak which is more
than twice the width of a Debye neak of the same height, see Fig. §.

oY A e

INTERNAL FRICTION PEAK
m 350 DAYA POINTS
o FOR FRACTIONAL ERROR = 0.0l

0.4- -
INPUT_LOGNORMAL DISTRIBUTION

L B *3.0 p

0.3 tm1.OS ]

INTERNAL FRICTION PER RELAXATION
STRENGTH, TAN ¢ /A

-3 2 (o} 10°

10 10
FREQUENCY, w (37"

Figure 5. Data for internal friction versus (requency for a lognormal input
distribution of relaxation times having 3 = 3.0. Random fractivnal error
with standard deviation 0= 0.0l have been added to the data. A Debye
peak (solid line) is shown for comperison.
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The capability of the DSA method for resolving very narrow relaxation time spectra
from the corresponding internal friction data varies depending upon the spectral width,
Typically it is not as good as wa~ demonstrated tcr the relatively wide spectrum (p = 1.0) of
Fig. 4. This is shown in Fig. oa in which the nar.ow input spectrum for f = 0.1 has a
maximum amplitude above 5.0, while the calculated histogram approximation, although it is
in the proper position and has a shape which is nearly Gaussian, is too wide by more than a
facter of three and has a maximum amplitude of less than 2.0. The histogram approximation
does however have a spectral area LA, = 1.0003 which is satisfactory when compared 10 the
expectation value of unity. When the width of the input spectrum is increased from p= 0.1 to
B = 0.3, the anlaysis method is able to estimate the input spectrum with good accuracy. This
is shown in Fig. 6b; here the histogram approximation coincides well with the # = 0.3 input
spectrum. As indicated. the histogram was created using 500 iterations with the spectra
limits adjusted to be wider than for the narrower § = 0.1 peak in Fig. 6a.
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5' 190 BTTRATION
3 o + LA, -1 000! -
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o Ao a1 | “T '—mﬁi—'mt": (: ":.;';" sy
- - “ e - ‘ £ T '
v o3 th H ; gt Y ) {
i B r z | - e i
q' 1 300 1TE0A TN g ! ' .
< i a1 l = ! :
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i
5 3 | 5%

...I;,Ll b i‘ Ou. P Py 0 0' a*
RELARATION TIME, ris) RELAXATION T, rid)

Figure 6a to 6c. Input spectra (solid linen) and output histograms for
internal friction data generated f{rom single lognormal distributions of
various widths: (a) =0.1. (b) p=0.), and (¢) § = 3.0. Note the scale
differences, especially for the most narrow distribution ({§ = 0.1) and the
very wide distribution (f} = 3.0).
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When the input spectrum becomes extremely wide, such as for § = 3.0 yielding the
internal friction data of Fig. 5. the DSA method again is able to reproduce the input
spectrum with acceptable accuracy, see Fig. 6c. Here it may be seen that the coincidence
between the input spectrum and the output his.ogram is satisfactory but not as good as for
1.0 2 P = 0.3. Nocte that in Fig. 6c, because of the wide spectrum the horizontal scaie covers
arange of log t which is twice that of the previous figures. To obtain the results for the wide
spectrum in Fig. 6c from the internal friction data of Fig. §, it was desirable to set the
spectral limits as t, = 0.0003s and t, = 3000s, a spectral breath of seven decades. Also, for
this anlysis it was necessary to smooth the data to remove some of the high frequency noise
of the simulated experiments’ error. Without this .moothing operation the oscillatory .
solutions previously discussed tend to develop resulting in multiple sharp pesks. the
envelope of which, has the shape of the histogram in Fig. éc. The smootking operation
consisted of sequeatially least-squares fitting of either a 2nd or 3rd degree polynomial tc
segments of the data consisting of from 7 to 1! data points and thus redetermiring each data
point as the one on the polynomial carve. The smoothing operation apparently is required
when there is both appreciable scatter in the data and the spectrum is relatively wide (B >
2.0). When it was used on data with § < 2.0 but with the same fractionai experimental error.
it was shown not to change the output histogram appreciably.

As was done for the histogram results of Fig. 4. a quantitative indication of the
success of the DSA method for analysis of internal friction data derived from relaxeion
time spectra with a single lcgnormal peak of varying width was obtained by fitting a
lognormal distribution to the output histogram. The lognormal parameters obtained from
this fitting are given in Table | for the histograms shown in Fig. 6 plus an additional result
for B = 2.0. The last columns of Table [ give the percent differences between the input
lognormal parameters and those obtained from the output histogram. Here it may be
observed that except for the very narrow input spectrum with B = 0.1 the position, wic'h, and
area (ZA)) of the DSA histograms are within rough!y 10% of the input values; this appears
to be satisfactory for most applications. Also, it may be observed in Table [ that when the
spectral width becomes large (B > 2.0 for this case) the uncertainty in the peak position and
width is markedly increused. For applications in which wide spectra are involved special
care will b, necessary to validate the DSA results.

Multiple Peak Spectra. One of the key need:s in analyzing internal friction data is the
capability for determining whether a given anelastic response is due cither to a single
reluxation process with a somewhat broad distribution of relaxation times or to two or more
processes sach with relatively narrow or nearly-discrete relaxation times. This may be
particularly important in situations in which it is desirable to know whether there is more
than one mechanism controlling tue reaction kinetics. Thus we now investigate the
capability of the nonlinear regression analysis methnad to unfold more complex spectra. To
do this tan ¢/4 vs o data were again generated with m = 50 data pointes from N(4n t) vs log
t distribution functions which had more than one peak. Subsequently random fractionel
experimentsl error was added with g = 0.01,

In Fig. 7 internal friction data ure shown (peak B) which have been generated using a
distribution function with two equally weighted lognormal distributions, each with § = 0.5
{which is relatively narrow) and with mean relaxation times which ar2 a factor of four apart
(tm, = 0.5y and t,, = 2.08). These internal friction data points may be compared with those
of Fig. 2 for the single lognormal distribution shown in Fig. 4 which are replotted in Fig. 7 as
peak A, It may be seen in Fig. 7 that only small differences exist betwean the two sets of data
even though eacn set was generated from markedly different relaxation spectra. Specifi-
cally. the peak heights and widths are nearly the same, and there are only slight aifferences
in the tail portions. Their close similarity serves again to point out the difficulty of the
unfolding problem . . . how to reconstruct very different input spectra from data which
appear to be vary similar. The resuits from the DSA of internal friction neak B in Fig. 7 are



15

0.5 v S — —
INTERNAL FRICTION PEAKS
2 - m=5C DATA POINTS a-PEAK B (SUM OF
= o FOR FRACTIONAL . PEAKS | AND 2)
g 0.4} ERRCR 2 0.0I ) TWO LOGNORMAL -
< 4 *-PEAK A oo OISTRIBUTIONS !
o3 L SINGLE LOGNORMAL ¢ ¢ 3,°0.5,a,;%05 ]
x e DISTRIBUTION ¢ B,*05,8,30.5
@ 2 o3k B0 M t 10.5¢,r_,72.0s -
W g r,31.0s Tmi m2
T a 2 ;4 7
g5 NN
== o2t N -
E & AR |
o = i LY, / A\ \ 4
27 / / \ \R
<t v \ \
Z .1t v / \ & 1
- «
< 9’ - \\ My
o.--ﬂﬁ:fun T i T=ty..” N VIV PN
lol 0°° 10 10° fo} 102 10°

FREQUENC™, w (s )

Figure 7. Data for two internal friction peaks ploited versus frequency.
Peak A is from a single lognormal distribution (same as Fig. 2). Peak B is
made up of peaks | and 2 which are from two different lognormal
distributions with parameters as indicated. The close «imilarity of the two
internal friction peaks is indicative of the difficulty of the unfolding
operation required to obtain the two very different inout spectrs. Random
fractional error with 0 =« 0.01 hus been added to both sets of data.

shown in Fig 8 as the usuai histngram approximation of the spectrum. Also shown as a solid
iine is the 2-peak input disiribution function. Comparing the histogrem with the input
spectrum we observe that the unfolded approximation i quite good. Importantly, the two
peaks have been resolved even though they are close snough together 30 that they overlap.
see dotted lines lor sepearate contributions of the two input spectra. Also. the 40 bin
approxiraation gives good reproduction of the height and position of the input distribution,
[nterestingly. the peak centered at the short relaxation time t,, = 0.5s {s reproduced better
thsn the one at the longer time, t, = 2.0s. Also, the histogram peak at the longer time is not
centered as well with the input peak so that the two differ by roughly 30% in position. This
tendency for the DSA results tn produce adjacent peaks with greate.: spread than exists with
the input distribution wan (ound to be the case for many of the multiple-peak relaxation
ipectra which were investigated, especiaslly when two of the peaks were relatively close
together. Typically, it r~sulted in shifts in the peak position of 10 o 23%. This tendency
may no. always be a serious drawback since the capability to resolve separate peaks which
arc in close proximity and thus demonstrate the existence of separate intrinsic processes {s
typically more important,
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Figure 8. Input spestrum (solid line) and calculated output histogram for
peak B of Fig. 7. The DSA histogram shows that the two overlapping peaks
" the input distribution function have been resolved.

As a final test of the capability of the DSA method to reproduce multipie-peak spectra
we consider the anal'sis of the internal friction results shown in Fig. 9. Here is shown an
internal friction peak (m = 50, 0 = 0.01) which is the superposition of the four separate peaxs
shown as dotted lines. These four peaks are each determined by relatively narrow lognormal
distributions (B < 0.5) which have mean telaxation times differing by factors of 4 or 5. The
test of the method is how wall it will be able to retrieve the original 4-peak iuput spectrum by
analysis of the 30 internal friction data points after random fractional experimaental error
with 0 = 0.0 has been addad. The result of this calculation using 500 iterations is shov . as
the histogram in Fig. 10 along with the input N(#n t) distribution function used to generate
the data. (Here the dashed linea are the seperate spectral contributions and the solid line is
the additive curve.) Fig. 10 shows that the histogram prnvides a very good aoproximation of
the input spectrum All four of the original peaks have been resvivad and hava amplituder.
potitions, and shapes which agree wall with the original distribution (unction. This
capability to replicate the fine structure of a 4-peak input spect.um, even for a peak with
fractional contribution of 0.15 (peak #1). is gratifying since it should be sufficient to meet
most needs in practice.

Effect of Calculationsl Parameiery, There are thres parametars which are choten for

any given DSA calculation, the number of bins. u, and the spectral limits, v, and t,, In
general the results of the calculations were not found to be changed sppreciably (< % iu the
width, position, and smplitude of the main spectial peaks) by the choice of these
parameters. Often it is desirable to choose a large number ol bins since the spectral
resolution is improved. Usually this choice is a compromise between \{ciired resolution and
available computer time. The laiter can be an important consideration since these calcula-
tions typically require in the neighborhood of 300 iterations and the calculation time per
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iteration increases roughly as the square of the number of bins. As mentioned earlier. the
choice of these parometers was found to markedly affect the position and amplitude of the
small sidepeaks and thus by repeating the analysis with different choices for these
parameters. variations in the sidepeaks allowed them to be distinguished from the main
peaks which are relatively unarfected.

Convergence and number of iterations. The relatively large number of iterations
which were used in the examples given so far were not always required. For instance, with no
experimental errqr added to the data it was found for both internal friction aud anelastic
creep data that the sum of the squares of the residuals approached the machine accuracy
(chosen as the termination criteria) after less than 50 iterations. Typically, more iterations
were required {or data with greater amounts of experimental error. [n general, it was [cund
that initial convergence was relatively rapid while final convergence was slow. Also, the rate
of vonverpence and the final convergence values depended strongly, but in no systematic
way. upon the rhoices for t,, t,, and n. This again serves to emphasize that the method gives
aporoximate, a3 Sppused to exact, solutions. The approximate solutions, although they are
not unique because they depend upon the choice of calculation parameters, in all cases
examined gave results whkich are relatively close to the input spectrum.

Anclastic Creep

Validation of the DSA method for the first-order kinetics of anelastic creep have
aiready been discussed in detail (2). The following will revie'v main points of the original
discussion particularly with regard to effects of the magnitude of experimental error upon
the calculated spectra. Again, the purpose of the calculation will be to approximate the
original relaxation time spectrum, but now with this spectrum controlling the anelastic
creep response. As before, the DSA method will do this by culcuiating the A, except tiie
appropriate equation will be Eq. (13), and the data to be used in validation of the method will
be fractional anelastic creep w(t) vst.

Effect of experimental error. Fig. 1| shows a set of y(t) vs time (log scale) data with
m = 250 and no experimancal error These data have been calculated trom an input N(4n t)
distribution function which is shown in the same figure. This i» a lognormal distribution
function with width parameter B = 1.0 (as in Fig. 4) and centered at t, = 10*s. The output
histogram of M(#n t,) after 31 iterations using 39 bins is shown in Fig. 12. For this
calculation the constraint A, 2 « with « = -0.0005 was uJed instead of the A, 2 0 constraint
since it gave more rapid convergence. Also shown ir. Fig. 12 are the parameters obtained by
fitting a lognormal distribution to the histogram result. When these parameters are
compared to the corresponding ones of the input spectrum (also shown in Flg. 12) the
agreement is extremely good, better than 0.2% for all parameters. Such good agraement
obtained after relatively ({ew iterations was found when the data had no simulated
experimental arror added.

To access the capability to reproduce input spectra with experimenta! ecror added.
‘‘worst case'’ set of data were generated by adding random error with standard deviation g =
0.05 (i.e., roughly $% error) to the data shown in Fig. 11, Thess anelastic response data are
shown in Fig. 13. When these data were anlayzed using DSA with n = 39 bins and ¢ =
- 0.0005 the histogram shown in Fig. 14 was obtained. This histogram is a relative' » good
approximation of the original, especially considering the large amount of scatter in .e data.
A possible problem with this histogram result might be the relatively small sidepeak at the
upper spectral limit: however, this sidepeak can be filtared out in a similar way as for the
internal (riction results by repeating the calculation with a different value {or t,, t,. or n, As
befure, & quantitative measure of the agresment between the input spectrum and the
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histogram approximation has becen obtained by fitting a lognormal distribution 0 the
histogram. the resulting oOutput spectral parameters. which are also shown In
Fig. 14, agree with the input spectrum within roughly 6.5% for 3. 4.5% for 7. and 0 8% for
the area.

Examination of these and other results from computer-generated data with varying
amounts of experimental error show the following effects due to increased amounts of
random error: (i) There is no zysiematic variation i the position, width, or shape of the
histogram. (ii)The fine structural details such as the tails of the spectra tend to brcome
obscured. (iii) The number of iterstions required to reach the termination cri‘eria is
increased. (iv) the sidepeaks tend to become larger. but to still vary in pos:tion and
amplitude with different choices for the calculation parameters.

Muluple peak spectra. As has aiready been discussed fcr the analyus of internal
friction results. the validation of the DSA method for analysis of anelastic creep results has
included investivation of effects due to multiple-peak :input spectira (2). Some general

findings of ' ~itigations will be descr.bed.
Data ve t were generated with m = 250 data paints with the N (fn )
distribution n compdasad of two overlapping logncrmal peaks with mean relaxation

times differing by a factor of !0. Subsequently, random error with 0 = 0.00l was added to
w(t). Analysis of tnese data with up ton = 60 bins showed very satisfactory replication of
the magnitude, shapes. and positions of the two-peak input spectra. Quantitatively 1t was
found that the output spectral parameters (using a two-peak lognormal fit to the histogram)
showed an average difference of less than 4% (rom the correaponding input parameters.

Similar invesugations were made using single and douple hHox distributions for the
input spectra. Tais was doene to test the capability of the method for analysis of data which
were derived ("cm other ‘han a lognormal distribution. The box distribution in addition to
the lognormal 1s discussed in detail by Nowick and Berry (1). It 13 a more siringent test of
the DSA method than the lognormal because it has discontinuities. Wheo data Jeiiv2d from
box distributions were ansiyzed, the resulting histogram approximations gave good
reproduction of the posit:ons and relative magritudes of input spectra for both single and
double box distributions. However, as might be expected, «here was difficulty reproaucing
the exact shape of the box. particularly at the sharp corncrs. This finding is in agreement
with internal {riction results for the very narrow sharp dJistributions with f < 0.25:
spparently the DSA method can not easily resolve such fine detail. in some cases this
resolulion capahility may bs improved by incressing the number of bins. For applications of
the method to spectra with fine structure it becomes particularly important to do validations
in regimes which are applicable to the input spectra being investigatad.

Qthar effects. Ref. (1) prcsents a fairly detailed investigat.on of how variation of the
calculational parameters affects the DSA results lor the analysis of anelastic cresp. As
previously discussed, for any given application, because the DSA result 13 only an
approximation of the input spectrum, there is no utiique output histogram. Thus the
impurtant thing to conmder is how much this histogram varies when the parameters (o1
doing the calculation are changed. Many cases were studied: no evidence wat found for
systemaric vaciation 1n the solutions w.th changes 1n the caiculational parameters. Al20. tn
ull cases the approximate solution histograms were good estimates of the input spectrum.
The key puint here is that the nonlinear regression least-squares algorithm gave approx-
imate solutions which ware close both to each other and to the known input spectrum when
different calculational parameters wery chosen. This finding that the DSA method ¢. es not
produce incorrect aprroximations of input spectra i3 another important result of the
validation.
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One other point shouid be meavioned concerning the validation of the DSA -nethod ior
use¢ with aneiasugc creep Jata. !: wa3 ‘ound (nhat the method has a better "esviatior capabi.:ty
for narrow input spectra when it s applied 0 the Yirst-order kinetics of anelastic zreep than
it does for the Debye equation of internai friction. For instance. with anelasiic creep .t »as
shown to satisfactorily reproduce inpul specire for a sungie iognormai peax with 3 = 0.0 3
while. as we have shown here. for internal frictton 1 2sults the most narrow peak that was
resolved had § = 0.3. Such a result s not unexpected: :t merely retlects the well known
effects of widely aiffering behavior of different kernels in the integral equenion.

Internal Friction vs Temperature

As was previously pointed out in discussing Jiffersnces between consiant temperature
and constant frequency internal 'riction sxperiments. ‘t 1y experimentally desirabic 10 do
experiments while varying the temper-ature instead of the frequency. The discussions 1n the
previous section validated the internal friction analysis metuod for f[requency as the var:able
hecause this 13 more <asily treated. Since this validation is for the Debye eouation as a
kernel. 1t 1s, however. equally soplicable 1o cases in which temperature (ot relaxation time:
i1s the variable. Thus the vaiidation need not be repeated. In the fol'owing discussion the
relationships for cnalysis of relaxation processes in which internal friction 1s measured as a
function of temperature will be described. This gdiscussion will treat this problem withoul
raaking the usual sumplifying assumption that J, = J,. [t will, however. assume that the
vanation of frequency with temperature is reiatively smail and thus can be ignored.

[t 1s convenient at this point 1o consider two eatrem:y 1o the distribution of relaxation
times which governs the relaxation kinetics. These both arise naturally from the Arrhenius
relation, Eq. (4). For a detailed discussion see Nowick and Berry ¢ 1). The (irst extrem~ to be
considered 1s one 12 which the distributiou arises only from a distribution :n the pre
exponential factor t,. Thus this distribution has only a single activation energy The second
extreme applies to the opposite cond:tion. that the distribution i1s due completely to a
distribution of activation energies. Thus for this distribution there 13 a constant pre:
exponential factor t,. In practice a combination of these two conditions may cxist, but for
the analysis 1t 13 useful to assume one or the other.

Distribution of r, Only

For this case we consider the distribution N(2Zn t,) vhich 1s the relaxation tme
spectrum of pre-exponential Arrhenius factors. Since the activation energy Q 1s a constani.
this spectrum of relaxation times douvs not change shupe with temperature. but only shifts
along the t scale. Thus by obtaining N(fn t,) and Q we know the spectrum of relaxation
times at Any given tempaerature. Svbstituting the Arrhenius relation Eq. ( $)1into Eqgs. (1).18),
and (9) we obtain for the internal friction as a function of tempersture

® ast, exp (Q/AT)
LV} I__ N(4n t,) ol Tap QAT dint,

an¢(Me= {18

® |
3L,+8 [N, e Tar AT ¢

Eq. (15) has a Fredholm type of integral equation 'n both the numerator and the
denominator. To ubtain the approximate solution for N(4n r,) for n bins we follow the same
procedure for tuking a sum approximation as was used before but making use ol the
magnitude of the relaration as 6J, « 5] A, and L 8J, « 8J tu obtain



<3

g 61 wt,. exp(Q/kT)
= ' lew't,lexp(2Q kT)
and (M= 116)

5,- :

& 3
— T 1ean't;exp(2Q/kT)

Hete t,, 1s the value of the pre-exponenuial factor in the i'" bin and the histogram 1s tfo: a
spectrum of Lhese factors.

Eq. 116) may then be usea with the DSA method if we choose values for the number of
bins n and the spectral limts t,, and t,, and supply the values for k and w. For Eq. (l0),
however, the analysis 1s different because in addition to the reizxation magnitudes 8J, we
also use the nonlinear regression analysis to obtain the values for the activation energy Q
and the unrelaxed comphiance J,. Thus we must set the number of bins with the constraint n
« m - 2. The conversion to obtain Ni(dn t,) the spectral amplitude of the ‘" bin 1s then
obtained uring Eg. ('2a) and A, = 8J),,8J. Finally the relaxation strrength X can then be
.ompared with experiment using X « £ 43), ],.

Distribution 01 Q Only

This distnibution assumes a constant T, and an activation energy distribution function
NiQ) Knowing N(Q) and tr, one can use the Arrhentus relation to convert to N(£n 1) a* any
given temperature. This result can then he compared to a comparable spectrum obtained by
the method ;ust descrided Again. substituting the Arrhemus relation we obtain for the
internal friction an expression anaiagous to £q. (15)

® wt, exp (Q/kT)
8 '[' NQ) 1 +w' tg exr, (2Q/kT) dInQ

wn (T = = " (1
J,+& J_.N(Q) mﬁ dinQ

To obtain Eq. (17)1n a form appropriate (or the DSA we again take the sum approrimation
for n bins to obtain

o & wt, xp(Q/AT)

~ ' 1+@’t, xp(2Q/AT)

wn M= (18
Sy

oo L B, 1+ o't; ap(2Q/kT)

where Q, 1s the value of the activation energy 1n the 1'" bin.

To do the DSA for n bins using Eq. (18) we divide the activation ecnergy spectrum up
1nto n equal intervails of width §Q. iet the spectral limits for the activation energy spectrum
Q, and Q_ et the pre iteration vaiues for tise spectral density of the activation energy in
the «'" bin to a starting value Q,. and nput the known values for w and k. For this case the
DSA will give values for the spactral density 8J, plus veiues for v, and J,. As with Eq. (16)
the magnitude of the relaxation 13 obtained from L 8J, = §J while the spectral amplitude of
the «*" byn 13 again obtained from Eq. (12a).

It should be no’ed that the success of the DSA method using Eq. (15) or (17) 18 uot
expecied to be sensitive to the kernel of the integral equatior. in the denominator because the
second term in the denonunator 13 expevied to be small with respact to umty. Also. for
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experimental situations in which the variation ol the frequency w with temperature can not
be 1gnored by assuming a constant {requency. the experimentai values o!f w(T) can be
substituted into either EQ. (16) or {18},

Conclusions

(i) The one most important conclusion of this paper is that a method has been
developed and validated for directly analyzing internal friction and anelastic creep results
to obtain a good approximation of the spectrum of relaxation times controlling the kinziucs
of the anelastic response.

(2) This methou, referred tc as Direct Spectrum Analysis. has heen demonstrated to
provide approximations of known input spectra which replicate the position, amplitude.
width. and shapc of an original input spectrum. The approximations are typically accurate
to better than 10% for input spectra concisting of (a) single lognormal and single box
distributions and (b) multiple lognormal (up Lo four pe2aks) and box distributions (two
peaks).

(3) Limits to the capability of the method are due to difficulties in resolving fire
structUre 1n the spectra such as the corners of the box distribution or the sharp peak of a
very narrow (nearly discrete) spectrum.

(4) Random experimental error in the data tends to limit resolution; however, the
method satisfactorily approximates spectra for internal friction data having fractionai error
with standard deviation o = 0.01 and for normalized anelastic creep data having absoiute
error with standard deviation ¢ = 0.0¢.

(5) The method has been shown in all of the many cases considered to give correct

approximations, i.c.. it does not converge on approximate solutions which are not close to
the know\ inout spectrum.
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