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TEMPERATURE AND HEAT-FLUX DISTRIBUTIONS
IN A STRIP-HEATED COMPOSITE SLAB*

by

G. F. Jones
Solar Programs
Advanced Engineering Technology
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

The steady temperature and heat-flux distributions for a
composite slab consisting of a strip-heated, large-conductivity fin
in intimate contact with a small-conductivity, convectively cooled
substrate are obtained. Such a problem has application tuo the strip
heating uf process equipment and laboratory experiments wnere uniform
thermal cnnditions are desired and where the conductivity of the
substrate is small. Analytical methods are used to obtain
closed-form solutions for the local temperature and heat flux for the
full, two-dimensional problem and for the bounding case of no
transverse conduction within the substrate. A design procedure to
determine the strip-heater spacing necessary for a prescribed maximum
variation in heat flux at the convectively cooled surface 1s
presented. An application example is given and the results
discussed. Expressions for the steady temperature and heat flux are
also obtained for the limiting cases of infinite heat transfer
coefficient and zero-thickness substrate.

INTRODUCTION

This paper concerns the problem of predicting the steady temperature and
heat-f lux distribution in a composite slab consisting of two Jdissimilar
materials in intimate contact with each other. One material, of large
conductivity, is heated on one side by equally spaced strips and the other
material, which has a small conductivity, is cooled on the opposite side by
convection to a fluid whose temperature is constant over the distance between
the strips. The materials of large and small conductivity materials are
referred to as the fin and the substrate, respectively, Such a problem has
application to the strip-heating of process equipment and laboratory

*work Performed under the auspices ot the U.S. Department of ktneryy, Office ot
Sular Heat Technoloyies.



experiments where uniform or near-uniform temperatures or heat fluxes are
required.* For the situation where the conductivity of the substrate is small
(such as for glass or plastic materials), a large number of closely spaced
strip heaters would be necessary to achieve uniformity. To reduce both the
number and cost for such heaters, a thin sheet of material having a larger
conductivity (a fin) is placed between the heat sources and tne substrate.
Accordingly, the flow _f heat is distributed evenly between more coarsely
spaced strips.

The problem of heat flow through a strip-heated single slab has been
solved previously by Van Sant (Ref. 2) for the temperature distribution in a
convectively cooled slab for constant heat flux and constant-iemperature
strips and by Schmitz (Ref. 3) for the heat-flux distribution in a slab having
constant-temperature strips and cooled by a constant-temperature opposite side.

In this paper, a closed-vorm analytical solution is obtained from the
simultaneous solution of the steady energy equation for both constituents of
the composite medium. Although expressions for both local temperature and
local heat flux are obtained, primary focus will be on the heat flux
distribution at the convectively cooled side of the slab, this being the side
over which uniformity is desired. A design procedure to determine the
strip-heater spacing necessary for a prescribed maximum variation in heat
flux, ¢, at this surface is presented. Graphs and formulae for ¢ are
developed for the upper-bounding case of no transverse conduction in the
substrate (a quasi two-dimensional case) and for the case where
two-dimensional heat conduction effects are considered. Expressions for the
steady temperature and heat flux are also obtained for the limiting cases of
infinite heat transfer coefficient (constant-temperature cooled surface) and
zero-thickness substrate. Finally, an application example is presented and
the results discussed.

ANALYSTS

The geometry for the problem at hand is shown in Fig. 1. The strip
heater, which runs perperdicular to the plane of the figure, is positioned
above the fin in region O ¢ x < t, where t is tie half width of the strip.
The heat-f low rate over this area per unit depth of the heater is Q'. In the

S 4 o = gy U e e i e ol

*Processes involving natural convection, for instance, are sensitive to the
imposed thermal--boundary conditicns and may necessitate very uniform boundary
heat fluxes or temperatures (Ref, 1).
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Fig. 1. Problem geometry.

region t < x < &, the fin is insulated on top. The side boundaries at x a O
and x = £ are lines of symmetry, thus making the spacing between strip-heater
centerlines a distance 22. In additicn to the previously men%ioned assump-
tions, we further impose the usual condition that d/% << 1 so that conduction
in the fin in the y direction may be ‘umped. The steady, constant-property
energy equation and boundary conditioms for the fin and substrate become
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where the left-hand side of Eqs. (1c) and (1d) refers to the temperature
distribution over 0 < x < t and the right-hand side refers to that over t ¢ x
< &. By imposing Eqs. (1d) and (2d), temperature and heat flux continuity
between the two fin regions and between the fin and substrate are ensured.
Such conditions :ust always be satisfied in conjugate problems, of which this
is one.

The yoverning equations and boundary conditions are nondimensionalized bv
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where B1 is the Biot number. Egs. (1) and (2) become
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where the same restrictions imposed on Egs. (lc) and (1ld) are applied to Egs.
(4c) and (4d).

The traditional separation-of-variables method of solution fails for
the alove system becuause the boundary condition at , = 1 [Eq. (51)) is an
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as-yet undetermined function cf ¢ and thus, ¢s’ this being a direct
consequence of the conjugate nature of the problem. In addition, because y
is small,* Eq. (5a) is "stiff" in the n direction, and attempts at
conventional numerical methods of solution also fail because Eq. (5b) cannot
be satisfied. It is because of the diminutive nature of u that a
perturbation method of solution (Ref. 3) i¢ attempted here using u2 as the
perturbation parameter.

We seek a solution, ¢S, in the form
B (n E) = b (my E) * 08 B, (ny €) *+ 0 (D (6)
sti! sC ! s2 ! :

Combining Eqs. (6) and (5a) and equating the coefficients of the different
powers of u, we obtain

2
3_239 -0 , (7a)
g
82‘550 82¢52
and — * —~ =0 . (7b)
an at,

Integrating Eq. (7a) and arplying Eqs. (5c) and (b4d), we obtain the
zeroth-order solution as

6o (n L)= o) |52 - (8)

*In the physical problem, we attempt to make & as larye as possible by
ensuring thermal uniformity by adding a large-conductivity fin at the top of
a low-conductivity substrate. For all cases of practical concern, £ may be
made large enougn so that U/ &y << 1,



Combining Eqs. (8) and (7p), integrating. applying Egs. (5c) and (5d), and
rearranging we produce the following from Eq. (6):

B (nig) = TTropre I (1 +u?) #(n) - 42 [WTILJ'-BTT

2 3 . 2
) 3 (1 +B'l) _ 1) + 1 P (9)
3n’ ((1+B1‘ £) 2(1 + Bi) an°

(s

which satisfies Eq. (50) because of Eq. (4c). In the limit as u
(9) reduces to Eq. (8), as we expect.

The fin temperature ¢(n) is obtained next by combining Eq. (9) and EQgs.
(4a) and (4b) and applying Eq. (4d). First, the function ads/agl

2 50, Eq.

ga1
is evaluated from Eq. (9) as
A o¢ 2
s - Agln) -8 S, (10a)
AU on
gal
where
2
A BY (1 +
A"W - . (10b)

A Bip A
B = .V—(-rTEB-‘T ’ and (IOC)

2
itk | a0

Combini.g Eqs. (4a) and (4b) and Eq. (1l0a) we obtain
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p = I——z—-——z—-z= » (llc)
B+1 A" +y"/m~ A+ (t/Om)
2
m hE /kd ' (11d)

S

and we further note that m is independent of the fin half-length, §.
Eqs. (lla) and (llb) are now solved and the constants of integration
evaluated by Eqs. (4c) and (4d). The resulting distribution is

#(n) = ——-I 1 - Sinh p(1 - y) cosh pn 0<ncry , (l23)
sinh p

#(n) = 13)0h py cosh p(l - n)
n 2
mv (1 +u°) sinh p

<1 . (i2b)

-
A
-]

N

The temperature distribution in the substrate is determined from Eq.
(9), #(n) and azd/anz having been evaluated from Eqs. (12). Thus,

‘s(“' £) - 1 +B1¢) sinh p(l - y) cosh pn (13a)

nv (1 + Bi) 1 sinh p

. 5 3
l - (Auz + Yz_llne)_1 <3'DP'}‘BT)' (.5.1.‘.}7_51-%)- - 1> +
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mv (1 * Bi) sinh p

: i P
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‘Z(T‘T')'(E;LLBJ“')'1> vengl .

Temperature continuity at the surface (n = vy, E) in Egs. (13) is guaranteed

because Eqs. (13) satisfy Eq. (4d) at £ ~ 1. Also, Eos. (13) satisfy &q.
(5d) to each order in .

A dimensionless heat flux at the surface £ = 0 is defined by

- ol b
Q(rl)- Q(XQ.V'O) a k —"S' -""7_5‘ ’
-Qg‘- Tsay _Y='0 '] E E=0
and with Eqs. (13), this becomes
app(n) = 1]1_sfnhpl-y) coshpn |, 328 — |{(14a)
sinh p 6(1 + Bi)(A + (t/Dm)"]

05_'1_<_T )

aZD(“) _ sinh py cosh p(l - n) 1+ 3+ Bi - (14b)

vy sinh p 6(1 + Bi)LA + (t/0m)"]

vy<ngl

The subscripts 20 in Eqs. (14) desiynate that the effect of n-direction

conduction within the substrate was considered in the Aevelnpment of the
expressions.



By inspecting Egs. (llc) and (14), we note that the heat flux depends
upon four parameters: Bi, t/D, m, and y. However, in the limit as u2 » 0,
p2 > m2/12 and the term within the large square brackets in Eqs. (14)
becomes unity, eliminating the dependence upon Bi and t/D and simplifying the
functional representation of the heat flux. In this limit, the effact of
heat conduction in the n direction within the substrate is neglected and the
analysis becomes quasi two dimensional. Because this component of conduction
tends to makc the temperature more uniform at the convectively cooled
surface, the quasi two-adimensional case thus represents an upper bound on the
ronuniformity of heat flux at that surface. This result is a direct
consequence of tka constant heat-transfer coefficient and coolant temperature
assumed for this analysis.

For the quasi two-dimensional case, the heat flux at the surface,
E = 0, becomes

1 1

dgp(n) = 2 {1 - 1) cosh iy o
Y sinh my

sinh mliy

sinh m cosh my'l(l - n)
vy sinh my'I

aqu('l) -1

where the subscript qD designatas the quasi two-dimensional approximation.
To assess the degree of uniformity of heat flux over the surface £ = O,
we define

qn =0, £=0) -q(n =1, €= 0)
=0, e ) - (16)

which 1s the difference in heat flux between the locations n = 0 and n = 1 at
£ = 0, expressed as a fraction of that at n = 0 and ¢ « 0. In particular,
for the two-dimensional (20) and quasi two-dimensional (qD) cases, Eq. (:6)
becomes

G sinh py
0! - ST PTG stah BT =) (17a)

10



where

G=1+ 3+ 8 Vi , and

6(1 + Bi)[A + (t/Om)"]

sinh m .
[ 4 =|1— » (17‘:'
qD sinh my:r_- sinh m(\('I -1)
respectively.
RESULTS

The heat—flux distribution from Eqs. (15) are shown in Fig. 2 for
several m and y combinations. We note tnat the heat flux becomes more

2.58 S ST e St e — — - + e smm e e e
m Y
0.45, 0.15
-0.25, 0.15
0.45, 0.30
i 0.25, 0.30
2.0@ 0.05. 0.15 i
0.05, 0.30
.58 ¢t 4
(=]
o
-3
| .BE
p.s@ ¢ 4
—
2.4 Jb——o——+—t—-—-—o—--—q—-—»———0—--—~0-———r———+—~——0——-—-» e e e T e ke ]
g.a ] B.2 2.3 .y u.5 U.b w.7 d.H a.q ("
n
Fiy. 2. Dimensionless quasi two-dimensional heat-flux distribution at ¢ =

0 for various combinations of m and v parameters.
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€q0

uniform with increased y and decreased m. For a fixed Bi and t, this implies
an increased fin conductance, kd, and a decreased fin half-length, 2,
respectively. Recalling fundamental fin theory (Ref. 5), both these effects
are seern Lo cause an 1ncreased uniformity in the heat-flux distiribution
within the fin, thus verifying the trends indicated in Fig. 2.

The figure-of-merit variable €qD from Eq. (17b) is shown in Fig. 3
fcr a wide range of m values. Just as in Fig. 2, a decrease in the
uniformity of heat flux at the surface £ = 0 for increased m values is
evident for fixed values of y. This figure serves as the basis for the
strip-heater-design procedure described in the ne~rt section.

The variable €20 from Eq. (17a) is shown in Fig. 4 for several D/t
andAZ*-(t/Dm)2 comuinations and for a fixed value of Bi = 15. The latter
value corresponds approximately to natural convective flow of water over a

H++H+H++H+H+H+H+H+H+H+H+ﬁH++H++H+H++H+H+Hﬁ-
-

-+

L a4

Tdd g d b a3 o441y
1+t

d bbbl 4o L L
-t rrre

Fig, 3. Figure-of-merit variable ¢qp from the quasi two-dimensional
model for various m parameter values.
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anada s s s a N R e o s e e s e e s s e s s g e e n g
Curve No. D/t A+(t/Dm)?

1 1.00 1500

2 1.00 1000

3 1.00 500

4 0.50 1500

5 0.50 1000

6 0.50 500

7 1.00 100

8 1.00 50

9 0.50 100

10 0.50 50

11 0.25 100

12 0.25 50

Fig. 4. Figure-of-merit variable ‘ED from two-dimensional model for
various D/t and A + (t/Dm)¢ parameter values. Bi = 15.

moderately neated 2.54-cm- (1-in.) thick acrylic plate. For values of
(t/Dm)2 > 15 and B1 3 15, ©p s fairly insensitive to Bi, which we
note by inspecting Eqs. (10d) and (14). For all other cases,
€5p should be calculated from Ea. (1l7a).

The ratio ap to €q0 a; a function of y is presented in Fig. 5 for
several D/t and A + (t/Dm)" combinations and for Bi = 15, Ordinate values
smaller than or equa. to unity verify that €2p is bounded by €0 from
above as discussed before the development of Eqs. (14). In addition, the
effect of n-direction conduction on the heat flux at the surface £ = 0 may be
assessed from this figure. In particular, for 81 > 15, D/t < 0.50, y ¢ 0.40,
and m < 0.23, the value of *qD represents less than an 8% overestimate in
heat-f lux variation at the surface £ = 0. Thus, in many cases, only the quasi
two-dimensional results shown in Fig. 2 need be used to obtain reasonably good
estimates of heat-flux variations in strip-heated, composite-slab systems.
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0.25, 0.25, 100+
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a.8 8.1 a.2 4.3 a.4 B.S
Y

Fig. 5. Ratio of two-dimensional to quasi two-dimensional figures-of-merit
for various D/t and A + (t/Dm)¢ parameter values. Bi = 15.

DESIGN METHODOLOGY
We present the following method to estimate strip-heater spacing for a

prescribed maximum variation in heat flux over the convectively cooled side of
a strip-heated composite slcb.

1. From the prublem specifications, obtain values fcr h, 0, kg, t, d,
and K.

2. Calculate the following variables from the equation numbers shown
after them in parentheses: Bi (3), A (10d), m (11d), and G (17a).

3. Choose a maximum allowable value of ¢qp (a value of 0.05 or
smaller may be a good value in most cgses)

4. Enter the value of m and ¢gp in Fig. 3 and estimate y.
Alternatively, Eq. (17b) mgy be used in place of Fig. 3.

b. Sstimate half-spacing, g, between two adjacent strip hcaters by 2 =
t/y.

14



6. Estimate p from y and Eq. (llc).

7. From Eq. (17a), estimate epp [or alternatively, if, for the

problem under consideration, Bi = 15 and the combination of t/D and

At (tIDm)2 anpear on Fig. 4, the figure may be used in place of

Eq. (17a)]. If cpp is much smaller than c¢qp because of

significant two-dimensional effects, recalgulate € 2 using a

slightly smaller value of y than that obtained in 3 ep 4. Steps 5

through 7 may be repeated until the prescribed value of ¢y is

obtained.
If desired, this procedure may be repeated choosing different values of t, d,
and k to optimize the strip-heated system with respect to cost, weight,
material availability, etc. In addition, because ¢ parameters are obtained
from closed-form functions (and not tables of numbers or graphs from numerical
simulations), they, along with the other formulae needed, may be easily
computer programmed and the design ard optimization carried out in this

manner,

APPLICATION EXAMPLE

Consider the followiry example problem. The numbers on the f.r left
correspond to the steps from the design procedure cescribed in the last
section.

1. h = 85.17 W/m K (15 Btu/h fté °F)
D = 1.27 cm (0.5 in.)
t L 1.27 Cm (0-5 ‘"'I.)
k = 382.55 W/m K (221 Btu/h ft °F)
kg = 0.346 W/m K (0.2 Btu/h ft °F)
. hD .
‘. B.' L} 'E'S' - 30125
2

Bi® + 381 + 3
A = mﬁ—:—m—)— ] 0-573

15



3 + Bi

6(1 +B1)(A+ (t/om)]2

= 1.001

A+ (t/om)? = 370.39

3. Choose [ 4 - 0.05 .

qD

4, From Fig. 3, y = 0.15 (for this value of y, Eq. (17b) gives €0 =
0.049) L)

5. 2= t/y =1.27cm/0.15 = 8.467 cm.

2 1/2
6. p= [LELQ:l__:_é] - 0.350

A+ (t/Dm)

G sinh py
7- tzo-l-sﬁhp_Gs‘fﬁh pTI‘YI-O.04b .

We note that two-dimensional effects reduce the upper-bound estimate of ¢ by
about 7%. If the above results are acceptable, a 4.6% variation in heat flux
across the surface at £ = 0 should be expected for this problem for a
centerline spacing between two adjacent strip heaters of 2 x 8.467 cm = 16.93
cm. The values of y and uz here are 0.150 and 0.022, respectively.

LIMITING CASES OF INFINITE 81 AND ZERO-THICKNESS SUBSTRATE

In this section we consider the two limiting cases of infinite Bi and
zero-thickness substrate. The former corresponds to a constant tenperature
at the cocled surface, whereas the latter is for a single material in which
g-direction conduction may be lumped.

16



For Bi » », Eqs. (10) aend (11) become

A(1 + HZ)IMV ’

>
[ ]

B = ap/3v ,
A =1/3 ,

22(1 *+ u2) fu(au * 3v)

©
]

2
t ks/Dkd .

(18a)

(18b)

(18c)

(19a)

(19b)

The temperature distribution in the fin [Eqs. (12)] remains unchanged

except for the change in m and p given by Eqs. (19)-
distribution in the substrate becomes

“s(hl E) - 15-

mwv

1 - sinh p (1 - y) cosh pn
sinh p

[1 S VI ]
6(u’/3 *+ yC/n°)

6s(n. £) = & sinh py cosh p(l - n)
mv sinh p

2
- 1‘
] - ﬂsi H
‘ 6(ui3 + v¢/mé)

The temperature

(20a)

(20b)

A1l other equations remain the same except that the term within the

large brackets in Eqs. (14) becomes
1+[2+e6dn0)t

which is also the new expression for G in tq. (17a).
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For the case of a zero-thickness substrate, u = O and Eqs. (l1) become
m = htl/kd , (21a)
p - m/y . (Zlb)

The temperature distribution within the fin [Eqs. (12)] simplifies to

-1 -1
6(n) = - {1-Stahmly - 1) coshay Ocncy o (22)
mv sinh my
. -1
6(n) = 1751"2 @ cosh my _%1 = n) 0O¢ncl . (22)

m v sinh my

The term within the large brackets in Egqs. (14) reduces to unity for this
case as does the expression for G in Eq. (17a). Thus, we note that Eqs. (14)
and (15) and Eqs. (17a) and (17b) become the same for the limiting case of
u =0 as we expect because of the absence of any two-dimensional conduction
effects.

The design procedure described above and the graphical results may be
applied to both of these cases, when the above expressions for A, m, and p
are used. Obviously, Figs. 4 and 5 (and steps 6 and 7 in the design
procedure), which accounts for multidimensional heat conduction effects
within the composite slab, need not be considered for the case of a
zero-thickness substrate because no such effects occur within the fin,
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