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SOLITONS IN SYNTHETIC AND BIOLOGICAL POLYMERS

A. R. Bishop

Theoretical Division and Center for Nonlinear Studies
Los Alamos National Laboratory
Los Alamos, NM 87545

1. INTRODUCTION

Nonlinear science has, in recent years, begun to receive
truly interdisciplinary attention and to involve a supporting
interplay of analysis, computation and experiment. Most of the
problems being addressed have a long history but are now benefiting
from this new interdisciplinary view. The synergistic impact of
computers plays an increasingly important role and there are some
new ccncepts --solitons, toplogy, "universal" routes to chaos and
its characterizution, pattern selection and evolution, etc.
Significant advances have occurred in our appreciation for the
consequences of strongly nonlinear phenomena and our ability to
experimentally detect them. In particular the "soliton paradigm"
has acquired, in the space of a decade, an astonishing list of
applications across the natural sciences. Our focus here is only
a small subset of these applications but already vast: namely
applications ir solid state materials and of those primarily
low-dimensional examples (weakly coupled chains or layers).
Furthermore, we will not discuass any problems arising in nonlinear
diffusion equations, 2lthough these are fundsmental in their own
right for descriptions of relction-diff!sion systems, interface
dynamics, nerve-pulse piopagation, etc.

Given the biophysical emphasis of this conference, our main
concern is *o indicate points of contact with the lessons which
have been learned (sometimes painfully) in solid state ard statis-
ticel physics over the last few yvears. To dste only limited



cross-fertilization has occurred between the nonlinear problems in
the synthetic and biological literatures. Yet the parallels can
be striking at all levels - mathematical equivalences and computa-
tional approaches and, even more importantly, phenomenological
implications and suggested experimental probes. Since space is
limited we can mostly only list some primary soliton concepts and
material applications and give a guide to the relevant existing
literature, whilst indicating potential applications in biophysical
contexts (§§3-5). By way of illustration we will give a little
more discussion of nonlinear effects at phase transitions (§3) and
in certain synthetic polymers (§4). The relevant biophysic liter-
ature is very well described 2lsewhere in these proceedings, which
we will therefore merely reference as appropriate.

2. SOLITON CONCEPTS AND APPLICATIONS

Good introductions to soliton mathematics include refs. 3-5.
Solid state and statistical physics applications continue to
expand rapid’v but representative examples and surveys can be
found in refs. 1,2, 6-8. With regard to potential applications in
biophysics we would particularly emphasize the following general
points:

(i) Solitons in one space dimension and with a small number of
degrees of freedom at each "site" of a notional 5g§tice, sccur in
only three forms -- kinks, pulses and envelopes.

The first two are ciear and typif.ed by kink solutions to the
sine Gordon (SG) and related equations, or pulse solutions to the
Toda lattice or Korteweg-de Vriss (KdV) equations. Both are soli-
tons in that they are spatially localized but can propagate without
change of shape. Indeed the pulse is just a derivative of the
kink. Their physical origins can be very different, however,
since thcir topologies are quite distinct -- the kink interpolates
between two unconnected degenerate ground states whereas the pulse
does not. Kinks are familiar as dislocations or domain walls,
pulses as water wave solitons. Envelope solitons (often called
"breathers" or "bions") are sometimes fouund a more difficult
concept and yet in many ways they represent the wost important and
wide-spread class. Here the envelope prescribes the localized
soliton structure which may be moving or not, but there ie an
additional periodic oscillation of the envelope amplitude or
internal carrier wave. In these cuses four (not two) canonical
variables are needed to specify the soliton's state. Breathers
are so important because they can interpolate between linear modes
and extremely nonlinear structures such as kinks. Similarly they
can always be reached by s suitably high order anharmonic expansion
in the linear modes. Thus they lie naturally at the ceater of
contruversies in maay fields disputing the advantages of



conventional anharmonic perturbation theorv versus particle-like
soliton gas phenomenologies -- as with the wave-corpuscular nature
of light it all depends on the property to be describ:d (and the
strength of the nonlinearity). The SG and nonlinear (<ubic)
Schrodinger (NLS) equations are tvpical sources of breathers.

(ii) Solitons in nature will rarely if ever be close to the
precise objects conceived by mathematicians because of perturbation
and/or intrinsic terms which destroy exact, integrability of the
governing equations of motion (as in the ¢ equation usci in £€3.)
Nevertheless, the basic balances which are present in true soliton
equation can act to "label” generic types of soliton systems (and
the soliitons which follow) and alsoc are often very robust against
quite severe perturbations. Thus tne generic ingredients of the

SG

oxx - ¢tt = sin ¢ (1)
and related equations (¢ is a field variable; x and t are space
and time) are wave-like propagation in the presence of a periodic
local potential -- the latter is motivated from a "pinning",
"locki ggzs"registering" potential, depending on the physical

MY . . .

origin (dislocations in a metal, domain walls in a ferromagnet
or ferroelectric, fluxons on a Josephson transmission line, dis-
commensurations in a surface epitaxial iayer, charged dislocations
in a charge-density-wave material, etc.). The KdV equation

Ot + kQOx + oxxx =0 (2)
(k constant) characteristically combines weak norlinearity and
weak dispersion. In the case of the NLS equation

2
U * Y0, * Klulw = 0 (3)
we always have in mind slow, long-wavelength self-modulation of an
almost monochromatic wave with linear dispersion and weak nonline-
arity. In eqn. (3), ¢ is a complex (i.e. two-component) field and
k is a positive constant for most cases of interest. (fhe nega-
tive sign generates guite different solitons and has fewer physical
applications).

(i1i) The stability asgainst many perturbations (e.g. damping
mechanisms, driving fields, impurites, grain boundaries, lattice
discreteness, etc.) has naturally lead to the prevalent notion of
solicons as "particles”, i.e. collective modes, responding to
perturbations primarily ihsgg;h a collective co-ordinate describing
a center-of-mass motion. '’ While this view has much volidity
and leads to the importance of solitons for dynamics (e.g. as
fluxons on Josephson transmission lines), the rigid, dyna.ic



particle picture should not be used too iiterally. The equal
importance of ''solitons'" for energetics, structure, statistical
properties, etc., does not necessarily require simple dynamics.
Thus the deformable nature of solitons (since they are not point
particles) should always be considered. Agaian the effects of a
discrete lattice are inherent in solid state and binlogical appli-
cations and act to impede or even freeze ("pin") soliton motion ~--
indeed this pinning is the origin of a low frequency retonance
identified by SCOTT in the model of alpha-helix proteins discusr~d
in these proceedings by LAYNE and LOMDAHL and SCOTT. There are
many other examples in solid state -- the Peierls-Nabarro pinning
barrier is well-documented in the theory of dislocations, for
example. More recently solitons appearing as '"discommensurations"
in incommensurate solid state phases can (on very long timescales)
te randomly ("chaotically") trapped by a lattire pinning potentia;
which overcomes long-range repulsions between discommensurations.

It is particularly important to realize that transport can
involve solitons fundamentally without implying simple ballistic
or diffusive soiiton motion, even though this is the most popular-
ized mechanism --generalizing the familiar examples of slippage in
metals via the motion of dislocations, or fluxon propagation on
Josephson transmission lines, o1 soliton propagation along optical
fibers. Hopping motion (of solitons or charges they may carry)
can be of equally practical concern (as is likely in the conducting
polymers of §4, where solitons appear as various kinds of "polar-
ons'", familiar in their own right). In otQjer cases transport only
occurs when solitons overlap sufficiently;” in such cases an
independent s<liton picture ig quite irrelevant.

(iv) Some of the above rengks will have made it clear th:t
nomenclature is unsettled. The mathematician's soliton equey o
tions have very precise meaning related to their integrability,
This is directly connected with the remarkabie soliton propecrties
of cullision wstability, S-matrix factorability, Hamiltonian separa-
bility etc. Oune ext-emely striking consequence is the ability to
quantize rnlitons exactly and co. .truct quantum statistical mech-
anics. 1t is now appreciated that this intinately connects
soliton systems to those solvable bv "Bethe Ansatz" techniques --
indeed it is clear that, via appropriate mappings, quantum soliton
systems can be related to almost all exactly solvable problems in
mauy-body and statistical physics and field theory (wostly one-
dimensional gquantum or two-dimensional classical systems). The
importance of exuctly solvable models (defining anchor points of
preciee knowledge about which a fabric of intuition and spproxima-
tions can be woven) clearly gives true soliton systems a major
unifying importance. However tne term "soliton" has come to be
used much less precisely in most physics literature -- signifying
any spatially localized, finite energy, dynamic or static,




intringic order-parameter configuration (often termed an inhomogen-
eous state). Stability is usually guaranteed on topological
grounds; non-topological solitons (e.g. the pulses or envelopes
above) are stabilized by dynamics or external influences (e.g.
impurities, boundaries).

Hopefully nomenclature will evolve to label a polaron a
polaron or a vortex a vortex, etc. but the "soliton" label does
serve a useful purpose to focus on an important nonliner paradigm.
It is tuis paradigmatic sense for solitons which is most relevant
in both solid state and biophysics.

(v) Applications of paradigmatic (and in a few cases nearly
literal) solitons in solid state all center on transport, energe-
tic, or structural properties. The solitons may be excitations
(thermal, quantum, critical fluctuations) or ground state struc-
tures. In some cases they may be much less populous than linear
modes and yet, for appropriate physical properties (e.g. scattering
functions, transport) much more important. Earlier references

will indicate the immense scope for the soliton paradigm, but the
most direct and striking solid stnte6g§amp1es have probably occurred
in low-dimensions. Examples include Josephson transmission
lines, certain magnetic chain materials, mercury chain compounds,
fast-ion conductors, structurally distortive compounds, etc.

There are many other potential applications but the most intensive
investigations currently emphasize electro acally and magnetically
active polymers and charge-transter salts. Examples include
spin~ and charge-density-wave materials (KCP, TCNQ salts,
(TMTSF)zPF , NbSez. NbSe_, ...), piezo- and pyro-electric polymers
(PVFZ). ang conducting pglymers (§4).

It ic natural to look also for upplications in biology,
prompted both by the frequently low-diaensional (polymer) settings
and by basic chemical and structural similarites with low-dimen~
sional solid state systems. For instance, the hydrogen bond plays
s pervasive role in biophysics which lesds us to expect aimilari-
ties with structurally phase-transforming materials such as ferro-
electrics (there are even some quasi-l-dimensional examples such
as CsD PO,, acetanilide, nylon-66, certain polydiacetylenes).

Many o; tﬁe questions posed in DNA are cssentially ones of (lirear
and nonlinear) lattice dynamics (albeit in complicsted lattice
structures) which have been faced recently in a number of struc-
turally transforming materials (see §3). Ionic and protonic
transport mechanics as well as charge-trausfer processes are
incressingly discussed in biophysics literature hut are extremely
similer to processes in fast-ion conductors or charge-transfer
compounds. Peptide (H::*N-C = 0) units occurring in ordered (e.g.
o-helix proteins or synthetic polypeptides chains) or disocdered
(e.g. globular proteins) environments have been discussed



extensively in terms of self-trapping of lsttice vibrational
snergy ("excitons") becsuse of nonlinesr exciton-phonon coupling.
As we shall see this self-trapping produces "solitons" of great
similarity to self-localized electrons ("polarons") in synthetic
wmetals (§4), where electron-phonon coupling operstes. We list
furtber nonlinear similarites between synthetic-and bio-polymers
in §5.

3. NONLINEAR LATTICE DYNAMICS AND STRUCTURAL PHASE TRANSITIONS

§t‘2‘g noplinesrity is important in all types of phase transi-
tions '’ -~ from traditional first order (where "droplets" are
relevant) and continuous {below) transitions to more recently
considered commensurste-incommensurate (below), 2-dimensional
melting and martensitic classes. We briefly discuss one class
which should have biophysical relevance:

Order-Disorder and Displacive Transitions.

Observing structuzal transformstions in ferro- ( and anti-
ferro-) distortive (as well as ferroelectric) crystals has a long
history, but the role of intrinsic nonlinearity has on}! recently
begun to be confirmed experimentally or theoretically. Key
experimental observations may be summsrized as precursor effects
(mixed or heterophase fluctustions; the occurence of clusters of
the "wrong' phase for T 2 T , the critical temperature), central
pesks, snd soft modes. i-pﬁasizing order-parameter structures
(such as short-range clusters) represents a complementary concern
to that of "critical exponeats" and can be a considerable conceptual
tool when visuslizing critical or sub-critical dynswics and con-
structing theoretical frameworks. The temperature regime where
nonlinear (cluster) effects are most pronounced is greatest in
lowver dimensions.

The simplest sodel Hamiltonisn we might consider has the
fn-il*,r doudblz-well on-site potential (Ginzburg-Landsu expansion)

form. In one dimension (1-d) we write this ss:
nu) = 3 [Lafous) o 202, 1yt . c(,,.-u,)? (4)
|2 2t it S g 14174 '

where m i3 particle sass and the order parameter U, might pe,

e.g3., rotation, displacement (for example of » liglt mobile lattice
relative to sn immobile heavy fon or fictitious reference lattice).
For simplicity we take A<o, B>0, C>0 and all conctant. We then
have 8 crude model of » uniasxial unstadble lattice system with
barmopic ferrodistortive coupling and local double-well poentials
st each lettice site (Fig. 1a). At high temperastures we cen

expect that the parcvicles will oscillate above the double-well
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Fig. 1 (Schematic). (a) local Q‘ potential in Hamiltonian (4).
Stable modes are 1) low-T "phonons", 2) domain walls, 3)
high -T phongns; (b) soft mode~central peak character-
istics for ¢ wmodel; (c) softening of q = O phonon
(iccomplete in 1 - d). Hatched region msy sustain 1)
ond 3). Type 2) responses appear for T < To. yielding a
centrsl peak.

structure with approximately uniform probsbility distribution but
at low temperstures they will preferentislly occupy one of the
degenerate wells. Notice that we do mot include as mean-field
"Ginzburg-Landau" temperature dependence in A of the form A =
.(?-To). Ve have in mind situstions vhere To is a high mean field
scale temperature and we operate at T << T ." The model will then
have a true transition temperature 7T qnitg independent of T (in
foct T = o io 1-d). There is Do dti!tculty iacluding therldenn-ic
field SonndencC| io the coefficients apnd this is somwtimes essen-
tial ~- o8 in mesn field d,offiptiont of sultiphase equilibria or
discommensuration defects. ' Model (4) is of course highly
oversimplified in several respects. It is, however, able to
isolate dominantly nonlinear effects and consideradble generalisa-
tions asre possidble, pasrticularly within molecular dynamics
simulations.



I1f variations in U are small ‘a the scale of a lattice spacing
2= X 17X then a continuum representation is valid: lli-Ui"1 =
12(80/81)2. This situation will hold when the intersite coupling
is strong, C >|Al, snd we term it the "displacive"” limit. Kink
widths will be >>2 and the kink enerby E_ will be an "activation
energy"” for kBTsEK. The opposite regime, C << A, can be termed
"“order-disorder”; kinks will be sharp and particles distributed
with a thermsl randomization and activation energy |V | (Fig. 1la).
As we approach this limit, the discrete lattice can severely
modify the excitation dynamics. 1In the displacive regime we can
introduce a continuus Hamiltonian density and the coupled Euler-
Lagrange equations of motion for {U .} reduce to a partial differ-
ential equation for U(x). From (4)'we find

alU_ -n CZU - |AIU + BU3 =0, (5)

tt o XX
where Ci = 2C22/- is the harmonic, sound velocity for this system.
We refer to (4) and (S) as the "¢ " Hawmiltonian and nonlinear
equation respectively.

Traditionally, a sharp distinction has been drawn between
order-disorder and displacive systems. However, it is now appre-
ciated that these are merely extremes of a general class. Indeed
sufficiently close to T there is a crossover to gnév?isal order-
disorder behavior in all cases -- as is coanfirwmed ' ' by analytic
approaches and supported by molecular dynamics simulations as well
as real experiments.

Two characteristic temperatures have to be appreciated. The
first is the true long-range ordering temperature -- T = 0 in
strict 1-d and small for anisotropic coupled chains. X second
temperature, T , is no. a true critical temperature but marks an
incipient firs® order "condensation" or "local ordering" -- for
'l‘>'ro particles have sufficient energy to oscillate above the
on-site double weli structure, whereas for T < To they prefer to
oscillate in an individual displaced well; howvever for T > Tc <>
= 0 so "clusters" of particles oscillating in the same well are
separated from neighboring clusters in the other well by "domian
walls" (our kinks in the 1-d problem). The temperature T can be
characterized in variou equivalent ways. The self-consisfent
phonon approximation (SCPA) finds the optimal harmonic description
for particle oscillations and at a temperature ~ T predicts »
first order transition from ‘n-well to above-well oscillations.
(i.e. T <+ "soft mode temperature'"). It is incapable of accounting
for the®kink solutions which are the reason for an incipient
condensation only. Alternatively, one can study the single-particle
probability distribution and identify T with the temperature
below which a double hump distribution aevelops. More sensitive




sany-particle distributions must be :tudiedll for isotropic
higher-d. find according to these criterion: :BT ~
2|V 1(C/IA1)®. A very reasorable interpretation o T° s that it

is the temperature at which the kink excitations become thermally
unstable. To operate this criterion we need to include a "the' -
mally rencrmalized” kink energy at high T. This can be accomplished
spproximately by co-q!ring with static correlation function esti-
mates, which suggest

% (6)

kpT, = Ep(T ) 2 0.4 EL(0) = 21V i(C/IAD)
The "scaling” dependence on (A/C)a follows automatically from the
displacive apnroximation (5).

The SCPA has enjoyed popularity as a soft mode description
for displacive systess. It can indeed be successful in a substan-
tial range of (T, w, q) (temperature, frequency, wave-vector)
sppce but fails in certain regimes Thi SCPA replaceg -}|+|U7 + %
BU' (equ. (4)) with & (-]A] + yB<U?>) U? = MA*(T-T )U>. Thus®
distinct sectors of excitatioms space (selow) are Smitted. Calcu-
lations of the dynamic structure factor S(q,w) in 1-d can be
igierprcteg to !?ow that (i) the SCPA is valid for all T if q >

2 "(Ia1/0)* « d (the kink width 2d increases as C/A increases);
(ii) it is valid for T > To; the SCPA dispersion,
P4 2 . 2 2 2
m; = w _ + (2¢/M) (1-cos q2), with w__ = (IAI/M)(3<U">/<U™>-1)

is only valid for W > ﬁ* vhere w* is smaller for more disolacive
systems (C/A increasing). Remark (iii) is the fact that there 1s
only an incipient soft mode. In fact the strongly anharmonic
regions where SCPA fails for 1-d are characterized by the dominance
of kink excitations and the appearance of a central peak associatad
with taem.

In the displacive 1-d case in particular, a quite complete
phenomenclogy can be constructed from a knowledge of the general
traveling wave solutions to the continuum equation (3), i.e.
avagilable lattice dynamic modes. The genmeral solutions appesr,
see 2.g. Ref. 13, in the form of Jacobi elliptic functions. The
linearly stable types are illustrated in Fig. (la). Physically,
they represent (i) "low-T" or "ip-well" phonons; (ii) "high-T" or
"sbove-well" phonons ("phonon" here includes general anharmonic
periodic solutions); (iii) domain-walls or kinks. These excita-
tions give a better description of the transition vregion T ~ T
thsn the enforced harmonic modes of the SCPA. Snapshot distriBu-
tions sre not transparently "separable” for T > 7 buiarelponle
functions are such more so. As AUBRY has e-ph-liged. the sean
energy per unit length € for the three excitstions as a function
of w and q, is an important quantity. See Fig. 1 of Ref. 13.
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Note the softening of w(q=0) for low- and high-T phonons as &€ *|V |
(Fig. la). It remains to relate temperature to €¢ . In a non-inte-
grable anharmonic system equipartition of energy Between modes has
to be an approximatc procedure. However it is known that for q >
q_ (above) the available motions are essentially harmonic at all
T, so that onme can conjecture that the energy per particle to be
associated with large amplitude anharmonic motions, Ea(T)’ is

-1 b2 »
Ea(T) ~ kBT[l - qbz fqo dq | =(A/C) kBT

This procedure works remarkably well in explaining the location of
strong response characteristics at all T: a mode will be thermally
active (with signature in S(q,w)) if £ (w,q) < E_(T). Also note
that Ea(T) ~ IV |, which from Fig. 1 of Ref. 13 we expect to be
associated with the soft mode-central peak onset, implies T ~ T ~
E. (T ) as suggested in (6). To include broadening of resonances

in S{q,w) we need in general to improve this independent excitation
gas phenomenology by including interactions.

Dynamics correlation functions (and the Fourier transform
S{q,w)) cannot be calculated analytically in the strongly anhar-
monic region, however the combination Y{_qgenomenology (above) and
molecular dynamics leads unambiguously to the picture shown
schematically in Fig. 1. At low T most motions are low amplitude,
and response characteristics of an extended periodic mode ("low-T
phonon'") appear. This softens as T » T and is replaced at higher
T with the "high-T phonon'" response. TRe kink excitations give
rise to the very different central peak response. This appears as
T is lowered as a broad, low intensity resonance around the incip-
ient soft mode temperature T snd becomes shar; :r and more intense
as T is further lowered, divgrging at T = 0 (the 1-d critical
temperature). The central peak appears strongly at q = 0 and
disappears for q > q . It is solely due to the kink excitations
in the simpler modelg, and should be thought of as a dynamic and
imcomplete (i.e. having width in w and q space) Bragg peak. The
central peak width is partly determined by the inverse average
kink separation and effective kink velocity: for T ~ T there are
numerous ttable, mobile kinks but nonme at T = 0. °

In isotropic 2- or 3-d, IT -T | is substantially smaller than
in 1-d and therefore it has beef difficult to observe cluster
propertées experimentally: an excellent history is given by
MULLER.™ Success has come recently uling_%{k measurements which
discriminate between the fast phonon (~10 ""sec) and slow cluster
(~10 "sec) timescales. Real anisotropic materials such as polyTsrs
offer special advantages of a substantial Tc and large |T -T |.

It is important to emphasize that clusters are most impor an®
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physically because of their impact on dynamics and timescales (as
with "critical slowing down"). Central peaks, clusters, and slow
time: cales can have other origins, for example static or dynamic
impurities which may trap intrinsic clusters or induce similar
distortions -~ clearly these intrinsic and extrinsic mechanisms
are not mutually exclusive but part of a single unified picture.

There are now many fine examples of structurally transforming1
materials including hydrogen-bonded ferroelectrics (e.g. KH _PO,).
Quasi~one~dimensional examples include KCP, TTF-TCNQ, TaS_,, NbSe,_,
CsH, PO, (see refs. 10). 3 3

2°74

In biological contexts one can anticipate numerous examples
of ferroelectric, distortive and meltin;sphase transitions -~ some
examples have been discussed elsevhere. One of the most topical
discussions centerslgn transitions betwren structures in DNA, e.g.
the A and B phases. It is not our intention to describe the
existing literature. This is already reviewed elsewhere in these
proceedings. However, we do emphasize that the lessons learned in
the conventional solid state contexts will surely be paralleled in
biopolymers, especially because of their effective low-dimension-
ality. We must of course recognize that the "crystals’ involved
are extremely complex, and information (theoretically or experimen-
tally) on lattice structure, lattice dynawics, nge sofiening,
etc., i. still at a relatively primitive stage. Nevertheless,
we can expect that a proper appreciation of the complementary
roles of intrinsic local, large-amplitude conformational distor-
tions and quasi-harmonic extended modes and extrinsic defects will
be achieved much more rapidly if the history of soft modes and
central peaks is appreciated in the biophysics community.

Finally, we briefly mention one other general class of phase
transitions in solid state contexts where strong nonlinearity has
been extgemely important, namely commensurate-incommensurate tren-
sitions.” These occur in many situations where there are competing
interactions and periodicities and the ground state can be intrin-
sically inhomogeneous. Specifically, the system may homogeneously
accommodate one interaction ("be commensurate") for some extended
regions of space but bridge these regions with incommensurate
defects ('"discommensurations"), often described by solitons of the
SG variety, eqn. (1). The deasity of these defects tends to zero
as a transition is approached from the incommensurate side by
varying temperature, pressure, etc. This situation had achieved
little attention in solid state physics until the last few years,
but is in fact very common -- the competing interactions might be
an underlying lattice spacing, spin- or charge- or mass-density-
wave period, etc., and the discommensurations might appear in the
mags density, spin density, charge density, helical spin period,
etc, Theoretical and experimental tools have sharpened rapidly
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and there are now many excellent observations of commensurate-in-
commensBrate transitions and even of the discommensurations them-
selves. Piuning of the discommensurations by the discreteness of
the lattice or by extrinsic defects can even lead to random
("chaotic") ordering of the dascommensurations and to many nearly
equivalent metastible states. Metastability and hysteresis are
typical of this clacs of phenomens. It is very easy to imagine
competitions between interactions in biophy.ical contexts which
should fall into this general class and lead to intrimnsic structural
inhomogeneities. Indeed primi}éve arguments along these lines
bave already been put forward.

4. SOLITONS IN POLYACETYLENE AND RELATED MATERIALS

Many orgaric and organo-metallic polymeric materials represent
fine settings for the solit?a paradigm with structurai, emergetic
and transport consequences. A particular example, which has re-
ceived intensive theoretical and experimental attention is poly-
acetylene, (CH) , synthesized for example ag.a film which can be
doped to near-metallic conductivity levels.

We emphasize that the research effort devoted tc (CH) is
driven primarily by its fascinating technological potentiaf.
Nevertheless it is also fair to claim that soliton concepts have
modified the conceptual basis within which experiments and theories
are designed in the strongiy interdisciplinary field of "conducting
polymers", which includes (CH)x. In this brief repo.t, we wish to
develop the theoretical status”of (CH) modeling, because it
illustrates many general features of soliton research such as the
equivalences which solitons reveal between di.parate physical
contexts: here we will T’ke use of connections with model field
theories which are found” to have the same kink- and polaron-
soliton states as predicted in (CH)_ . Likewise the exact solubii-
ity of these field theories (using $oliton techniques) leads
naturally to explicit statements about the structure and excitations
of a wide range of other polymer models. Soluble models are of
course useful here, as elsewhere, because they can bring physical
clarity to complex teatures which are essentially preserved (e.g.
because of symmetry) when exact solubility is not possible.

Descriptions of (C¥3x from a chemical or physical perspective
can be found elsewhere. Briefly, the major synthesis effort is
now devoted to controlled synthesis-morphology-property relation
studies, both of (CH) and many other members of the growing
family of coaducting golymera. It is unlikely that (CH) will
survive as the example of prime technological interest, but its
extreme simplicity for modeling purposes has meant that it has
played a primary stimulant role for exciting experiments and
theories. Even for (CH) , new syntheses have emerged fonging from
almost totally amorphousxto near single crystal forms.



13

/é\ /é\ /L\ /é\ " ya "\
A S N /
" " " ] “/_C\N N/c_ \u
...{‘\xf‘\x/*\x/‘\._. S
" N TN,

'UI 70 % '!.;R/.

\nJ 1\,\]

o %y T e

Fig. 3.

Schematic bond structures for (a) trans-(CH)_ and (b)
gig-(CH)x. Also included are schematic plots of energy
per unit " length vs. band gap parameter A for uniform A.
Note the degeneracy in (a) corresponding to the two
equivalent ground state conformations. In (b) the lack
of degeneraiy, SE/2, has important consequences (§3).
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Intrinsic defect states in trans-(CH) and associated
electronic levels for (a) a kink, (b)"a polaron. Dashed
lines indicete localiced scate probability densities. Q@
and 8 denote charge and spin, respectively, and the
length scale £, = V /Ao. Analytic formulae for the
profiles and cgntin us atate phase phifts are given in
ref. 17. From the latter we find that a kink removes 1
state from both the conduction and valence bands, whereas
the polaron rr oves 2. This immediately explainas the
Q-5 relations.
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For our present purposes, we wish merely to considet17”8 an
idealized (CH) single chain and introduce some primitive chemical
language for the two isomers of (CH) , which we term cis and trans
for simplic ty. The situation is submarized in Fig. 2. A uniform
chain of (CH) monomers would have one unpaired n-electron per
monomer (O orbital bands lie far from the Fermi level and are not
important here) and the polymer should be a conductor. The uniform
chain is however unstable toward dimerization into the trans-(most
stable) or cis-isomeric forms in which all electrons are saturated
giving an insulator. Precisely this situation is described in
solid state as a Peierls-FrShlic?sdistortion, which for a half-
filled n-band is a dimerization.

A crucial difference between trans- and cis-(CH) is the pre-
sence of ground state degeneracy in the former, as depicted in
Fig. 2a. This will lead to the possibility of "free" ki¥§-§91i§on
states in trans-(CH)_ about which much has beea written_ _ ’ "’

In contrast only bound kink-antikink (polaromn)-solitons ~ are
possible if there is no such degeneracy. The idea of conformational
defects should be ciear as distortions of bond lengths between
possible ground state conformations -- either the same ground
state or different ones (as for trans-(CH) . Imagine rupturing a
double bond and separating the unpaired spfns, leaving free radi-
cals or, upon charging, carbanions or carbonium ions. 1indeed the
concept of S-% conjugation defects in polymers is not at all new.
The main addition from the soliton viewpoint is that the conforma-
tional defects are typically extended over many C-C lengths. This
has important consequences for energetics and dynsmics. The
conformational defects are of course accompanied by defects in the
electronic density as indicated below.

SU, SCHRIEFFER and HEEGER (SSH)18 introduced a simple tight-
binding Hamiltonian for a pure, isolated trnns-(CH)x chain:

+
- - - \
H b3 [t°+d(Un Un+l)][Cnscn+1,s+h'c'] (7>
n,s
1 2 1 .2
*2K§(Unun+1) +2H§Un

Here C:s creates an (n) electron of spin s at site n, U is the
displacement of the (CH) unit at the nth site from its Bndistorted
position, and M is the mass of a (CH) uwnit. Although very primitive
this model has some very interesting properties because of the
coupling (o) between the electronic and phonon degrees of freedom.
There are of course sdditional effects neglected in (7) which can

be quite important, e.g. interchain coupling or electro?ocorrela-
tions. These are now the subjects of inteusive studies” but we
will not consider them here.



For a half-filled nt-conduction band, SS8H demonstrated in the
sdiabatic limit that (7) is spontaneously unstable towards one of
two degenerate ground states, corresponding to the Peierls-dimer-
ized A and B configurations in Fig. 2a -- distinctions need to be
made between even and odd length chains and between sizes 4N and
4N+2 (N integer). 1In addition, they concluded numerically that
excitations or, for electron conrcentrations close tc half-filling,
intrinsic defect states in the dimerized pattern appear as kink-
or polaron-like conformational distortions, with important spin-
charge relations and consequcncies for doping or photo-generation
of carriers. The ground state and excitation structure follow
naturally in a continuum theory of (7) which is extremely eccurate
in the case of (CH)x.

The continuum limit of (7) has been given by severul authors
and in a wean-field adiabatic approximation results in thel;ollow-
ing equations for the static l-particle electron wave-fns.

Enlas () = ~1Vp 5o u () + AV, ()

€vns(¥) = HiVE 50 v (9) + AU, (¥) (8)

and the self-consistent gap equation

Ay = 2B 3 v (Du (e (v (D1 (9)

ns

S

Here y is the continuous variable, w2/2§2=K/A02, v.=24t (2 is the
undistorted lattice constant) g=4a(29ﬂ) , UAand v are tBe two com-
ponents of the electron spinor field linearized around the Fermi
surface, and A(y) is proportional tu the staggered lattice displace-
ment Un=(-1)nUn:A(y)=baU(y). The prime in (9) indicates summation
over occupied states.

The problem posed by (8) and (9) is closely connected with
“"soliton" problem,,in many other areas, e.g. superconductivity and
nonlinear optics. Alternatively, a simple transformation casts
(8) into the form of single particle Dirac equations for ma,,lels
fermions in a potential A(y), and this problem cac be shown to
be equivalent to one example of a soluble field theory of inter-
acting massless fermions. Soliton-like properties permit the
construction of analytic, closed-form exprecssions for all static
configurations -- the dimerized ground state, a kinx (X) or a
wolaron (kink-antikink, KK, bound stete). These are illustrated
in Fig. 3. The kink and polaron should b~ viewed as localized
confoimatisnal defects with associated Jocalized_electronic levels.
Note th:® unusual spin-charge relations for K or K, Fig. 3.
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There a number of generalizations of the soluble model outlined
above. Onel§mportant family of soluble models was introduced by
BRAZOVSKII. The ordered A=B alloy and the SSH model with broken
ground state degeneracy (as in cis-(CH)_ ) represent two popular
members of the family. The 50:50 alloyxis intriguing because of
the pgasibility of a mechanism for fractionally charged kink-soli-
tons. Here Hamiltonian (7) is modified by an alternating atoric
orbital on-site energy. Materials such as (poly)carbonitrile are
candidates for this model.

The SSH model with groundstate symmetry-breaking (c.f. Fig.
2b) is of extremely general importance: other Peierls-distorted
systems with multiple ground states are certainly possible but
they are far outnnmbered by materials with a unique ground state
plus one or more metastable conformations. Some of these have
potential as practical conducting polymers (e.g. polypyrroles,
poly(psra) phenylenes, polydiacetylenes, polythiophenes). The
central point is clear and independent of specific modeling.
Namely, the energy ditference between the unique ground state and
any metastsble conformations will provide a linear "confinement"
potential - imagine trying to create kink and aanti-kink and to
separste them. This means that kinks cannot be "free'" (on the
pure chain) and must bind in pairs, i.e. as polarons. The bi-po-
larons (i.e. two self-trapped charges) will be wider than polarons

but not unstable as in trans -(CH) . This general idea has now
been aggrecinted in modeling of the more complicated polymers
above. Note that bipolaruns can have the same signatures as

charged kinks, i.e. charged but spin-0. An explicitly soluble
model (u!’n§9the same soliton techniques as earlier) can be con-
structed '’ which demonstrates all the confinement features.
Introducing A(y)=A(v)+A_, where A is a constant symmetry-breaking
term, results in analytic polaron“solutions which have prerisely
the same functional form as for the trans model (7) but with loca-
tion of the ggp states (c.f. Fig. 3) atttw with w /A =cos® and
ytan®=(r/4)(n -n t;)e, with !=Ae/AA°, n~ tfe occupgtigna of the 17
gap states, and A =nvoQ/28 (a dimensionless coupling constant),

The Hamiltonian (7) describes a situation of inter-molecular
electron-phonon coupling. In many organic and organo-metallic
matecrials, intra-molecular modes are much more numerous and can be
at least as important. In fact inter~ and intra-molecular mode
coupliggn may well be in competition and this has lead Lo sugges-
tions”™" of interesting phase diagrams where they are operative
together -- both in terms of the allowed ground states and excita-
tions. The simplest model of electrons coupled to intra-molecular
phonons is perhaps the "nolisular crystal model", fnmililiain
solid state for many years, which in 1-d takes the form

16
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) (10)

]
o
M
(]
~~
-

A X2 vy a+ a
n,s n,s n,s
n,s

In (10), y_is a normal coordinate usually referring to some
internal v?bration of a molecular unit at the g-th site, with an
associated mass M and natural frequency w_. (a_ ) creates
(annihjlates) an electron with spin s at the nth sTt€. The four
terms in (10) represent, respectively, the lattice kinetic energy,
the vibrational emergy of the molecular lattice, the electronic
kinetic energy associated with moving an electron between (nearest
neighbor) sites, and the coupling ¢f{ the electron and lattice
(phonon) motions.

It will be clear how the terms inter- and intra- arise from a
comparison of (7),pnd (10). We have contrssted these models in
detail elsewhere. Here wgqnote only that (i) the molecular
crystal model was developed™™ explicitly as a generic model for
"seli-localized (or trapped)" electrons, i.e. polarons, and (ii)
despite the explicit differences b(tween (7) and (10), the polarons
which they can support are quite similar. 1In frct, in the weakly-
bound polaron limit (i.e. low-amplitude, spatially extended), the
two polarons become indentical di are described (in a continuum
theory by the NLS equation (3). Even more interestingly we note
that the same tight-binding model (10) can be, and has been,
applied to the self-localization not only of electrons but also
magnons and vibrational quants (sometimes called "excitoms"). 1In
this case a_ creates a magnetic or vibrational quanta and the
constant A Befers to the strength of magnon-phonon or exciton-phonon
coupling. Note that there is a difference of statistics between
electrons (fermions) and magnons or excitons (bosons).

We stress this last point because precisely the same model
Hamiltonian has recently been proposed in a biological context
without recognizing the very relevant solid state polaron litera-
ture -- and therefore the possibility of short-circuiting analysis,
the recognition of pitfalls, #nd the choice of appropriste experi-
rents. We refar to the subject of self-localized excitations
("solitons" of the NLS variety) due to exciton-phonon interactions
in polypeptide chains, i.e. H***N - C = 0 coupled units. The
couplin;; of the longitudinal phggonl to pep&éde vibrations has
been su;'gested both in an inter™™ and intra” " form. The biologiral



contexts may slso have lessons for the synthetic ones. For examp
polypeptide chains occur as 3 coupled strands in a-helix proteins
(myosins, e-coli, mitochondria, etc.) and the biological discussions
have also focussed attentigg on synthetic polywers with 2-coupled
strands (e.g. acetanilide)” and nearly isolated strands (e.g. in
nylon-66 and certain polydiacetylene side groups). The coupling
between chains has revealed a variety of chain-sharing localized
exciations. The question of interchain conupling is only now
receiving corresponding attention in materials such as conducting
polymers (above). Again the combined presence of inter- and
intra-molecular phonon coupling has so far been diicussed for
static excitations in the solid state literasture, whereas the
more interesting question of dynamics has been ui.llv~ted by th§6
biological concerns -- leading, for caxawple, to the suggcstion

of intra-molecular coupling acting as a transient (picosecond
scale) self-trapping mechanism nucleatins activity in the inter-
molecular modes on a longer time scale. This should have wider
applications. On the other hand, the effect of disorder (of the
lattice locations and/or site energies in (10)) has already been
considered in solid state situations with electron- (or magnon- or
exciton-) phonon coupling -- e.g. in amorphous semiconductors.
From these studies it is slready clear that disorder alone can
lead to self-localization of the elementary excitations as well as
to extended sta§$s. (This is the famous theory of '"Anderson
localization"zg 28 Since the coupling to phonons can also lead to
self-trapping ™' (less readily in d > 1 than d = 1), these
effects tend to reinforce each other, and there has been a pro-
tractegs"chicken-and-egg" discussion about their relative impor-
tance. This history will necessarily be repeated in the descrip-
tions of coexisting localized and extended stationary states in
globular (disordered) proteins, such as the lysozyme discussed by
LOMDAHL. The functional roles for self-trapned excitations in
biology remsin to be cllrigisg but they lerd themselves to
fascinating speculations. ™'

It should be clear that some of the most intriguing functional
consequences (e.g. energy or charge transduction) for localized
("soliton") objects concern their influence on transport. This is
true just as much for conducting synthetic polymeru as for biopoly-
mers. However, the story is very far from complete in either
case, We reemphasize that simple diffusive soliton transport will
probably have limited relevance in either case. In general we can
expect (thermal or quantum) tunneling to play a major role --
either of the total soliton entity or of the lelf-isngvegaexcitn-
tion -- leading to "hopping" trlnaBBrt mechanisms .~ """ °* In
addition, receut numerical studies of semi-classical soliton
dynamics have revealed unexpected subtleties, even for so simple a
model as the SSH, eqn. (7). For example, the solitons have a
maximum velocity which is unrelated to the sound speed. Again,



"breather'solitons (strongly anharmonic phonons), analagous to the
dynamic solit~ns of the NLS equation (3), are readily excited
(e.g. by laser stimulation). Soliton dynamics and traasport in
polymers leave, much to be revealed!

5. SUMMARY

There has been little space in this articl:: to mention the
many connections between solid state (e.g. syntaetic polymer) and
biophysics, with strong nonlinearity playing the unifying role.
Striking parallels occur at all important levels: analytical (as
in th¢ cas: of self-trapping mechanisms, §4); numerical techni.ues;
experiment: implications, applications, and techniques. (At
once, conve.tional solid state probes are at last being devoted to
bioprlymers but their complexity is demanding new extremes and
techniques -~ in a real sense, biopolymers are a new frontier of
materials science).

As important as the above connections is the commonality of
phenomena. These include: hydrogen-bonding (compare peptide 15
chains or DNA or cellulose with hydrogen-bonded ferroelectrics);
structural (and ferro-electric) phase transitions (3§); competing
interactions (leading, for example, to commeansurate-incommensurate
phase transitions and intrinsic structural "~<haos", §3); thermal
or quantum nucieation (which may be relevant to premelting or
intercalstion centers in DNA (see SOBELL and ref. 15); self-local-~
ization phenomena (§4); transport mechanisms (diffusion or hopping
of self-localized states, proton transport (e.g. through biomem-
branes), ionic diffusion or hopping, charge-transfer, etc., compared
with polaron transport ir molecular crystals and conducting polymers
or transport in fast-ion conductors); piezoelectricity (familiar
in synthetic polymers such as poly(vinylidene) fluoride and sug-
gested in materials such as DNA); macromolecular architecture
(e.g. in lipid bilayers) and its synthetic parallel in soligostate
polymerizations such as in single crystal polydiacetylenes.

There is no space here to give due attentinn to all these
topics. However we can conclude by reiterating two dominant
themes: (i) solitons are important in condensed matter, especially
in reduced dimensionality, for structure, energetics and transport;
and (ii) an interdisciplinary approach to strong nonlinearity has
had profound success in many other areas of the natural sciences.
It will surely yield similar benefits in biophysics, perhaps with
even more significant consequences.
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