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KINETICS OF RED BLOOD CELL AGGREGATION: AN EXAMPLE OF GEOMETRIC POLYMERIZATION*

Alan S. PERELSON and Richard W. SAMSEL

Theoretical Division, Los Alamos National Luboratory, Los Alamos, New Mexico 87545, USA,
and Division of Biology and Medicine, Brown University, Providence, Rl 02912, USA.
p)

Thye kinetics of the process by which red hlooa cells aggregate into long cylindrical, and some-
times branched, structures called rouleaux is studied within the framewdrk of both reversible
and irreversible addition and condensciion polymerization reactions. However, unlike usual
polymer kinetics, here we take into account the geometry of che subunits and the geometry cf
the growing structure. Geometric factors such as the amount of reactive wall area influence
the probability of branching and hence the final shape of the aggregate. The inclusion of loop
formation reacticns is shown to be crucial in obtaining physically realistic equilibrium solu-

tions of the kinetic equations.

1. INTRODUCTION

In the presence of macromolecules, such as
fibrinogen or dextran, red blood cells spon=
taneou.ly aggregate face-to-face to form rou-
leau -- long, cylindrical shaped objects resem-
bling stacks of coins. At a somewhat lower
frequency single red cells, or entire stacks of
cells, adhere to the wall of a cylindrical
rouleau and form branched treelike structures
and ramified networks also called rouleaux.
Figure 1 illustrates some typical structures
seen early in the aggregation = ocess. Rouleaux
constantly form 1in the microcirculation and
dissociate under the influence of high shear
forces in large blood vessels. In a variety of
disease states the adhesion between red cells is
abnormally strong and rouleaux do not break up,
leading to blood vessel occlusion. Because of
the medical importance of rouleau formaticn, we
have undertaken a numher of theorctical studies
aimed at predicting the size and shape of rou-
leaux under i{dealized conditions (1-4). This
work can be considered a first step in determin-
ing the conditions under which rouleaux cause
circulatory blockages and abnormalties in the
rheclogical properties of blood. For simplicity
in setting up tractable models we have assumed
collisions among red cells and rouleaux are
fsotropic and describable by rate constants and
mass-action kinetic laws,

A succession of mocels will be presented.
During the early stages of rouleaux formstion
single cells are the predominant species and
hence collisions betwean single cells and be-
tween single cells and smal) aggregates are the
most common events. We thus model this first
phase of the reaction as an addition reaction
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FIGURE 1
Rouleaux that formed spontaneously in
diluted human blood when placed upon
a microsope s)ide,

(Sectfon 2). After single cells are depleted,
collisions between aggregates predominate. In
Section 3 we mode) this phase of the process by
allowing both additon and condensation reac-
tions. Wher rovleau: get larger than about 10
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cells they have a tendency to branch. In Sec-
tion 4 a geometric model is introduced. Using
uiis model in Section 5, both the size and
degree of branching ("shape") of treelike rou-
Jeaux are predicted. Because branching occurs
during the later stages of the process, we allow
the reactions at this stage of the aggregation
process to be reversible. In the final stages
of the aggregation process, aggregates either
join together and grow so large as to become the
equivalent of a gel, or large aggregates become
sufficiently separated in space that further
reactions between them become unlikely. In
either case, free ends within an aggregate react
with sites on the aggregate, and loop forming
reactions occur. Section 6 discusses some
preliminary models of loop formation, followed
by a brief conclusion (Section 7).

2. ADDITION MODELS

Consider a monodisperse population of red
cells at concentration E. that aggregate via
irreversible erythrocyte-grythrocyte reactions
with rate constant and via irreversible
erythrocyte-rouleaux reactions with rate con-
stant k, . Here we define a rouleau as any
aggregate ccntaining two or more red cells. Let
E, R, and R(n) be the concentrations of free
erythrocytes, total rouleaux, and rouleaux of

size n. Then in nondimensiunal varfables one
finds

dE'/dt’ = -kE'Z - E'R' ,  E'(0) = 1 (1)
R'/dt’ = 3 kE'Z , R'(0) =0 (2)

dR’(2)/dt’ = % KE'2 - E'R'(2), R'(2,0) = 0 (3)

dR’(n)/dt’ = E'[R'(n-1)-R’(n)], R'(n,0) = 0 (4)

where k = kq/ky , E' = E/Eg, R" = R/E , R'(n) =
R(n)/Ep and t’ = kyEp. Although these equations
cannot be solved explicitly, one finds for k =
2, that the substitutfon U = 1/(E'+R’) leads to
the results (1)

B = U 3 (1-2n V) (5)
and
t' = e[E;(1-2n V) - E;(1)] (6)

whrre £1(1) is the exponential integral of order
1 and e {s the base of the natural logarithms.
Solving Eq. (6) for U(t'), either asymptotically
or numerically, allows one to find E'(t') from
Eq. (5) and hence R'(t') and R'(n,t'). In
particular, {n the limit t’' + o E’' + 0, hence U
+ e and R' =+ 1/a.  Further results based on
numerical studies are reported in (1),

When k # 2, Hendriks and Ernst (5) have shown
that a related procedure can be used. Reparame-
lerizing time so that

dv = E'(t’ 4t , )]

Eqs. (1)-(4) become a linear system that can be
solved in a straightforward manner for E’(1),
R’'(t) and R'(n,t). However, to find the solu-
tions as a function of t’, one needs to evaluate
the integral.

o= T e () e (8)

When k = 2, this integral reduces to Eq. (6) and
one finas v = 2n U.

For 0.1 s k § 10, a range that spans most
biologically reasonable values, the mean size of
an aggregating unit, U, where a unit is either a
single cell or a rouleaux, approaches a value
close to 3 (1). In many experiments only small
aggregates in this size class form (6,7), and
qualitative agreement between theory and exper-
iment is found. However, as shown in Fig. 1,
much larger rouleaux commonly occur. From this
we deduce that collisions among rouleaux must be
significant. Moreover, collisions between rou-
leaux leading to large aggregates have been
observed (1).

3. CONDENSATION MODELS

Modifying the addition theory by including a
condensation reaction with rate constant kc‘ one
finds

2

dE/dt = - k€2 - K (9)
dR/dt = } k.Ez -3 kckz (10)
1y g? "3 R(m)
dR(2)/dt = 3 k E% - Kk ER(2) - k_R(2) & R(m
2 % a c =2
(11)

n=2
dR(n)/dt = K E[R(n=1)-R(n)] + % ke ZZR(n-m)R(m)
m=

[ ]
-ch(n) IRmM , n=e34,.... (12)
m=2

wWhen ke = ky = ke, these equations reduce to the
Smoluchowsk? coagulation equation with R(1)
replaced by E. Numerical studies of Eqs. (9)=
(12) are reported in (1) and some analytic
results in (5). Comparison with our data (1)
indicates that kc < k. and kc < k..

4, AN IDEALIZED GEOMETRIC MODEL
To predict the degree of branching in rou-
leaux & different class of models is needed that

includes geometric {nformation. These are
described briefly below and more fully in (1)
and (4).

Consider a red blood cell to be a cylindrica’
disk of radius r and height h, with two faces



each having surface area e = nr2 and a wall
having surface area w = 2nrh. The average
diameter of a human red cell is approximately
8um and h/r = .62. Thus, the diik representing
a red cell is about one third as high as it is
wide. Red cells adhere face-to-face to form
cylindrical stacks, the surface area of which
can easily be caiculated.

The cylindrical shape of rouleaux is due in
part to a realignment of cells that occurs after
cell-cell contact is made. A stack increases in
Tength when a red cell adheres to a smal} elon-
gation zone at the end 5f the stack. Because
red cells are flexible and are able to move
relative to one another, the elongation zone
comprises the exposed face of the last cell in
the stack and a portion of the adjoining wall.
A cell that adheres to this portion of the wall
wili move to the end of the stack and orient
itself so that it adheres face to face. Phnto-
graphs of the various stages in this process are
presented in (1).

The two elongation zones at the free ends of
a stack are called caps because they resemble
the cap on an object such as a fountain pen.
The area of & cap, a., {s a parameter in the
wodel that can be chofen so that the cap is the
end of the stack (i.e., a = e) or a true elon~
gation zone (e.g., a_ = e+w), A branched rou-
Teau 1s modeled as an aggregate of linear stacks
called segments connected at right angles.

We first study rouleaux containing no loops.
Such rouleaux can be characterized by n, the
number of cclls they contain and ¢, their num-
ber of caps. By definition, a rouleau contains
two or more cells, n 2 2. Let R(n,c) bc the
concentration of treelike rculeaux with n cells
and ¢ caps. Using this description of rouleaux
we have no information about the length of the
various egments comprising a rouleau. Thus we
2180 cuapute 5(n,c), the concentration of seg-
ments within rouleaux containing n cells and ¢
caps. A segment has at most 2 free ends and
thus for segments ¢ S 2.

5. KINETICS OF GROWTH
5.1. Variables
Assume treelike rouleaux grow and decay by
the reversibla polycondensation and addition
reactions shewn {in Fig. 2. Loop forming and
wall~-wall reactions are fgnorad for the present,
We describe the growth of rouleaux at two levels
«=first, in terms of the following macroscopic
descriptors of the procvss from which one can
deterning the mean size and thape of rouleaux:
E - the concentration of erythrocytes
R = the concentration of rouleaux (aggregates
containing two or more cells)
S - the concentration of segments within rou-
Teaun
M ~ the concentration of caps on rouleaux
W = the concentfation of reactive wall area
(non-cap surface area) onh rouleaux

T - the total concentration of surface area
in rouleaux
--and second, in terms of the complete distribu-
tions S(n,c) and R(n,c).
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FIGURE 2

Diagrammatic representation of reactions
that generate rouleaux. (a) Two erythro-
cytes react with rate constant per unit
area kgo. (b) An erythrocyte reacts with
the cap on a rouleau with rate constant
per unit ares ko . This reaction elon-
gates the rouleau, (¢c) An erythrocyte
reacts with the wall of a rouleau to
fnitiate a branch with rate constant k.
(d) Two rouleaux react via a cap-cap
interactior with rate constant per unit
area gf . (e) Two rouleaux react via a
cap-wa f interaction with rate constant
kcw: The reverse reactions and their rate
constants are also shown. (Reproduced
with permission from Ref. (4)).

5.2 Macroscopic Equations
The macroscopic variables obey the following
equations

. 2
dt/dt = kee°eE

- kecacME - k.wEN

r r
+ 267 ,5(2,2) + kg, S(1,1)

V4 [
+ k:c I I cS(ne) . (13)
¢x0 nac+l



2 .
acM kMW

2
B = - k w -
dM-at keeaeE e-E K Cw

cc

r L r -
. ZkeeS(Z.Z) ke_S(l,l)

r 2 bt
. 2K b3 z (n=c-1)3S(n,c)
€€ =0 n=c~+]
T 2 bl
- K z I (2-c)S(nc) . (14)

" €= n=c<}

- A e r3 o (on ! ,
aw-dt = (w ac e)keeaeE -kecacME (w ac)ke'EH

L2 2
- - M - )
(a_ e)kccac - (ac Ze)kc_WH

DY I r - ilo r
- 20wmal e)keeS(Z!Z) (w ac)ke_S(l.l)

2 E
- e z z cS{n.C)
€C =0 nzesl
r 2 g
- Ziac-e)kc_ z 3  (n-c-1)S(n.c)
v =0 n=c+1
r < =
- (uc-Ze)kci b I (2-¢)S(n.c) (1%)
¢=0 n=c+1
S = (IEZE)[KEG-E)w - (7e'ac)M W) (16)
T=w-=-Ma . (17)
ang
R=M-5§ | (18)

where E, 15 the total concentrazion of erythro-
cytes 1R the system, and the rate constants are
defined in Fig 2 Thc forwara rate constanis
governing collisions betwgsen ropleaux are all
given in units of concentratirn™ per unit area
per unit time. Thyus tre areqc of a cap, a_,
erythrocyte a_, wall of an erythrocyte w, aha
the face or efu of an eryihrocyte, @, 811 enies
the equations By separating out “.ese geomet-
ric factors from tne basic forward rate con-

stants we can independently study the effects of
geometry and collision rate. The equation for w
is the most novel in that it keeps track of the
gain or loss of wall arsa in rouleaux for each
reaction depicted in Fig. 2. Detaied deviations
of these equations are given in Samsel and
Perelson (1) For 1{1llustrative purposes we
ingicate how Eq. (13) is derived. Tne forwara
reaction terms describe the loss of free erytn-
rocytes by collision with other erythrocytes, by
collision witn a cap, and by collision with a
wl]1l of a rouleaux. Tne reverse reaction terms
describe the dissociation of a two-cell rouleau
[i.e., S(2,2)] contributing two free cells, the
aissociation of a one-cell segment from a wall,
ang the dissociation of tnhe terminal cell on a
segment containing one or two caps

Under the assumption that the five rate
constants for the reverse reactions shown 1n
Fig. 2 are equal, cne can evaluate the summa-
tions in Eqs. 13-15 If we define k_ s¢ that

r r r r r -
= k = = = k = Gy
e ee = ec T Kew e~ few ¢ s
it is easy to show tnat
GE/at = - k__aE2 -k _aME -k Ew=+kM (20)
ee e ec ¢ ew r
aM-at = k_ a [2 « k EwWw - k__a M2 - k_ Mw
ee e ew cc C Cw
- el - 3 - -" )
‘kr‘(El: E.) 9 rM . (21)
and

; = - +*0) 2. - -
aw/dt = (w a e)k.eeeE -kecchE (w ac)ke_Ew

2
- =)k M~ - =2ejk  Mw =+
(acme)k o (a-2e)k. |

=k (w- 28 '£0)(E0-E-M§ koW (22)

While the reverse reaction terms in Eas 20-22
are ;urprisingly simple when Compared with the
correspor.ding terms -~ Eqs 13-15, they do nut
seem to be intuit .ely transparent

53 Microscopic Eq.ations for S(n.c)

The growth and decay of segments within
rouleaux a-e easily descrivable (4; For the
case in which all the reverse rate constants are
equal, one finds

ds(1.1)/dt = k.HEH - k.cnciéil.l)



- kccacMS(l.l) - kchS(l,l)

+ k. {25(1,0) - §(1,1)

+ 2 [28(n,0) + S(i,, 1))} . (23)
n=2

1

_1 2
d5(2,2)/dt = 5 Ky, 8,

- 2kecacES(2,2)

- 2kccac5(2.2)M - chwS(Z,Z)W

+ K (5(2,1) - 5(2,2)

+ 2 [8(n,1) * 25(n,2)]} . (24)
n=3
1 n-1
ds(n,0)/dt = kchS(n,l) *3 kccac kil

x S(k,1)S(n-k,1) - kr(n*l)S(n,O)

(25)
ds(n,1)/dt = k, & E[S(n-1,1) - 5(n.1)]
n-1
+ 2k .8, kiz S(k,2)5(n-k,1)
- ke A MS(N,1)
+ k W25(n,2) - 5(n,1)]
+ kM @ S(k,1)+2 I S(k0)] (26)
k=n+1 k=n

dS(n,2)/dt = Zk.clcE [S(n-1,2) - 5(n,2)]

n-2

+ chc.c kEZ S(k,2)5(n-k,2)

- ZKCCaCS(n,Z)M - ZKCWVS(n,Z)

+ k& 3 (8(k,1) + 25(k,2)] - nS(n,2)}
k=n
(27)

5.4 Detailed Balance

Using the principle of detailed balance one
can show (1) that the five forward rate con-
stants are not independent. In fact, one finds
that

2
k" a
_ ec’c
kee = Kee2e (28)
and
k k. a
_ cwec’c
kcw’ keeae (29)

If we view a red cell as a segment of length one
with two caps, then either of these two caps
could attach to the end of a growing segment in
a typical cap-cap reaction. Hence we assume

Kee = 2kcc : (30)

As a consequence of Eqs. (28)-(30) we need only
define two forward rate constants

kcz kcc = kec/z = keeae/4°c . (3la)
and
ky, 2 kcw = kew/z R (31b)

where ke is the rate constant for elongation
reactions and k_ the rate constant for branch-
ing reactions.

5.5 An Exact Solution

Viewing each face of a red cell as a re-
active site, we can use probablisiic methods, &
la Flory (B8), to solve Eqgs. (23)-(27) with the
rate constants chosen as in Eq. (31). As shown
in (4), we find

2.n-1

$(n,0) = Eopwp , n=1,2,... (32a)
s(n,1) = 26"t L n= 1,2, (32b)
$(n,2) = Eopfp"'l ,  neE23,... (32¢)

where



_Z2E+M
_25-M
P ™ TR, (330)
E,.-E-S
p = -2 (33c)
£

and E, S, and M are given by the solutions to
Egs. (20)-(22) and (16)-(18). Rather than
determining how E, S, and M vary with time by
solving the differential and algebraic equations
(20)-(22) and (16)-22), one can, by differenti-
ating Eq. (33) and making various substitutions,
determine that pe and p_ and p satisfy the
folluwing equations:

dpg _ 3 ‘(s -
T kwEo(Zac-Ze-w)pf + 2E0[ w(aC e)
- k.a ]p2 ~ (k E wtk )p
¢t f w0 r'Tf
+ 2ekwE0pfpw + kr , (34a)
dp
wo_ coacwynd - -e3n2
T - kwEO(ZaC 2e w)pf 2kw50(°c e)pf
+ wkwEopf - 2ekw'r.0pfpw - krpw . (34b)
and p may be determined from
P(t) =1 = pe(t) - pY) (34c)
Further one can show that (4):
E=Ep? (35a)
o f
S=E(pe * P, - pz) (35b)
o'\Ps w f
M= ZEopf(l - p') (35¢)
R = Ey(p, - Py = P2) (35d)
o'Pe ~ Py " Py
and

W= £l - p) - 20p,(1 - py)

+ 2e(ps - b, - p%)] . (35e)

Numerical solutions of Egs. (34) and (35) are
given in (4). From these solutions one can
determine various mean quantities describing the
rouleau size and shape distribution such as

w> o= (EB-E)/R, the mean number of celis per
ro

leau

<>, = (E ~E)/S, the mean number of cells per
segment ,

= E./(E+R), the mean number of cells per
ufit, (36)

>, = E./{E+S), the mean number of cells in a
straight chain unit,

<b> = S/R, the mean number of branches or
straight segments per rouleau,

and

<¢> = M/R, the mean number of caps per rouleau.

In (4) we present detailed studies of how these
mean quantities change with respect to the blood
hemotocrit (~ E_), and the rate constants k_,
k , and k_ over Qhe biologically relevant paraﬁ-
eler randes. Comparisons with data are also
given. We find that by choosing the appropriate
parameter values, our model generates good fits
to existing data. However, very detailed data
about the aggregate size distribution, ecpecial-
ly when the aggregates grow large, does not yet
exist.

Forming the kinetic equations for R(n,c) is a
more complex matter. Samsel and Perelson (1)
derive the appropriate equations under the
assumption that the aggregation process is
jrreversible.

In the presence of fragmentation, the forward
reaction equations combined with the equilibrium
solution (2,3) and the principie of detailed
halance, can be used to construct the appropri-
ate fragmentation terms (9). Vvan Dongen and
Ernst (10,11) demonstrate this procedure in the
context of a simplified rouleau model, and hence
it will not be dealt with her..

5.7 Equilibrium Solution

Setting the time derivatives to zero in Eq.
(34) allows one to find the equilibrium values
of pg¢, or. and p and hence the equilibrium val-
ues of all the macroscopic variables €, M, W, §5,
T, and R, and th: mean quantities given in Eq.
(36). Detailed studies of the equilibrium solu-
tion are presented elsewhere (4).

When ky/ke 1% large and the reverse rate
constant k_ low, our numerical studies show that
agyregates’ grow infinitely large (Fig. 3) sig-
naling the occurrence of a sol-gel phase tran-
sition. If we use our mode! to compute equi-
1ibrium solutions past the gel point, we find
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FIGURE 3

Equilibrium solution of the reversible
rouleaux equations exhibit a divergence
similar to a sol-gel transformation when
k' = kyw/ke a. reaches a critical value.
"ere kp = kp /kcacE, = 0.1. Note in (a)
that both <>, the mean number of cells
per rouleau, And <b>, the mean number of
branches per rouleau, » = as the nondimen-
sfonal equilibrium concentration of rou-
leaur R’ = R/E, = 0 in (b). (Reproduced
from Ref. (4) w?th permission).

the concentration of rouleaux is negative. The
reason is simple: 1{f the total concentration of
caps is positive, the mode) predicts that cap-
cap or cap-wall adhesions occur, thus reducing
the number of free rouleaux even if all cells
are in one infinite aggregate. From Eqs. (16)-
(18) and (20)-(22) one finds

1 2 _1 2 .
dR/dt = 3 k.eaei 3 kcc‘c" kcwa

+ kr(EO ~E-M-R) . (37)

Thus as E and R approach zero with M > 0 the
negative terms dominate, and dR/d’ < 0. We thus
can use R < 0 as & criteria for being past the
gel point.

In our experiments we generally do rot see
infinitely large aggreqates. Rather the con-
centration of free caps appears to be reduced by
loop formation.

6. LOOP FORMATION

6.1 Mechanisms of Loop Formation

The final stage of rouleau iormation is
characterized by the presence of large aggre-
gates with many caps. In a fluid the segments
within rouleaux move and are sufficiently flex-
ible to form cyclic structures (see Fig, 1).
Loops can be formed when two caps join or when a
cap encounters a wall and sticks to it. A loop
may also be formed when the wall on a flexible
segment folds back and joins to another segment
of wall on the rouleau. Keeping track of the
gmount of reactive wall area annihilated in such
wall-wall reactions is a difficult and yet
unresolved problem. Loop forming cap-cap and
cap-wall reactions can be incorporated into our
kinetic model. Here we indicate one way in
which this may be done. In a future publication
we plan to discuss a number of altern-tive
models for loop formation.

6.2 A Simple Mode)

Loop formation is a reaction that takes place
within individual rouleaux. Using macroscopic
variables we can describe loop formation in an
average sense. The average number of caps per
rouleaux is M/R. Assuming that in. the neighbor-
hcod of every cap there is a constant density of
other caps, and that the caps lie.on segments
that are sufficiently flexible that the length
of the segment is irrelevant in determining the
motion of the cap, then the average rate of
cap-cap reactions can be expressed as

kg2 REDEK = DHE - 1) (38)

where k, 1is the forward rate constant for loop
forming tap-cap reactions and H(*) {is a heavy-
side function included to insure that cap-cap
reactions are only considered when the average
number of caps per rouleau is greater than one.
To model the situation in which cap-cap reac-
tions are only important when the average number
of caps per rouleau is large, say M/R > ¢ >

1, one can replace Eq. (38) by min

2
M M
koee B Mg - Cmin) (39)

Loops can also form by cap-wall reactions,.
The concentration of reactive wall per rouleau
is W/R, and thus by analogy with the above
derivation, the rate at which loops form by
cap-wall reactions fis

M, W
ko & HR ™ ¥min) (40)



where is the forward rate constant char-
acter1zfﬁ§ cap-wall loop forming reactions and

is the minimum wall area required before
sﬂ&ﬂ reactions need be considered.

By including loop forming reactions in our
basic model M » 0 as R + 0. (To see this,
notice that the rate of loop forming reactions
that destroy caps becomes unbounded as R » 0.)
Thus R never goes negative, and our model re-
mains valid for all parameter values. These
models for loop formation are very simple, but
yet illustrate the major point that loops become
common as aggregates grow large, i.e., R =+ 0.

7. CONCLUSIONS

Determining the size and shape of red cell
aggregates that can form in the circulation is
an important practical medical problem. Here we
have tried to show via idealized models that, by
including geometric factors in pnlymerization
reactions corresponding to collision cross-
sections, one can keep track of both the size
and degree of branching of rouleaux that develop
under conditions of isotropic, random colli-
sions. Qur models are examples of analytic
attempts to understand cluster-cluster aggre-
gation by combining polymerization kinetics with
geometry.
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