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KINETICS OF RED BLOOD CELL AGGREGATION: AN EXANPLE OF GEOMETRIC POLYMERIZATION*
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Th~ kinetics of the process by which red hlooa cells aggregateinto long cylindrical, and some-
times branched, structures called rouleaux is studied within f.heframework of both reversible
and irreversible addition and condens~i.ionpolymerization reactions. However, unlike usual
polymer kinetics, here we take into account the geometry of ~he subunits and the geometry cf
the growing structure. Geometric factors such as the amount of reactive wall area influence
the probability of branching and hence the final shape of the aggregate. The inclusion of looP
formation reacticns is shown to be crucial in obtaining physically realistic equilibrium solu-
tions of the kinetic equations.

1. INTRODUCTION
In the presence of macromolecules, such as

fibrinogen or dextran, red blood cells spon-
taneously aggregate face-to-face to form rou-
leau -- long, cylindrical shaped objects resem-
bling stacks of coins, At a sonwwhat lower
fr~quency single red cells, or entire \tacks of
cells, adhere to the wall of a cylindrical
rouleau and form branched treelike structures
and ramified networks also called rouleaux,
Figure 1 illustrates some typical structures
seen early in the aggregation ~ ocess. Ruuleaux
constantly form in the microcirculat.ion and
dissociate under the influence of high shear
forces in large blood vessels, In a var{ety of
disease states the adhesion between red cells is
abnormally strong and rouleaux do not break up,
leading to blood vessel occlusion. Because of
the medical importance of rouleau formatioil,we
have undertaken a number of theoretical studies
aimed at predicting the size and shape of r6ti-
leaux under idealized conditions (1-4). This
work can be considered e first step in determin-
ing the conditions under which rouleaux cause
circulatory blockages and abnormalitiesin the
rheologlcal properties of blood, For simplicity
in setting up tractabl~ models we have assumed
collisions amon~ red cells and rouleaux are
isotropic and describable by rate constants and
mass-action kinetic laws,

A succession of mooels will be presented,
During the early stages of rouleaux formation
single cells are the predominant speci@s and
hence collisions between s{ngl~ cells end be-
tween single CQ1lS and small aggregates ere the
most common events, We thus model this first
phase of the reaction as an addition reactfon

FIGURE 1
Rouleaux that formed spontaneously in
diluted human blood when placed upon
a microsope slide,

(Section2). After sfnglr!cells are depleted,
collisions butween aggregates predominate. In
Section 3 we model this phase of tha proress by
allowing both addlton and condensation rQac-
tions. Wher ro’lleau~get larger than about 10

*Wofi performed under thc auspicek of the U.S. Lhpartment of Energy. A,s,P, is the rec!p{ent of
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cells they have a tendency to branch, In Sec-
tion 4 a geometric model is introduced, Using
ti-,!smodel in Section 5, both the size and
degree of branching (“shape”) of treelike rou-
leaux are predicted, Because branching occurs
during the later stages of the process, we allow
the reactions at this stage of the aggregation
process to be reversible. In the final stages
of the aggregation process, aggregates ?ither
join together and grow so large as to become the
equivalent of a gel, or large aggregates become
sufficiently separated in space that further
reactions between them become unlikely. In
either case, free ends within an aggregate react
with sites on the aggregate, and loop forming
reactions occur. Section 6 discusses some
preliminary models of loop formation, followed
by a brief conclusion (Section 7).

2. ADDITION MOOELS
Consider a monodisperse population of red

cells at concentration E that aggregate via
irreversible erythrocyte-~rythrocyte reactions
with rate constant ~ and via irreversible
erythrocyte-rouleaux reactions with rate con-
stant ka . Here we define a rouleau as any
aggregate containing two or more red cells, Let
E, R, and R(n) be the concentrations of free
erythrocytes, total rouleaux, and rouleaux of
size n+ Then in nondimensional varfables one
finds

dE’/dt’ = -kE’2 - E’R’ , E’(0)= 1 (1)

dR’/dt’ = jkE’2 , R’(0)=0 (2)

dR’(2)/dt’ = j kE’2 - E’R’(2), R’(2,0) =0 (3)

dR’(n)/dt’ = E’IR’(n-l)-R’(n)], R’(n,O) =0 (4)

where k = ke/&, E’ = E/E R’ = R/E , R’(n) =
R(n)/EO c!ndt’ = kaEO. i’Alt ough these equations
cannot be solved explicitly, one finds for k =
2, that the substitution U = l/(E’+R’) leads to
the results (1)

E’ = U-l(l-flnU) (5)

.snd

t’ = e[El(l-k?nU) - El(l)] (6)

wh~re El(l) is the exponential integral of order
1 and e is the base of the natural logarithms,
Solving Eq, (6) for U(t.’),either asymptotically
or numerically, allows one to find E’(t’) from
Eq, (5) and hence R’(t’) and R’(n,t’), In
particular, in the limit t’ +m, E’ + O, hence U
+ c and R’ + l/@, Further results based on
numerical studies are r~ported in (1),

When k # 2, Hendriks and Ernst (5) have $hown
that a rel.stedprocedur~ can be used, Reparame-
tcrfzing time so that

d~ = E’(t’;dt’ , (7)

Eqs. (l)-(4) become a linear system that can be
solved in a straightforward manner for E’(r),
R’(z) and R’(n,~). However, to find the solLl-
tions as a function of t’, one needs to evaluate
the integral.

t’ +j [E’(T’)]-ld~’ , (8)

When k = 2, this integral reduces to Eq. (6) and
one finds T = i?nU.

For 0.1 S k S 10, a range that spans most
biologically reasonable values, the mean size of
an aggregating unit, U, where a unit is either a
single cell or a rouleaux, approaches w value
close to 3 (1), In many experiments only small
aggregates in this size class form (6,7), and
qualitative agreement between theory and exper-
iment is found. However, as shown in Fig. 1,
much larger rouleaux commonly occur, From this
we deduce that collisions among rouleaux must be
significant. Moreover, collisions between rou-
lmaux leading to large aggregates have been
observed (l).

3. CONDENSATION NOOELS
Modifying the addition theory by including a

condensation raaction with rate constant k., one
finds

dE/dt = - keE2 - kaE?

dR/dt = ~ keE21- ~ kcR2

dR(2)/dt= ~ keE2 - kaER(2)

dR(n)/dt= kaEIR(n-l)-R(n)J

m
-kcR(n) 2 R(m) ,

m=2

b

(9)

(lo)

.
- kcR(2)nZ2R(m)

m=2
(11)

+1 -~ kc”Z~R(n-m)R(m)

n=3,4,,,, , (12)

When ke = k = kc, these equations reduce to the
~~~:~w\$Ecoagulation equation with R(1)

Numerical studies of Eqs. (9)-
(12) are reported in (1) and some analytic
results in (5). Comparison with our data (1)
indicates that kc < ke and kc < ka,

4. AN IOEALIZED GEOMETRIC NOOEL
To predict the degree of branching in rou-

leaux a different class of models ic needed that
includes Qeometr{c information. These are
dascrfbed briefly below and more fully in (1)
and (4).

Consider @ red blood cell to be a cylindrical’
disk of radius r and height h, with two faces



each having surface area e = nr2 and a wall
Fmving surface araa w = 2nrh. The average
diameter of a human red cell fs approximately
8pm and h/r = .62. Thus, tha disk representing
a red cell Is about one third as high as It is
wide. Red cells adhere face-to-face to form
cylindrical stacks, the surface area of which
can easily be calculated.

The cylindrical shape of rouleaux is due {n
part to a realignment of cells that occurs after
cell-cell contact is made. A stack Increases in
length when a red cell adheres to a small elon-
gation zone at tha end of the stack. Because
red cells are flexible and are able to move
relative to one another, the elongation zone
comprises the exposed face of the last cell in
the stack and a portfon of the adjoining wall.
A cell that adheres to this portion of the wall
wili move to the end of the stack and orient
itself so that it adheres face to face. Phnto’”
graphs of the various stages in thfs process are
presented in (1),

The two elongation zones at the free ends of
a stack are called ~ because they resemble
the cap on an object such as a fountain pen,
The area of a cap, a , is a pnrameter in the
I,lodelthat can be cho$en so that tha cap is the
end of tha stack (i.e., ac = e) or a true I?1OIV
gation zone (e.g., ac = e+wl. A branched rou-
laau Is modaled as ar,aggregate of linear stacks
called segments connected at r~ght angles.

We first study rouleaux containing no loops.
Su,:h rouleaux can be characterized by n, tha

number of CC1lS they contain and c, their num-
b~r of caps, By definition, a rouleau contains
two or more cells, n 2 2, Let R(n,c) br the
concentration of traelike r6uleaux with n cells
and c caps, Using this description of rouleaux
we have no information about the length of the
various tgments comprfs{ng a rouleau. Thus we
elso c~,,lpute$(n,c), the concentration of seg-
mants within rculeaux containing n cells and c
caps, A segment has at most 2 free ●nd~ and
thus for sagments c 5 2.

5. KINETICS OF GROWTH
5,1, Variables
Assum~ tr~elika rouleaux Grow and decay by

the reversible polycondentatlon and addliion
reactions shcwn in Fig. 2, Loop formfng and
well-wall ruact.ionsart ignored for th~ pras~nt,
We desc!ibe tha growth of rouleaux at two levels
--first, in terms of the follow{ng macroscopic
descriptors of the procuss from which orm can
d~terl,linetha mean ~ize and tih9p(!of rouleaux:

E-
R-

s-

M-
W“

the concentration of arythrocytes
the concentration of roulaaux (aggregates
containing two or mor, cells)
the concmtratim of sagments within rou-
l~auh
the concentration of caps on rouleau~
the concentration of reactive wall area
(non*cap surfact area) on roultaux

T- the total concentrat~on of surface area
in rouleaux

--and second, in terms of the complete distribu-
tions S(n,c) and R(n,c).

b)

(M

48}

{d)

(9I

u %

FIGURE 2
Oiagremmatfc representation

o ) )

of reactions
that generate rouleaux. (a) Two erythro-
cytes react with rate constant per unit
area kee, (b) An erythrocyte reacts with
the cap on a rouleau wfth rate constant
per unft area kec, This reaction elon-
gates the roulaau, (c) An erythrocyte
raacts with the wall of a rouleau to
initiate a branch with rate constant kew.
(d) Two rouleaux react via a cap-cap
Interaction with rate constant per unit
area

?f
(a) Two rouleaux react via a

cap-wa ‘interaction wfth rate constant
k Th~ reverse reactions and thair rate
c%star’tts are also shown, (Reproduced
with perm{ss{on from Ref. (4)).

5,2 Macroscopic Equations
Th@ macro~copic vlriables obey the following

eauations

dE/dt = - keeaeE2 - kecacME - k@wEW

+ 2k:eS(2,2) + k;wS(l,l)

(13)



cJM-ot = keeaeE2 + keWEw - kccacM2 - kcww

. Zk:es(z,z) - k;ws(l,lj

ai..at = (W-ac+ejk a E2- wkecacME - (W-ac)keWEW
ee e

- lac-e)k:cacM2 + [ac-2e}k~w.w

- z[--ac-e)k~es(z,z) - (w-ac)k~ws(l,l)

,2=
- WI! z z c!i(fimcj

‘c c=Q n=~.1

T ❑ w-t4a
c’

(17)

ana

1?= M- S . (18)

-ner~ E IS tne total Cuncorltra:iwr of ●rythro-
Cytos lR tnt tYstem,anrltha rate constants are
a~ffnaa In Fig 2 TW foruara rate constanLs
govarn~ng collisions l)9t_QQ~ r3 Igaux ar~ all
g!wcn in units of concontr~ti-n-! Der mft area
g~r Unit tfme. ThuS tpg •r~+c of a cap, a ,

@rythrocyt. ~ . wall Of an ●rythrocyte W. Ja
ths face or gflaof m ery:nrocjft9.e, 411 WI:CI-
the ●quations BY sevaratlng out ‘.lese~aomet=
r!c factors from tne Basfr forward rat~ con-

stants we can independently study the effects of
geometry and collision rate. The equation forw
is the most novel in that it keeps track of the
gain or 10SE of wall arga in rouleaux for each
reaction depicted in Fig. 2. l)etaf~ea deviations
of these equations are given in Satrisel and
Perelson (1) For illustrative purposes we
inaicate how ECI. (13) is derives. The forwara
reaction terms describe the 10ss of free erytn-
rocytas ry collision with other erytnrocytes. OY
collision tiitn a cap, and by collision wfth a
WJ1l of a rouleisux. Tne revarse reaction terms
descriDe the a+ssociati~n of a t-o-cell roulea.
[i.e., S(2,2)] contributing two free cells, tne
association of a one-cell segment from a wall.
ana tne dissociation of tne terminal cell on a
segment containing one or two caps

llnaer the assumption that the five rate
constants for the reverse reactions strewn in
Fig. 2 are etaual, one can e.aluate tne summa-
tions in Eqs. 13-15 ]f we aeflne kr so that

l(r ~ kr ❑ kr = kr = kr =kr
ee ec ew cc Cw .

it is easy to snow ttiat

aE~at = - keeaeE2 - kecacME - keWEw

aM;at = k eeae[2 - kewEw - kccacM2 -

+ 2kr(EC-E~ - ;$ M .r

and

kcwt.iW

(21)

aw;~t = (W-ac*e)kee@eEz--k a ME - (W-ac)keWEwec c

- (ac-e)kccacM2 - (ac-~ejk MM *Cw

- kr(- - 2a ,:@)(EO-E-M) ‘krw (221

wnfle tne ra.erse re~ction terms In Eas 20-22
are surprisingly simple wrlen comDarea with tne
corraspor.a~lgterms 7 EQS 13-15. they do nut
seem to be intuit’:ely t~ansparent

5.3 Microscopic Ea.~atlonsfor S(n.c)
The growth and aacay of s~gmems wlt~l!n

rouleaux A-O easily aasc~l@ablc (4J For tne

case In w~fch all tne r~verse rato Cofistants are
Qaual. o,lefinds

df(l,l);dt = kew~w - KecacE~!l.l)



- kccacMS(l,l~ - kcwWS(l,l)

+ kr (2S(1,0) - S(1,1)

+ ; [2S(n,0) +S(1,,1)1).
n=2

dS(2,2)/dt = ~ k@eaeE2- 2keCacEX2,2)

- 2kccacS(2,2)M - 2kcwS(2,2)W

+ kl(S(2,1) - S(2,2)

T ; [S(n,l) *2S(n,2)l) .
n=3

(23)

(24)

n-1
dS(n,O)/dt = kcwWS(n,l) ++ kccac Z

k=l

x S(k,l)S(n-k,l] - kr(n+l)s(n,ol .

(25)

dS(n,l)/dt ❑ kecacEIS(n-l,l) - S(n,l)]

n-1
+ 2kccac 2 S(k,2)S(n-k,l)

k=~

- kccacMS(n,l)

+ kcwW[2S(n,2) - S(n,l)]

w
+ kP[ i S(k,l) + 2 ; S(k,O)l (26)

k=n+l kfin

dS(n,2)/dt= tkQcacE [S(n-1,2) - S(n,2)l

n-2
+2ka Z S(k,2)S(n-k,2) ,cc c k=z

- 2kc.acS(n,2)M - 2kcwWS(n,2)

+ k { ; [S(k,l) + 2S(k,2)] - ns(n,2)]
r k=n

(27)

5.4 Detailed Balance
Using the principle of detailed balance one

can show (1) that the five forward rate con-
stants are not independent. In fact, one finds
that

k~cac
kcc ‘~ (28)

and

kcwkecac
k—

CW= keeae (29)

If we view a red cell as a segment of length one
with two caps, then either of these two caps
could attach to the end of a growing segment in
a typical cap-cap reaction. Hence we assume

kec = 2kcc , (30)

As a consequence of Eqs. (28)-(30) we need only
define two forward rate constants

kc= kcc = kec/2 = keaae/4ac , (31a)

and

kw z kcw = kew/2 , (31b)

where kc is the rate constant for elongation
reactions and kw the rate constant for branch-
ing reactions.

5.5 An Exact Solution
Viewing each face of a red cell as a re-

active site, we car)use probabllstic methods, 6
la Flory (8), to solve Eqs, (23)-(27) with the
rate constants chosen as in Eq. (31), As shown
in (4), we find

S(n,O) = Eop~pn-l , n = 1,2,... (32a)

n-1
S(n,l)= 2EoPfPWD , n= 1,2,.0. (32b)

2 n-1S(n,2)= Eopfp , n= 2,3,,., (32c)

whero



2E+r4
Pf=~ (33a)

o

2s-M
Pw=~ (33b)

o

P
‘O -E-S=— (33C)

Eo

+ 2e(pf - pw - p~)l . (35e)

Numerical solutions of Eqs. (34) and (35) are
given in (4). From these solutions one can
determine various mean quantities describing the
rouleau size and shape distribution such as

and E, S, and M are given by the solutions to <n> = ~~ -E\{~, the mean number of cells pers
Eos. [20)-(22) and (16)-(18). Rather than !
determi’ning”how E, S, “and M vary with time by
solving the differential and algebraic equations
(20)-(22) and (16)-22), one can, by differenti-
ating Eq. (33) and making various substitutions,
determine that pf and Pw and P satisfY ‘he
follvwing equations:

Cbf
—=-
dt kwEo(2ac-2e-w)p~+ 2Eo[kw(ac-e)

- kcaclp~ - (kwEow+kr)Pf

+ 2ekwEOpfPw + kr ,

dpw
— = kwEo(2ac-2e-w)p~- ?kwEo(ac-e)P~dt

+ wkwEopf - 2ekwtopfpw - krpw -

and p may be determined from

p(t) = 1 - Ilf(t)- Pw(t) ,

Further one can show that (4):

E = Eop:

s = Eo(Pf + Pw- P!)

M= 2Eopf(l- p,)

R= Eo(pf- Pw- P+)

and

W= Eo[w(l - p;) - 2acpf(l - Pf)

(34a)

(34b)

(34C)

(35a)

(35b)

(35C)

(35d)

<n> = ~ {~E+R), the mean number of cells peru R , (36)

<n> = E /(E+S), the mean number of cells in aSu Qs raight chain unit,

<b> = S/R, the mean number of branches or
straight segments per rouleau,

and

<c> = M/R, the mean number of caps per rouleau.

In (4) we present detailed studies of how these
mean quantities change with respect to the blood
hemotocrit (- E ), and t!le rate constants k ,
k, and k over ~he biologically relevant parak-
efer ran~es. Comparisons with data are also
given. We find that by choosing the appropriate
parameter values, our model generates good fits
to existing data. However, very detailed data
about the aggregate size distribution, especial”
ly when the aggregates grow large, does not yet
exist,

Forming the kinetic equations for R(n,c) is a
more complex matter, Samsel and Perelson (1)
derive the appropriate equations under the
assumption that the aggregation process is
{reversible.

In the presence of fragmentation, the forward
raaction equations combined with the equilibrium
solution (2,3) and the PrincfPie of detailed
balance, can be used to construct the appropri-
ate fragmentation terms (9)0 Van Dongs!n and
Ernst (10,11) demonstrate this procedure in the
context of s simplified rouleau model, and hence
it wfll not be dealt with her.,

5,7 Equ{libr{um Solution
Setttng the time derivatives to zero In Eq,

(34) allows one to find the equ{llbrlum values
of pf,

?’
and p and hence the equilibrium val-

ues of a 1 the macroscopic vartables E, M, w, s,
T, and R, and tha mean quantities given in Eq,
\3b), Detailed studies of the @quillbrium solu-
tion are presented elsewhere (4),

When ~/~ ‘IC large and the reverse rate
constant kr low, our numerical studies show that
is~~rcgates grow Inf{nltely large (F{g. 3) SiP-
nallng the occurrence of a sol-gel phase tran-
sition. If we use our model to compute equi-
libr~um solutions past the gQl point, we f~lld
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FIGURE 3

Equilibrium solution of the reve~sible
rouleaux equations exhibit a divergence
similar to a sol-gel transformation when

‘~r~ k~~k~ajkca~E
reaches a critical value,

= 0,1. Note in (a)
that both <n> , th$mean number of cells
per rouleau, #nd <b>, the mean number of
branches per rouleau, + m as the nondimen-
sional equilibrium concentration of rou-
leaux R’ = R/E + O in (b). (Reproduced
from Ref. (4) w?th permission),

the concentration of rouleaux is negative, The
reason is simple: if the total concentration of
ca~s is positive, the model predicts that cap-
cap or cap-wall adhesions occur, thus red~cing
tha number of frae rouleaux even if all cells
are in one infinite aggregate. From Eqs, (16)-
(18) and (20)-(22) one finds

dR/dt=~ keeaeE2 - ~ kccacM2 - kcwMW

+ kr(EO -E-M-R), (37)

Thus ●s E and R approach zero with M > 0 tha
negative terms dominate, and dR/d’ < 0, We thus
can use R < 0 as a criteria for being past tha
gel point,

In our experiments we generally do not see
infinitely large aggregates. Rather the con-
centration of free caps appea?% to be reduced by
loop formation.

6. LOOP FORMATION
6.1 Mechanisms of Loop Formation
The final stage of rouleau ‘Iormation is

characterized by the presence of large aggre-
gates with many caps. In a fluid the segments
within rouleaux move and are sufficiently flex..
ible to form cyclic structures (see Fig, 1).
Loops can be formed when two caps join or when a
cap encounters a wall and sticks to it. A 100P

may also be formed when the wall on a flexible
segment folds back and joins to another segment
of wall on the rouleau. Keeping track of the
&mount of reactive wall area annihilated in such
wall-wall reactions is a difficult and yet
unresolved problem. Loop forming cap-cap and
cap-wall reactions can be incorporated into our
kinetic model. Here we indicate one way in
which this may be done. In a future publicati~n
we plan to discuss a number of alternative
models for loop formation.

6.2 A Simple Model
Loop formation is a reaction that takes place

within individual rouleaux. Using macroscopic
variables we can describe loop formation in an
averags sense. The average number of caps per
rouleaux is M/R. Assuming that in.the neighbor- ‘
hcod of every cap there is a constan} density of
other caps, and that the caps lieon segments
that afe sufficiently flexible that the length
of the segment is irrelevant in determining the
motion of the cap, then the average rate of
cap-cap reactions can be expressed as

kQcacR(~)(~ - l)H(~ - 1) , (38)

where kt is the forward rate constant for loop
forming tap-cap reactions and H(o) is a heavy-
side function included to insure that cap-cap
reactions are only considered when the average
number of caps per rouleau is greater than one,
To model the situation in which cap-cap reac-
tions are only important when the a~erage number
of caps per rouleau is large, say ?!/R> Cmin ~>
1, one can replace Eq, (38) by

Loops can also form by cap-wall reactions,
Tha concentration of reactive wall per rouleau
is W/R, and thus by analogy with the above
derivation, tha rate at which loops form by
cap-wall reactions is

(40)



where k
&

is the forward rate constant char-
acterize~ cap-wall loop forming reactions and
w. is the minimum wall area required before
sfl?~reactions need be considered.

By including loop forming reactions in our
basic model M + O as R * O. (To see this,
notice that the rate of loop forming reactions
that destroy caps becomes unbounded as R * O.)
Thus R never goes negative, and our model re-
mains valid for all parameter values. These
models for loop formation are very simple, but
yet illustrate the major point that loops become
common as aggregates grow large, i.e., R + O.

7, CONCLUSIONS
Determining the size and shape of red cell

aggregates that can form in the circulation is
an important practical medical problem. Here we
have tried to show via idealized models that, by
including geometric factors in polymerization
reactions corresponding to collision cross-
sections, one can keep track of both the size
and degree of branching of rouleaux that develop
under conditions of isotropic, random colli-
sions. Our models are examples of analytic
attempts to understand cluster-cluster aggre-
gation by combining polymerization kinetics with
geometry.
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