A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.
Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

GO —S%OX(‘:‘?' ~
LA-UR -84-1561 NOTICE -
C‘D/VF PORTIONS OF THIS REPORT ARE ILLEGIBLE. ¢
has been reproduced from the best avai'able

covy to permit the broades: poscible avail-
ability.

Los Alamos National Laboratory is operated by the University Jf Calitornia for the United States Department of Energy under contract W-7405-ENG-36

TITLE: THE EFFECT OF QUEUEING DISCIPLINES ON RESPONSE TIMES IN

DISTRIBUTED SYSTEMS

LA-UR=--84-1561

AUTHOR(S): Elizabeth Williams, C-8 DEB4 012639

SUBMITTED TO: 1984 International Conference on Parallel Processing

August 21-24, 1984, Bellaire, Michigan

DISCLAIMER

This report was prepared as an account of work sponsored hy an agency of the United States
Goverpment, Neither the United States Governmunt nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumecs any legal linbility or responsi- ri .
bility for the sccuincy. completeness, or usefulness of any information, apparatus, product, or
procew dinclosed, or represents that its use would not infringe privately owned rights. Refer-

once h-rein to any specilic commercial produdt. procems, or servive by trade name, trademark,
manufacturer, or otherwise does not necesasrily constitute or imply ita endorsement, recom-
mendation, or favoring by the Unitod States Government or any agency thereol. The views
and opinions of authors expressed herein do nol necessarily stute or reflect those of the
{Inited Stales Government or any agency thereuf,

By scceplance of this article. the publisher recognizes that the U 8 Government relains & noneaciusive, royalty-iree license 10 p1blish or reproduce
the published form of th's contribulion, o7 1o aliow others 10 do 80. for UBS Government purposes

The Los Alamos Nsiional Laborstory requests that the publishet identity this eriicle as work performed under the auapices of the U 8 Deoariment of Energy

Los Alamos i smiszs

FORM NO 338 W4 @m
5T NO M9 4/8

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

THE EFFECT OF QUEUEING DISCIPLINES
ON RESPONSE TIMES IN DISTRIBUTED SYSTEMS

Elizabeth Williama'
Department of Computer Sciences
The University of Texss at Austin

Austia, Texas 73712

Abstract - A distributed program coasists of processes, maay of
which can execute coacurreatly oa differeat processors in a distri-
buted system of processors. Whea several processes from the same
or different distributed programs have beea assigned to a processor
in a distributed system, the processor must select the n2xt process
to ran. The question investigated is: What is aa appropriate
method for selecting the next process to rum? Standard procccsor
queueing disciplines, such as Brst-come-first-serve and rownd-
robin-ixed-quantun, are studied. The reiults for four classes of
queueing disciplines tested cn three problems are presented.
These probjems were run on a testbed, consisting of 3 compiler
and simu'atcr used to rum distributed programs nm user-specified
architeriures.

1. Introduction

When several processes from the ssme or different distrie
buted programs have been assigned to » processor in s distributed
system, an important design question is how a processor selects
the next process to run. This problem has nut been considered in
s distrihuted environment. An interesting question arises: Hew do
the processes at other processors and communication delays in the
system impsct the selection of the next process to run? As a
beginning study we bave investigated the standard queueing dis-
ciplines - first-come-first-serve, round-rohin-fixed-quantum,
preemptive priotity, and nonpreemptive ptiori.y - in » di-trihuted
epvironment, The study shows that the response t'me metric can
differ by 50% with different choices of queueing disciplines for
three problems.

The queueing disciplines were studied with several problems
that *epresent three importaut classes of problems. The partial
differential equation solver is based on an iterative grid tecnique
that is similar to those used in multidimensional spplications such
as weather prediction, structural mechanics, bydrodvnamics, hest
transport, and radiation transport. The cemtralized monitor has
the typical tree structure of hierarchically designed applications.
The producer-contmer pairs represent a multiprogramming
epviroumnent in the distributed system and are representative of a
large clase of problems.

In Section 2 s mode] ./ the distributed architecture aud the
distributed language are described. The metric for comparing the
petformance of the different queueing disciplines and a description
of the testbed are given in Sectica 3 la Sectioa 4 we give a
heuristic for assigning priotities for the priority depeadent queue-
ing disciplines. Section 5 describes the distributed programs amd
architectures on which each problem executss. The reaults are
given in Section 6,

2. Model of Distributed Computin,
1.1. Distributed Archltecture

The distributed architecture is characterited by the pumber
of processors, the speed of each processor, the queueing discipline
at each proceseor, and the 'nes that comnact ‘Ne processors, The
lines may have diferent capocities, leagths, and error rates, The
processors have no shared memory sad they communicate only by
messages. We assume that 1y processor cam communicate with
sny other procesor by routing messages through intermediate
processors over lixed paths.

'Pmn sddrens Compsater Rystoms Greup, C-8. Los Alames Nationa! La.
beraser,, Les Alam ', New Merice 87343

3.3. Distributed Language

A program in the distributed Ianguage consisis of processes
that communicate and share data by using messages. The
language is similar to CSP, which is described in [2]. The
!aagrage uses syachronous (blocking) communicution primitives;
the sending process canmot proceed until the recciving process is
ready o receive the message. For each mescage 1ent at the pro-
gram level, there ave two messages sent at the protocol level that
implements the longuage. In this language there is a static
sumber of processes. Dynamic creation of proces:vs is simulated
by a process beginming execution omly after sume other process
sends it x message.

2.3. Terminology

We define virtual line time for a message between two pro-
cessors connected directly by a line as the product ¢f the actual
time to move the message over the line and a constant derived
from line reliability and the overhead of lower level protocols. The
actual time to move the mcssage over the line is the usual function
of message length in measage units (packets), number of bits per
message unit, line capacity, and line length. Virtual lins time does
not include the time a message waits to use the communication
subnet. Virtual line time for & message between two processors is
the surn of the virtual line tumes for the lines on the route.
Currently in local ~#ea networks, lowey level protocols executing in
the processors usun'ly reducs the pb; ical line capacity by at least
a factor of 10 for any message [1]. Virtual line time reflects this
eflective line capacity.

The message delay of a process ‘ot a synchronovs commun-
fcation as in CSP is a function of virtual line time, queueing at the
port queues om the route in a store and forward network and the
processing, waiting, and queueing tiine of the corresponcling pro-
cess at its processor. Message delays can be very large ¢ mpared
to 8 process's processing time betweea communications.

Io the testbed 1 unlt of time csa be thought of 1 1 pa.
For local ares networks where processors are 1 km apart, transmis-
siom rates of 10 Mbit/s are common. For a packet of 253 »its it
takes approximstely 29 ps to send a packet over the iine. With
the factor of 10 or more for lower level protocols, 300 time units is
a reasodnble number for virtual line time In this mod2! of a local
ares network,

For each probler in this paper, we sssume all the PrOCrAsOS
have the same speed, all lines are ideatical, and a mensi g¢ unil is
266 bits. We also assume that on sy simulation rua al) proces-
sors have the same queueing discipline These assumntinns are
made to isolate the effects of the choice of queueing dwcipline hom
other system variables.

8. 'Testbud and Metrle

The metrie for comparing various qeeueing disciplines is
defloed as follows. All the processes of a distiibuted progrem are
sssumed to start at time zero. Each process | terminstes st some
time, t(i). The metric lo the sum over N precewses of th terinina-
tion times t{i) divided b, N. and in termed the average of tue pro.
cess terminntion times (APTT). APIT refecta both thy inatruc.
tion processing requirements of processes aud the mrsange delays.
Total time, deflned wa the maximum t(i), in oot always good
metric for comparing queueing dinciplinss, he nuse when mesrase

delays are very small, total time is comparable for all queweing dis-
ciplines,

The testbed runs distributed programs coded in the distri-
but:d language mentioned above, which is similar to CSP. In
addition to the distzibuted program, the testbed also requires s
specification of the distributed architecture. The testbed cousists
of a compiler, interpreter, and simulator. The compiler produces
pseudo-instructions for the hypothetical processors in the distri-
buted system. The interpreter exscutes the pseudo-instructions.
‘The simulator manages the interpreter, processor queues, and port
queues and executes protocol routines. The simulutor is based on
the work presented in [4] and was validated extensively using com-
mercial analytical and simulation packages [3,5).

4. Queusing Disciplines

The queueing disciplines tested were first-come-first-serve
(FCFS), round robin-fixed-quantum (RRFQ), nonpreemptive-
priotity (NPP), aad preemptive-priority (PP) [4]. The two priority
disciplines NPP sad PP must assign priorities to the processes, In
s PP discipline il an expected message arrives for 3 blocked pro-
cess of higher priority, the blocked process preempts the curreatly
running process. Ia the ‘ollowing discussion we give a heuristic for
assigning priorities,

Generally we have observed that scheduling a single provse-
sor in a distributed asrchitecture must be analyzed coasidering
both the single processor (local component) and the distributed
environment (global component). Our heuristic for assigning
priorities is given as follows:

. Processes that communicate across a line are assigned high
priority (highest priority when message dels, s are large since
the global component is more important).

. A procers on which several other processes may wait (a
bottleneck process) is assigned high priority (highest priority
when mesaage delays are small since the local component is
more importaat).

. Any other processes are assigned lower priorities to app oxi-
mate shortest-remaining-time-8rst (SRTF) [4).

Thus & good priority dis~ipline should generally give higheat prior-
ity to those processes communicating across a line in order to
minimize the processor idle periods snd thus to finish executing all
processes at the processor sooner. The discipline should be
preemptive so that messages over the line can be received by the
corresponding process as quickly ss possible. Choosing priorities
using this heuristic is demonstrated in the problems in the pext
section.

A priority discipline with priorities assigned 82 described
sbove is denoted by PPg for preemptive priority aad NPPg for
nonpreemptive priority. A preemptive priority discipline with
priorities assigaed ln such a way s not to follow the beuristic
given sbove is denoted by PPp; processes that communicate scross
lines nad bottlemeck p:.cesses are asaigned lowest priority, aad all
the other procesees are assigned highest priority. We bave found
that PPg usually does better than FCFS, RRFQ, PPp, sad NPPg;
FPp does the poorest.

8. Problems

The problems tested are = partial differential equation solver
(PDE), a centralited mraitor (MONITOR), and a system of five
producer-consumer pairs (PC's). For each problem we preseat »
briel desctiptivn of the program asnd a figure that represeats the
distributed program, architecture, sssigament of processes to pro-
cconoty, and priorities for both PPg and NPPg. Esch process bs
represeated by a circle with the process number in the circle; the
total instruction processing time requiremeat per procesa ia gives
below each rircle. The priotity for a process is given above ench

circle. The aumber aad average size in message units of messages
scut at the program level between two communicatiag processes is
givea above each line as the ovdered pair (numbersize). Values
for commupicatios sad processing time are obtained by ruaniag
the program om the testbed with any assignment and architecturs;
for these programs these quantities are indepesdeat of the archi-
tecture and assignment. Citcles enclosed in & box mean that the
enclosed processes are assigned to ome processor. For each prot -
lem the processors are identical aad the virtual line time fo. 2
mestage unit is the same between pairs of processes that must
cominunicate over a line.

§.1. Partial Differential Equation

We solve Laplace’s partial differeatisl equation (PDE) on a
grid with the outer edges of the grid given as boundary conditions.
The iterative method used is Gauss-Seidel. The grid is pariitioned
into subgrids where each subgrid is some number of contiguous
rows. Each subgrid is solved by a process in the same way a
srquential program would solve the emtire grid. A grid value is
computed as the average of its four adjacent meighbors; thus, to
compute a row of values, the two adjacent rows are required.
Hence, a process must request the two rows contiguous to its
subgrid from its two neighboring processes,

Figure 1 shows the structure of the problem that runs on
two processors. The two processors sre connected by a line with
virtual line time for a message unit set at 592 time uaits. la previ-
ous work we found that the assignment indicated in Figure 1 is
best for this architecture [5].

All processes are compatable; there is no bottieneck process
because each process is logically equivalent and computes an equal
number of rows. Since each process must execute one time per
Gauss-Seidel step over the same size subgrid, there is no need to
assign priorities to approximate SRTF. The two processes that
communicate over the line are given highest priority. For PPg
and NPPg, processes 3 and 4 were sesigned highest priority at 1.0
the others were assigned lower priotity at 2.0. For PPp, processes
3 and 4 were assigned lowest priority at 2.0 aod the others were
assigned highest priority at 1.0

8.8, Centrallsed Monitor

The centralited monitor consists of a resource process and
three groups; each group consists of a requester process and its
three user processes. Each user process executes some given
amount of time and then makes a request to use the resource
through its requester process. The requester process passes the
user request on to the resource process. This s repeated 20 times
before a user terminates, The processing times per iteration were
chosen so that (1) there is s amall, medium, and large processing
user process at each processor and (2) the sum of the processing
time of the users at each processor is approximately the same at
each processor.

Figure 2 shows the structure of the centralized ronitor that
runs on four processuts. Processor 4 is connected directly to pro-
cessors 1, 2, and 3. Each line has o virtual line time of 58 time
units for a message unit. In previous worl we found that the
assigament indicated in Figure 2 io best for t! m architecture [8].

The requester processes are 10, 11, anes 12. A requester pro-
cess has high priority because it is a bottlen -ck sad also because it
communicates over a line, The user processes - 1 through 9 - at
each processor are not identical becawse of differing processing
requirements. The user processes are assigned priority using the
average processing time between 1/ statements to estimate CPU
burats and thus to approximate SRTF. For PPg and NPPg,
tequester processes 10, 11, and 12 got priority 1.0; user processes |,
4, and 7 get priority 2.0; wwer processes 2, 5, and 8 get priority 3.0;
weer processes 3, 6, and O get priority 4.0. For PPp, processes 10,

11, sad 12 get priotity 2.0, while all user processes 1 - 9 get prior-
ity 1.0, SRTF is an importaat componeni of the priority discip-
line because 5 wser process with a small burst time can finish ear-
lier tham the others and thus decrease APTT.

§.3. Producer-Consumer Palrs

There are five producer-consumer pairs. Figure 3 shows the
structure of the problem that rums oa two processors. The two
processots are connected by a line with virtual line time for a mes-
sage unit set at 346 time units. Processes 1 to 5 are producers;
procesces 6 to 10 cre consumers. Each pair - (1,6) (2,7) sad (3,8) -
has one-third the processing requirement of each pair - (4,9) and
(5,10). Each producer sends 40 messages to its corresponding con-
sumer.

Ooe pair of processes communicates over the line and both
are giver highest priority. There are no bottlececk processes in
this example. The two pairs with the large processing require-
ments should get lower priority to approximate SRTF. Priorities
for PPg are assigned as follows: processes 3 and 8 get priority 1.0;
processes 1, 8, Z, and 7 get priority 2.0; processes 4, 9, 5, and 10
get priority 3.0. For PPp, processes 3 and 8 get priority 2.0; the
other processes get priority 1.0. The producer-consumer pairs that
are pot aplit across two processors are independent of each other.
These pairs can terminate independently of the other pairs; one
process waiting on 3 liae cannot cause all the processes on that
processor to block as can happen in the other two problems.

6. Reaults

The results for each program and its architecture are given
it Table 1. Of the disciplines tested, PPg is the best while PPp is
the poorest. RRFQ always does better than FCFS; this is prob-
ably due to its preemptive characteristic. The nonpreemptive
oricrity discipline, NPPg, is poorer than RRFQ for both the PDE
and MONITOR problems. The percentage increase in APTT from
PPg to PPn as computed by (max APTT - min APTT) / (min
APTT) is 32% for PDE, 49% for MONITOR, and 57% for PC's.

7. Conelusion

We have presented the results for five queueing disciplines
tested on three problems. The disciplines tested are frst-come-
first.serve, round-robia-Axed-quantum, nonpreemptive-peiority,
and preemptive-ptiotity with two sete of priorities. A heuristic i
given to aasign priotities. We found that the preemptive priority
discipline with priorities sscigned according to our heuristic was
the best diacipline tested,

8. Acknowledgments

The suthor wishes to thaak Professor K. Mani Chaady (or
suggesting tkis problem and providing valuable guidance during
this research. This resentch was supporied in part by Air Foree
Office of Scientific Research under graat AFOSR 81-0205. This
paper was nrepared under the auspices of the U. S. Depsrtmeat of
Energy.

Figure 1. Structure of POE Problem

References

{1} E. E. Balkovich, Digital Equipment Corporation; David
Wood, Mitre Corporation; Dieter Baumn, Hahp-Meitner-
Institute, Germany; Private Communications, 1983.

{2 C. A. R. Hoare, "Communicating Sequential Processes,”
Comm. ACM, August 1978, pp. 666-877.

3] PAWS User's Manual, CADS User's Manual, Iuformation
Research Associstes, Austin, TX, 1981.

[4] C. H. Sauer and K. M. Chandy, Computer Systems Perfor-
-nance Modeling, Prentice-Hall, 1981, Chapter 7.

[5] E. A. Williams, Design, Analysis, and Implementation of
Distributed Systems from a Performance Perspective, Ph.D.
Thesis, The University of Texas at Austin, 1983,

D!
i)
Ton
2 10
b f/ a» ~
h) ESOML
PROCESSOR ! 13
8300
PROCESSOR 4
60,1
ACLESTOR, \
"
) 4
4) =» 6
s n! mu
5
PROCESSOR 2

Figure 2. Stucture of Centralized Monitor

nNoa 230
8
_ s
124
»n MO4

PROCESSOF 7

Figure 3. Structure for Producer - Consumer Pairs

.—AEIIWMMMH._
Queueing | PDE | Centralited | Producer-
 Discipline Monitor | Consumers |
FCFS 57071 57400 23182
[RRFQ®* | s0031 | 40107 19320
NPPg 54028 57081 10208
EPs 45132 30010 14076
PPp 59038 59439 23461

* Quantum sire: PDE-100; MONITOR-75; I"C'»80

Table 1

