' Opn F 54/ g o~/
LA-UR -84-4049

Los Alamos Nationai LaDOralory i3 ODErated by the University of Calilornia for the United Siates Department of Energy under contract W-7405-ENG-25

LA-UR--84-4049

DE85 005645

ntie PORTABLE STANDARD LISP ON THE CRAY

AUTHORIS} James W. Anderson, C-10

Sur MITTED TO To be published 4n a special issue of SLAM during mid-1985. The
papers to ppear in this issue were presented at the ARO workshop
on New Couputing Environments: Parallel, Vector and Systolic
held at Stanford November 7 - 9, 1984.

DISCLAIMER

This report was prepaccd as an account of work sponsored by an agency of the United States
Government Neither the United States Government nor any agency thereof. nor any of theit
cmployees. makes any warranty. express or implica, o7 assumes any legal hability of responm-
bility for the accuracy. completencss, or usefulness of uny information. apperatus. produc. of
provess disclosed. of represents that it use would not infring: privately owned nightx. Refer-
ence herein to any specific commercial product, process, of service by trade name. trademark.
manufacturer. or utherwise does not nocessarily constitute or imply its endorvement, recom-
mendation, or favoting by the United States Government or any agency thereol The views
and opinions of auvthors cxprewed herein do not necessarily state or reflect thuse of the
United States Governmend or any agency thereof.

Hy o s epolase o= =50 s qute le the GBIl af cagagreges thatl the U S Governmeont 1pta.ng A A0nescluteve 'Oyally iee LTense 19 Dubhen or 1eproduce

Pee prableatzed Lo ol tag coninbglein o W atlow olkers 10 do 3¢ Ine US Gossriunsnt pyrpoans

1o 1.om sanir-osn Nabawna | ghoralory (oo IR En Gubbisher dontly thia arkcip an work parformag ander the agspces of tha U § Depariment cf Enargy

MASTER
Los Alamos National Laboratory
ﬁ©S A @ﬁ@@ Los Alarnos.New Mexico 87545

OEIEM Sr) R4 g

a1 N 28098 81 STRIRPTION [By DCHAERT IS TEHIMTED

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Portable Standard LISP on the Cray

J. Wayne Anderson*

Abstract. Portable Standard LISP, a dialect of LISP
developed at the University of Utah, has been implemented
on the Cray-1s and Cray X-MPs at the los Alamos National
Laboratory and at the Magnetic Fusion Energy Computer
Center at lLawrence Livermore National Laboratory. This
was done 1n order to provide an environment for symbolic
processing on the Crays and to evaluate how well the Crays
support this environment. This implementation is dis-
cussed and some performance results presented.

1. Introduction. Research towarcd developing a portable
LISP system received impetus in 1966 [4] when a model for
a standard LISP subset was developed to make the REDUCE
(5] symbolic arithmetic package more portable. The
research effort at the University of Utah has since pro-
duced progressively larger and more portable subsets of
LISP [2], the most recent of which is Portable Standard
LISP (PSL).

Among the goals of the designers of PSIL were: provide
a uniform LISP programming environment acrcss a spectrum
of machines; produce a portable system comparable in exe-
cution speed to other non-portable LISP systems; and
effectively support REDUCE on different machines.

PSL is currently being distributed for DECSystem-20s,
VAXs running under both UNIX and VMS, HP%836s, and APOL-
10s. PSL is ready for distribution for Crays running the
CTSS operating system and is being developed for Crays
running COS. It is also being developed for the IBM 3081,

Tables 1 and 2 illustrate the exacution speed of PSL
relative to that of other versions of LISP. Benchmark
programs developed by Gabriel (1] were executed and run on
a VAX 11/780 using various dialects of LISP, For the sake
of brevity, tables 1 and 2 present results from just a few
of the ben :hmarks. The results presented, however, are
typical. An entry of "-" means that a benchmark was not
able to execute in a dialect of LISP.

The following is a brief description of the benchmark
programs:

BOYER - a theorem prover benchmark featuring

*Los Alaxnos National Laboratory, Los Alamcs, NM 87545

IS IRIBVION OF 105 ocme D 1 N MTED f/‘”d)

LISP structure manipulations and havirg
a typical number of function calls;

BROWSE - an expert system benchmark with pattern
matching and frames for knowledge ap-
plication storage;

DESTRUCT - a benchmark with destructive list oper-
ations such as REPLACA and REPLACD;

STak - a program that times function calls
with fluid bindings;

PUZZLE - a game with vector references; and

TRIANG - a boardgame benchmark.

There were several reasons for wanting to have LISP on

Table 1
INTERLISP COMMONLISP FRANZLISP PSL
BOYER 53.3 87.7 71.5 41.3
BROWSE 111.5 205.0 170.3 50.3
DESTRUCT 5.4 6.4 13.7 3.9
STak 9.7 4.1 6.3 5.4
TRIANG 1076.5 360.9 - 212.2
Real Time in Milliseconds
VAX 11/780
Table 2
INTERLISP COMMONLISP FRANZLISP PSL
BOYER 1.3 2.1 1.7 1.0
EROWSE 2.2 4.0 3.4 1.0
DESTRUCT 1.4 1.6 3.5 1.0
STak 2.4 1.0 1.5 1.3
PUZZLE 608 209 - 100
TRIANG 5.1 1.7 - 1.0

Normalized Execution Times
(shortest execution time = 1.0)
VAX 11/780

the Crays at Los Alamos National Laboratory. One reason
was the interest in having symbolic programming environ-
ments on the most powerful machines available. This could
provide the capability to solve symbolic problems that
would not be feasible to solve on less powerful systens.
There a’~o was, and there still is, interest in the possi-
bility of combining symbolic programming with some of the
large numeric codes.

Three primary considerations led to the selection of
PSL from among the dialects of LISP. As one of the design
criteria claimed for PSL was that of portability, it
appeared that it could be implemented more quickly than
other dialects. The selection of PSL also provided the
symbolic arithmetic capabilities of REDUCE. Finally, PSL
appeared to be an efficient dialect c¢f LISP.

2. Imnlementation. In June 1982 a meeting was held at
the University of Utah to outline the Cray implementation
effort. By July of 1984 PSL interpreters and compilers
were available for use on all Cray-1ls and Cray X-MPs at
the Los Alamos National Laboratory. Soon thereafter, PSL
was also available on the Crays at the National Magnetic
Fusion Energy Computer Center (MFECC) of Lawrence Liver-
more National Laboratory. REDUCE was suhsequently imple-
mented at both sites.

The effort required to implement PSL on the Crays,
while non-trivial, was much 1less than that required to
implement a non-portable dialect. 1In order to understand
the implementation procedure, it is first necessary to
take a look at the steps involved in PSL compilation (3].

LISP code ls first translated into instructions for an
Abstract LISP Machine (AIM). The AILM is a general-purpose
register machine whose instructions are expressed in LISP
Assembly Program (LAP} format. The LAP format has the
form:

ALMopcode ALMoperand....AlLMorerand

ALMopcodes are refarred to as cmacros and an instruction
may have zero or more opernnds. The ALM in this instancs
has 15 general purpose registers. The next step 1is tc
translate the AIM instructions into Target LISP Machine
(TLM) instructions. Tho TIM instructions are also in LAP
format with opcodes and operands of the TLX.

From here there are three separate paths that can be
taken in the compilation process. The TLM instructlons
can be translated:

1. into machine code and placed into the memory

of a running PSL system;

2. into machine cocde and saved in a file for
loading at a later time into a running PSL sys-
tem; or

3. into assembly language for later assembly on
a target machine.

Th.is third path is the one taken when bootstrapping PSL
from a host system to a target machine. At Los Alamos the
host system used for this purpose was a VAX 11/780 running
UNIX.

In the bouotstrapping process, it is necessary to modify
the PSL compiler on the host machine for it to become a
cross compiler for the target machine. Tables must be
supplied that will be used in the translation of ALM
opcodes and operands into TLM opcodes and operancs. In
order to simplify new machine implementation and increase
the amount of common code, all translations from one code
form to another have been made extremely table driven.
The necessary formats, constants, and procedures must be
supplied for translating the TIM instructions into the
host machine's assembly language. The closer the TLM
instruction format is to that of the host machine's assem-
bly language the easier the translation will be. Unfor-
tunately, in the case of the Cray, the match was not
close. For example, consider the following Cray assembly
language (CAL) instruction:

Sl s2 4+ S3

This adds the contents of register S2 to that of regiater
83 and stores the result in reyister Sl. Thus the format
of CAL instructions is along tre lines of:

destination operaiad opcode operand

This resulted in cne extra step in the transiation pro-
cess. The TLM instructions were mapped jinto an intermedi-
ate form that more closely matched the CAL format before
further translation.

Some support code had to be written on the Cray to
interface the cross compiled code to Cray system func-
tions, for example, input/output. After the cross com-
piled code is assembled on the Cray it is linked with the
support code for execution.

There is a carefully graded set of tests that are used
in the bootstrapping process. Each test results in an
ever increasing subset of PSL being cross compiled,

shipped to the Cray, assembled, and executed. A test that
fails results in modifications to the cross compiler or
other processes used in the implementation procedare.
That portion of PSL that is successfully tested is then
used as a basis for succeeding tests. After all tests are
executed, the major portion of PSL has been implemented.

3. Performance. Once PSL had been successfully imple-
mented on the Cray, Gabriel's benchmarks were executed and
the results were compared to their execution on other
machines. Tables 3 and 4 summarize the results of a typ-
ical subset of benchmarks. The benchmarks were also coded
in ZETALISP and executed on a SYMBOLICS 3600. Table 5
compares the execution on the 3600 to that on the Cray.

Table 3
Cray VAX 117780 DEC 20 Sl IBM 3081
BOYER 3.4 41.3 23.6 10.0 4.6
BROWSE 8.4 50.3 28.7 10.2 6.3
DESTRUCT 0.4 3.9 2.4 0.9 -
STauk l.1 5.4 2.7 4.3 1.7
PUZZLE l.0 16.3 15.9 1.8 1.5
TRIANG 14.4 212.2 86.9 62.1 25.4
Real Time in Milliseconds
PSL
Table 4
Cray VAX 11/780 DEC 20 Sl I3M 3081
BOYER 1.0 12.3 7.0 3.0 1.4
BROWSE 1.3 8.0 4.5 1.6 1.0
DESTRUCT 1.0 8.8 5.4 2.1 -
STak 1.0 4.8 2.4 3.8 1.5
PUZZLE 1.0 16.3 15.9 1.8 1.5
TRIANG l.0 14.5 6.0 4.3 1.8

Normalized Execution Times
(shortest execution time = 1.0)
PSL

When implementing REDUCE on PSL, a set of test routines
is executed. Table 6 presents the time required for the

Table 5

Cray 3600
BOYER 1.0 5.5
BROWSE 1.0 5.0
DESTRUCT 1.0 8.4
STak 1.0 2.3
PUZZLE 1.0 13.9
TRIANG 1.0 10.5

Normalized Execution Times
(shortest execution time = 1.0)

executior. of the test routines on several different sys-
tems.

3. Summary and Future Work. The PSL implementation on
the Cray has been successfully completed. The performance
studies indicate that it is ona of the most powerful LISP
environmenta currently available. However, all the power
of the Cray has not been realized. 1In mapping from an ALM
with 15 general purpose registers, it was extremely diffi-
cult to make efficient use of the many special purpose
registers and vector processing capabilities of the Cray.
This resulted in an implementation with many possible
areas of optimization. Some areas under consideration now
include: scheduling of registers; using temporary regis-
ters to hold the top items of a stack:; and using the vec-
tor registers during garbage collection.

4. Acknowledgements. I would like tc acknowladge the
contributions made to the implementation effort by Bruce
Curtiss of MFECC, Dana Dawson of CRiI, and, especially,
Robert Kessler of the University of Utah. Without the

Table 6
Cray 4 seconds
DEZ 20 25 seconds
HP9836U 55 seconds
VAX 11/780 §0 seconds
APOLLO 80 seconds
VAX 11/750 90 seconds

REDUCE TIMINGS

efforts and knowledge of Dr. Kessler, the PSL implementa-
tion on the Cray would not yet be completed. I would also
like to thank Richard Gabriel for the many benchmarks and
results he supplied and for allowing me to use them in
this paper.

1]

(2]

(3]

(4]

(5]

REFERENCES

R. P. GABRIEL, Evaluation and Performance of LISP Sys-
tems, (to be published).

M. L. GRISS, E. BENSON and G. Q. MAGUIRE, JR., PSL. a
portable LISP system, The Proceedings of the 1982 ACM
Symposium on LISP and Functional Programming,
Carnegie-Mellon University, Pittsburgh, August 1982,

pp. 88-96.

M. L. GRISS, E. BENSON, R. XKESSLER, S. LOWDER, G. Q.
MAGUIRE, JR., and J. W. PETERSON, PSL Implementation
Guide, Utah Symbolic Computation Group, Computer Sci-
ence Department, University of Utah, Salt Lake City,
1983.

A. C. HEARN, Stundard LISP, SIGPLAN }otices 4,9 (Sep-
tember 1966).

A. C. HEARN, REDUCE 2 Users Manual, Utah Symbolic Com-
putation Group Report UCP-19, COmputer Sclence Depart-
ment, University of Utah, Salt Lake City, 1972

