
.
“ LA.UR -84-4049

LOS Alamos Ual,onal Laoo~alof~ .s orwamu BY me Lm,vwsdy of Cal,lwnla @ ma UmWI :mtaa Da~menl o! Enmm uwJer comracr “W-7WI-ENG-M

LA-UR--84-4O49

DE85 005645

TITLE PORTABLE STANDARD LISP ON THE CRAY

AuTHOR(S) James W. Anderson, C-10

SUP AITTED TO

It. ... . ,.,.l .,.., . .=, ,,... .q,l.. ,fl

To be publlshed dn a ~pecial issue of SLAM during mid-1985. The
papers to ppear in this issue were presented at the ARO workshop
on New Co.~puting Environments: Parallel, Vector and Systolic
held at Stanford November 7 - 9, 1984.

INSCLAIMER

This rcfmrtwasprcparcd aaan ●cwunlirf work sponaurcdby an agency rJf Ihc (hilled Smtcq

Rwcrnmcnt Ncilkrthc (!nit4Slatm Cmwrnmnt nurany ●~nc}-tkraf. n(~rany[]flhcir

cmpfoyccs. makca any warranty .cxprcssw lmphco. Oi aasuma any J@ IIabilityor rcsponm-

hility fcw the aoxracy. carrqdctcncas. or uacfulncaaof wry Information. apfnratus. JWINJUC..or

pnrusadmclaacd. ofrcprcacnts that itxusc would noI infriqr: privately owrcd rl~hm f(cfcr-

crrcc hcrcm to any ~ificcummcrcial prudwx procaa. or acrwcx by trade name. wadcmark.

manufacturer. or o!hcrwiac d- rwt ncccaaardy wrralitulc or imply ill cmirrrumcnl. rtimm-

mcndalrom ur fawrnng by the LJnmd States Cjuvcmmcr,t or ●ny a~rrcy Wrcuf The VICWS

and c~inlons uf authors qwcwcd hcrcm do nor noassarily slate .ur rcf!cct lh(=c M the

(Jnilcd Stala Guwmmcni or any agency Ihcrcuf.

MASTER

Low allmilosLos Alamos National Laboratory
Los Alarnos.New Mexico 87545

Df!mll!mllN 111 IJIIS llwilt#}Nr Is llNIimm

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov



Portable Standard LISP on the Cray

J. Wayne Anderson*

Abstract. Portable Standard LISP, a dialect of LISP
developed at the University of Utah, has been implemented
on the Cray-ls and Cray X-MPS at the Los Alamos National
Laboratory and at the Magnetic Pusion Energy Computer
Center at Lawrence Livermore National Laboratory. This
was done m order to provide an environment for symbolic
processing on the Crays and to evaluate how well the Crays
support this environment. This implementation is dis-
cussed and some performance results presented.

10 Introduction. Research toward developing a portable
LISP system received impetus in 1966 [4] when a model for
a standard LISP subset was developed to make the REDUCE
[5] symbolic arithmetic package more portable. The
research effort at ‘de University of Utah has since pxo-
duced progressively larger and more portable subsets of
LISP [2], the most recent of which is Portable Standard
LISP (PSL).

Among the goals of the designers of PSL were: provide
a uniform LISP programming environment &cress a spectrum
of machines; produce a portable system comparable in exe-
cution speed to other non-portable LISP systems; and
●ffectively support REDUCE on different machines.

PSL is currently being distributed for DECSystem-20s,
VAXS running under both UNIX and VMS, HP9836s, and APOL-
Los ● PSL is ready for distribution for Crays running the
CTSS operating system and is being developed for Crays
running COS. It is also being develaped for the IBM 3081.

Tables 1 and 2 illustrate the exacution speed of PSL
relative to that of other versions of LISP. Benchmark
programs developed by Gabriel [1] were executed and run on
a VAX 11/780 using various dialects of LISP. For the sake
of brevity, tables 1 and 2 present results from just a few
of the ben :hmarks. The results presented, however, are
typical. An entry of ‘-W means that a benchmark was not
able to exsoute in a dialect of LISP.

The following is a brief description of the benchmark
programs:

BOYER - a theorem prover benohmark featuring

*Los Alemos National Laboratory, Los Alamx$, NM 87545



LISP structure manipulations and havirg
a typical number of function calls;

BROWSE - an expert system benchmark with pattern
matching and frames for knowledge ap-
plication storage;

DESTRUCT - a benchmark with destructive list oper-
ations such as REPLACA and REPLACD;

STak - a program that times function calls
with fluid bindings;

PUZZLE - a game with vector references; and

TRIANG - a boardgame benchmark.

There were several reasons for wanting to have LISP on

Table 1

INTERLISP CO~ONLISP PRANZLISP PCL

BOYER 53.3 87.7 71.5 41.3
BROWSE 111.5 205.0 170.3 50.3
DESTRUCT 5.4 6.4 13.7 3.9
STak 9.7 4.1 6.3 5.4
PUZZLE 110.3 ‘ 47.5 16.3
TRIANG 1076.5 360.9 . 212.2

Real Time in Milliseconds
VAX 11/780

Table 2

INTERLISP COM!40NLISP FRANZLISP

BOYER 1.3 2.1 1.7
DROWSE 2.2 4.0 3.4
DESTRUCT 1.4 106 3.5
STak 2.4 100 1.5
PUZZLE 6.8 2.9
TRIANG 5.1 1.7

PSL

1.0
1.0
100
1.3
100
1.0

Normalized Exacution Times
(shortest execution time - 1.O)

VAX 11/780



the Crays at Los Alamos National Laboratory. One reason
was the interest in having symbolic programming environ-
ments on the most powerful machines available. This could
provide the capability to solve symbolic problems that
would not be feasible to solve on less powerful systems.
There a:.~owas, and there still is, interest in the possi-
bility of combining symbolic programming with some of the
large numeric codes.

Three primary considerations led to the selection of
PSL from among the dialects of LISP. As one of the design
criteria claimed for PSL was that of portability, it
appeared that it could be implemented more quickly than
other dialects. The selection of PSL also provided the
symbolic arithmetic capabilities of REDUCE. Finally, PSL
appeared to be an efficient dialect of LISP.

2. Implementation. In June 1982 a meeting was held at
the Un~versity of Utah to outline the Cray implementation
●ffort. BY July of 1984 PSL interpreters and compilers
were available for use on all Cray-ls and Cray X-MPs at
the Us Alamos National Laboratory. Soon thereafter, PSL
was also available on the Crays at the National Magnetic
Fusion Energy Computer Center (MFECC) of Lawrence Liver-
more National Laboratory. REDUCE W*.Ssubsequently imple-
mented at both sites.

The effort required to implement PSL on the Crays,
while non-trivial, was much less than that required to
implement a non-portable dialect. In order to understand
the implementation procedure, it is first necessary to
take a look at the steps involved in PSL compilation [3].

LISP code h first translated into instructions for an
Abstract LISP Machine (ALM). The AIM is a general-purpose
register machine whose instructions are expressed in LISP
Assembly Program (MP) format. The LAP format has the
form:

ALMOpCode ALMoperand....ALMo&erand

ALMopoodes are referred to as cmacros and an instruction
may havo zero or more operrlnds. The AL14in this instance
has 15 general purpose registers. The next step is tc.
translat@ the ALM instruaticns into Target LISP Machine
(TN) instructions. The TIM instructions are also in LAP
format with opcodes and operands of the TLK.

From here there are three separate paths that aan be
taken in th6 compilation proaeos. The TIM instructions
oan be translated:

1. into maohine aode and plaaed into the aiamory



of a running PSL system;

2. into machine code and saved
loading at a later time into a
tam; or

in a file
running PSL

for
8y8-

3. into assembly language for later assembly on
a target machine.

Th~s third path is the one taken when bootstrapping PSL
from a host system to a target machine. At Los Alamos the
host system used for this purpose was a VAX 11/780 running
UNIX.

In the bootstrapping process, it is necessary to modify
the PSL compiler on the host machine for it to become a
cross compiler for +Je target machine. Tables must be
supplied that will be used in the translation of ALM
opcodes and operands into TLM opcodes and operands. In
order to simplify new machine implementation and increase
the amount of common code, all translations from one code
form to another have been made extremely table driven.
The necessary formats, constants, and procedures must be
supplied for translating the TIM instructions into the
host machine’s assembly language. The closer the TLM
instruction format is to that of the host machinets assem-
bly language the easier the translation will be. Unfor-
tunately, in the case of the Cray, the match was not
close. For example, consider the following Cray assembly
language (CAL) instruction:

S1 S2 + S3

This adds the contents of register S2 to that of register
S3 and stores the result in register S1. Thus the format
of CAL instructions is along t~e lines Of:

destination operaad opcode operand

This resulted in me extra step in the translation pro-
cess. The TLM instructions were mapped into an intermedi-
ate form that more closely matched the CAL format before
further translation.

Some support code had to be written on the Cray to
interface the cross compiled coda to Cray system func-
tions, for example, input/output. After the cross com-
piled aode is assembled on the Cray it is linked with the
support oode for exeaution.

There iu a oarefully graded set of tests that are used
in the bootstrapping proaess. Eaah test results in an
ever increasing subset of PSL being cross compiled,



shipped to the Cray, assembled, and executed. A test that
fails results in modifications to the cross compiler or
other processes used in the implementation procedure.
That portion of PSL that is successfully tested is then
used as a basis for succeeding tests. After ail tests are
executed, the major portion of PSL has been implemented.

3. Performance. Once PSL had been successfully imple-
mented on the Cray, Gabriel’s benchmarks were executed and
the results were compared to their execution on other
machines. Tables 3 and 4 summarize the results of a typ-
ical subset of benchmarks. The benchmarks were also coded
in ZETALISP and executed on a SYMBOLICS 3600. Table 5
compares the execution on the 3600 to that on the Cray.

Table 3

BOYER
BROWSE
DESTRUCT
ST?~k
~Tzz~
TRIANG

BOYER
BROWSE
DESTRUCT
STak
PUZZLE
TRIANG

Cray VAX 11/780 DEC 20 S1

3.4 41.3 23.6 10.0
8.4 50.3 28.7 10.2
0.4 3.9 2.4 0.9
1.1 5.4 2.7 4.3
1.0 16.3 15.9 1.8
14.4 21202 86.9 62.1

Real Time in Milliseconds
PSL

Table 4

Cray VAX 11/780 DEC 20 S1

1.0 12.3 7.0 3.0
1.3 8.0 4.5 1.6
100 8.8 5.4 2.1
1.0 4.8 2.4 3.8
1.0 16.3 15.9 1.8
1.0 14.!5 6.0 4.3

Normalized Execution Times
(shortest execution time = 1.0)

PSL

IBM 3081

4.6
6.3

1*7
1.5

25.4

IBM 3081

1*4
100

1.5
1.5
1.8

When implementing REDUCE on l?SL,a set of test routines
is executed. Table 6 presents the time required for the



. .
.

Table 5

Cray 3600

BOYER 1.0 5*5
BROWSE 1.0 5.0
DESTRUCT 1.0 8.4
STak 1.0 2.3
PUZZLE 1.0 13.9
TRIANG 1.0 10.5

executiorjof
terns.

Normalized Execution Times
(shortest execution time = 1.0)

the test routines on several different sys-

3. Summary and Puture Work. The PSL implementation on
the Cray has be=successfully completed. The performance
studies indicate that it is one of the most powerful LISP
environments currently available. However, all the power
of the Cray has not been realized. In mapping from an AIM
with 1S general purpose registers, it was extremely diffi-
cult to make efficient use of the many special purpose
registers and vector processing capabilities of the Cray.
This resulted in an implementa~ion with many possible
areas of Dptimizution. Some areas under consideration now
include: scheduling of registers; using temporary regis-
ters to hold the top items of a stack; and using the vec-
tar registers during garbage collection.

4. Acknowledgements. I would like to acknowledge the
contributions made to the implementation effort by Bruce
Curtiss of MFECC, Dana Dawson of CRZ, and, especially,
Robert Kessler of the University af Utah. Without the

Table 6

Cray
DE~ 20

HP9836U
VAX 11/780
APOLLO
VAX 11/750

REDUCE

4 seconds
25 seconds
55 seconds
SO seconds
80 seconds
90 seconds

TIMINGS



efforts and knowledge of Dr. Kessler, the PSL implementa-
tion on the Cray would not yet be completed. I would also
like to thank Richard Gabriel for the many benchmarks and
results he supplied aad for allowing me to use them in
this paper.

REFERENCES

rl]

[2]

[3]

[4]

[5]

R. P. GABRIEL, Evaluation and Performance
terns,(to be published). — —

M. L. GRISS, E. BENSON and G. Q. MAGUIRE,
~rtable LISP system, The Proceedings of
Symaii %ii- LISP and Functional
Carnegie-Mellon University, Pittsburgh,
pp. 88-96.

of LISP SYS-.—

JR., PSL. ~
the 1~= ACM

Programming,
AuSwt 1982,

M. Lo GRISS, E. BENSON, R. KESSLER, S. MWDER, G. Q.
MAGUIRE, JR., and J. W. PETERSON, PSL Implementation
Guide, Utah Symbolic Computation Gro~ Computer Sci-—.
ence Department, University of Utah, Salt Lake City,
1983.

A. C. HEARN, Stmdard LISP, SIGPLAN Iiotices4,9 (Sep-
tember 1966).

A. C. HEARN, REDUCE 2 Users Manual, Utah Symbolic CoIU-
putation Grou-r~ ~9~C~uter Science Depart-
ment, University of Utah, Salt Lake City, 1973.


