
.

LA-UR -85-205
)’

TITLE: HARNESSING COMPUTATIONAL POWER: DISTRIBUTED
COMBINATOR REDUCTION

LA-uR--35-2O5

J)E155 005S67
AUTHOR(S): Randy Y. Michelsen, C-10

Joseph H. Fasel, C-10

9UBMirTEDTO: SIAM publication of Proceedings of USARO Workshop
on Novel Computing Environments, Meeting held
at Stanford University, Stanford, CA, November 7 - 9, 1984

DI.SCLA1’?ER

MISER

L(X3AlalmmLosAlamos NationalLaborator
~LosAlamos,New Mexico 8754 ,,

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Harnessing Computational Power:
Distributed Combinator Evaluation

Randy E, Michelsen* and Joseph H. Fssel*

Abotract. Much interest haa been generated by the notion of combinator graph
reduction as a mechanism for the implementation of functional languages, An effort is
CU]rently in progress at Los Alamos National Laboratory, in collaboration with Paul
Hudak of Yale University, to develop a testbed distributed implementation of a func-
tional language based on this concept. Our overall goal is to facilitate the exploitation
of implicit parallelism; within this framework, we intend to use this testbe+ to evalu-
ate the utility of strategies for combinator graph reduction in a distributed computing
system.

1. Intreductlon. The demands for enhanced computing performance through
concurrency and for increase+ programming productivity through very high level
languages have fueled a reevaluation of the traditmnat, imp~rative model of computa-
tion, which is breed on the von Neumann computer, The inherent limitations of this
model, coupled with the expectation of decreasing gains in performance to be obtained
from improvements in hardware technology, have Icd to much interest in alternative
models of computation. Among these, the Juncttmal (or applicative) model appcors
particularly promising for parallel computation. This model is based solely on the
application of functions to their arguments, or put another way, on the evaluation of
pure expressions, and is thus inherently parallel. Dy contrast, tl:e imperative model is
concerned with modifiable storage CCIIS(which appear as so called variables in impcrm-
tive programming languages), and cormequcntly, with sequential control of the process
of altering and examining thcm. lrunc~ional lnngungcs also afford a more exprmsivr
mcrlium for programming, hy freeing (J1c progrrtmrncr from concwrn for storage rLllocu-
tion, sequencing, or thr explicit control of p~rnllclism,l und by tii~ use of higl]cr ordrr
functions to gcncrnlim common programming pnrudigrns,

]runctiond progrnminirrfl Inngurbgcs muy IN con~idrrcd nyntnrLic vnriuntr~ of tho
lambda crdculus [2]; thus, n nntural opcrntionnl model of functioned progrum cvnlu N-
tion is lambdn ccmvcrsionl or tiny other reduc(ion proru~~, In pnrticulnr, grlq)h rrdur-
tion is rAvantugcoun in either u uniprocmwor or rnultiprocmwor contcxtl bccnusv it
facilitntca the ~hnring of vnluc~, ‘1’here h~ Iwcrr murh inlcrmt rcrcl]tly in reduction

OIJIIIVCIWII,yof Calllorlllu, l,OS Almmon NrItIwInlI,nlmrdwy, I,os AI IIIIIOS, NM R7545 Wurk lwr-
fmmed untlor tho sunplce~ 01 the U S l)opnrlnlrl~t 01 Ltl)rrKv

Il)alrclloll’ Of lrnpll~ltpar~llollfm~in Impernt.lvc progrms 18] l? 141mPmslblr (Ull(l dc}lrd)le)l ~~11I*

Ilkcly h“ be rnurh more dIllIru!t, md I- hIndImcIIIIIlly lImIld hy the noqumlid Ilnturc of l]IP underlyll~g

1-

schemes based on combinator calculi [2], rather than the lambda calculus, a~ there is
some evidence to suggest the former are more efficient [5,9]. The case for combinator
reduction is particularly compelling for distributed computation.

We here describe a project underway at Los Alamos National Laboratory to evalu-
ate the utility of the funct~onal model of computation v hen realized in a distributed,
combinator-based reduction architecture. In Section 2, we discuss some of the techni-
cal underpinnings of this elTorL,while Section 3 provides an overview of our implemen-
tation. In the final section, we summarize and present possible avenues of future
research,

2. Technical Background. The subject of functional programming languages can
hardly be considered a fledgling research topic [1,6], Similarly, concurrc,lcy imues
have long been of interest to operating systemi and programming language desigrlers.
The referential transparency of functional languages (i.e., the meaning of a function is

independent of the context in which it is used) guarantees that programs behave con-
sistently, whether executed serially or in parallel.

Reduction as an operational model provides an amenable setting for the implemen-
tation of functional languages. This model, tra~itionally based on the conversion
rules of the lambda calculus [2], is characterized by the lack of any sequencing con-
straint other than that imposed by the demand for constituent values during evalua-
tion, Also absent from the model is the c’ ncept of alterable storage, the hallmark of
the traditional control flow model, and a contributor to many of its unattractive
characteristics. In addition, when the expressions to be reduced are represented
graphically, rather than linearly, a fuffy fazy evaluation scheme is possible, by which
each subexpression is evaluated at most once. This lends the graphs a “self-
optirnizing” property [9], in which the equivalents of some code movcrnent optimizw
tions for traditional programming Ianguagcs, such w moving invariant expressions out
of Icmps, occur automatically at run time.

In the purest form of the reduction operational model, parallelism is completely
implicit; it arises from the application of strict functions, those that require vrdues for
all their argumunts to yield a result, When a value is demanded from such a function,
the demand may propngate to each of its wgumcnts simultaneously, Where, to
improve efficiency, it is desirable to involve the programmer in the control of parullcl-
ism, we may consider nnnotnting an expression with suggestions nbout how subcxprcs-
sionn should be allocnted LOIJroccssors, which subcxprmions m not worth evrduuting
in pnrdlcl, or convcrscly, which applications of nonstrict functions might, profitably IN
evnluotcd eager(v (as if they were slrict). Tile aclvnntngc of this schcrnc over explicit
pmrullelisn] in impera:ivc Inngunges will] facilities for proccsti crcntion nnd synchroni-
zation in that by annotating H program, wc may chnngr ills prrformnncc cllilrnctcri~-
tics, but not its result. Functional progrnms m dctcrminntr, (Drtrrminncy, nftcr nil,
iu the n~turc of I’bnctionsl)

—.
model d computrllon

An alternative to the lambda calculus is a com6inator calculus, in which the bound
variables of lambda expressions have been eliminated by the introducticm of a sma!l
set of functions called combinators [3]. Just as functional programming languages
may be regarded as syntactic variants of the lambda calculus, a combinator calculus
can be considered a kind of machine code for these languages; thus Turner [9] has sug-
gested compiling functional programs into graphical representations of combinator
expressions. An evaluator for combinator expressions can be significantly faster than
an evaluator for lambda expressions, such ao the SECD machine [6], because in the
absence of bound varinbles, there is no need for an environment in which ,0 record
the bindings of variables to values, A good deal of overhead in the creation and
retrieval of bindings is thus eliminated, the environmental information having been
compiled into the graph. For distributed computation, the gain in efficiency is even
more significant, A centralized environment can be a serial bottleneck, whereas in a
combinator graph, the environmental information is distributed, each subexpression
being supplied just the values it needs. In the analogy of a combinator calculus to a
von Neumann instruction set, combin~tors are like instructions such FMloads, stores,
and jumps, in that they provide the mechanism that links the outputs of primitive
operations (such as addition) to the inputs of other opel ations, Theoretically, two
combinators suffice [3]; practically, we may desire a larger, though perhaps still mod-
est, collection of combinators that capture several common patterns of communic~
tion.

Hughes [4] has suggested a variation on Turner’s combinator reduction scheme, in
which the set of combinators is not fixed for all programs but is optimally chosen for
the exprwision at hnnd, These supercombz’nato;s represent the largest subcomputa-
tions, derived from the original lambda expression, that preserve full laziness, If
Curry-Turner combinators are like the fixed Instruction set of a general-purpose com-
pu.er, supercombinators are like specialized microcode instructions, made to order
for a particular problem. Hudak [7] has suggested a further variation on supcrcombi-
nators for parallel processing. His ssriaf combinators are refinemc nts of supercornbi-
nators that have no concurrent substructure. They thus embody the smallest reason-
able grrmularity for concurrency in a computation; we may designate a serial combina-
tor rM a sched~lablc unit of computation, or we may choose to combine several of
them, but there is no point in Jccmnposition below this level,

3. Current Implementstlon. The system prwcntly under development uses a col-
lection of Symbolic~ Lisp machines conncctcd by an Ethernet rmd is int~:lclcd to prm
vide a tcstbcd for furthcl research, The systcm is bnscd on u mcsw-tgc-pnssing pnrw
digm, with communication, scheduling, wncl rcclurticn t’rnl.mdicd in srpnln,tr proccsww,
The mnjor functional units of the syshm arc now under COLICdevclcJp,IIcIIt.

Ina typical scennrio, ~ source program in the functional programming lunguagr
ALFL [7] is compiled into n scrird con~binmtor gruph, ‘1’hc dcriul corn binmtors tllcm-
SCIVCSare compiled into Lisp, and from Lisp, into cxccutablc code, Code for id! sori:~l
combillators, as well as that for the supporting uchcc.luling and communication
proccsscs, is distributed to each mnchinc in the network, I’;xccution bcginn oI~ m~r
machine; M the graph unfokls during the process oi’ rcductionl it dilTumw through th(’

network, It is reduced by cooperating elements of the processor network, eventually
to normal form, The diffusion of the combinator graph is controlled by a decentral-
ized, load-balancing scheduling algorithm [7]. This algorithm attempts, through dis-
tribution of spawned tasks to neighboring processors with available capacity, to
disperse work through the network while preserving locality.

4. Conclusion and Directiom for Future R_earch. This paper has presented
the rationale for, and an overview of, a project at Los Alamos National Laboratory to
develop and analyze a distributed implementation of a functional language. The
operational model employed is serial combinator reduction.

Completion of this implementation will provide us a testbed to evaluate
combinator-based graph reduction schemes in an actual multiprocessor environment,
and to refine our techniques in compilation, scheduling, load balancing, and commun-
ication. It can also give us the means for experimenting with ~ource language annota-
tions to aid in the control of concurrency. Iu addition, the implementation will help
us to evaluate the applicability of functional languages to Laboratory problems in sci-
ence, engineering, and artificial intelligence,

We hope to apply the experience gained from this work to other varieties of com-
puter architecture to be found among the Laboratory’s computing resourcrs. In par-
ticular, we believe that graph reduction is appropriate for tightly coupled, common
memory multiprocessor configurations, as well as for distributed ones. In fact, com-
mon memory should enhance the value sharing aspect c! graph reduction, while sim-
plifying the problems of load balancing and communication, Of course, one cannot
indefinitely add processors to a common memory machine without degrading perfor-
mance; thus, distribution oi processing power becomes necessary. On the basis of
increues in computii~g power needed for some Los Alamos problems, we can envision
large-scale processing networks with each node a fairly powerful shared memory mul-
tiprocessor, perhaps on the order of a Cray X-MP.

REFERENCES

[1] J,BACKUS, Can proryarnmt’ng be liberated from the uon Neumann style? A
Junctional style ad ~t.9 algebra OJ programs, Comm, ACM 21 (8), pp. 613-041~

12] A, C}llIRCII, 7he cafcult’ OJ lambda ronwsion, Annals of h4athemntird Stu-
dies, Princeton University Press, Princeton, NJ, 1041.

13] 11,K. CURRY mild R FEW, flmnbinato~y Logic, Volume 1, North-lloliancl Pul)-
Iishing, Amsterdam, 10S8.

Programming, pp. 150158.

[6] P. J, LANDIN,The mechanical evacuation o.I expressions, Computer Journal, 6,
4 (1963), pp. J08_320.

[7] P. HUDAK and B.COLDBERG, Ezpcriments in dij~used cornhinator r.L!uc-
fiora, Proc. 1984 Symp. on Lisp and Functional Programming, pp. 167-176.

[8]K. 07TENSTEIN, A brief survey of implicit parallelism detection, in J.S.
KOWALIK (Ed.), MIMD Computation: 7%e HEP Supercornputer and its Appli-
cations, M-IT Press, Cambridge, Mm., to appear 1985.

[9] D.A. TURNER, A n~w irnpfernentation technique for appficatzve languages,
Software-Practice and Experience, 9 (1979), pp. 31-49.

