LA-UR -85-205 Conf- edll|¢C--2

Los Alamos National Laborsiory is operated by the Univeraily of Caltorna for ihe Unied Siates Depertmant of Energy under contracl W-7405-ENG-28.

nrie: HARNESSING COMPUTATIONAL POWER: DISTRIBUTED
COMBINATOR REDUCTION

LA=-UR--35-205

DEGS 005C67
AUTHOR(8) Randy %. Michelsen, C-10
Joseph H. Fasel, C-10

susM(TEDTO: SIAM publication of Proceedings of USARO Workshop
on Novel Computing Environments, Meeting held
at Stanford University, Stanford, CA, November 7 - 9, 1984

DISCLAT™ER

This report was prepared as an socount of work sponscred by an agency of the Usited Staies
Government. Neither the United States Government nof any agency thersol, nor any of their
employess, makes any warranty, expross or implied, or assunies sny legal llability or responai-
bllity for the accuracy, compieteness, or usefulness of any infcrmation, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ance berein to any specific commeroial product, prooss, or servics by trade name, tradsmark,
manufecturer, of otherwise doss not necessarlly constitute or imply i) endorsement, recom-
mendation, or lavoring by the United States Governmant or any agency thersof. The views

and opinions of authors expresssd herein do not necsssarily state or refllect those of the
United States Government or any agency thersol.

By scceptance of 1his sicle. the publigher recognizes that the U 8 Governmen' 1e1ains a ncneaciusive, royally-free kcanse to publish of reproguce
the pubhished torm of \his roninbulsd, . or \o akow othars to do so, lor UB Qoverument purposes

The Los alamos Nalionsi Laboratory raguesis that the publisher idenlity thi ariicie us work patfofmad under 1he susises of lhe U 3 Depariment of Energy

LoS AlNOS Leshlemos NatoralLaborator

o 10 g OISTRRUTION OF TS DRCWANAT 1 uBLiN!IED ‘)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Harnessing Computational Power:
Distributed Combinator Evaluation

Randy E. Michelsen* and Joseph H. Faselr

Abstract. Much interest has been generated by the notion of combinator graph
reduction as a mechanism for the implementation of functional languages. An effort is
currently in progress at Los Alamos National Laboratory, in collaboration with Paul
Hudak of Yale University, to develop a testbed distributed implementatior of a func-
tional language based on this concept. Our overall goal is to facilitate the exploitation
of implicit parallelism; within this [ramework, we intend to use this testbe? o evalu-
ate the utility of strategies for combinator graph reduction in a distributed computing
system.

1. Intreductlon. The demands for enhanced computing performance through
concurrency and for increased programming productivity through very high level
languages have fueled a reevaluation of the traditinnal, imperative model of computa-
tion, which is based on the von Neumann computer. The inherent limitations of this
model, coupled with the expectation of decreasing gains in performance to be obtained
from improvements in hardware technology, have led to much interest in alternative
models of computation. Among these, the functronal (or applicative) model appears
particularly promising for parallel computation. This model is based solely on the
application of functions to their arguments, or put another way, on the evaluation of
pure expressions, and is thus inherently parallel. By contrast, tlie imperative model is
concerned with modifiable storage cells (which appear as so called variables in impera-
tive programming languages), and consequently, with sequential control of the process
of altering and examining them. Functional langunges also afford a mote expressive
medium for programming, by freeing the programmer from concern for storage allocu-
tion, sequencing, or the explicit control of parallelism,! and by tiie use of higher order
functions to generalize common programming paradigms.

Functional programming languages may be considered syntactic variants of the
lambda calculus (2]; thus, a natural operational model of functional program evilua-
tion is lambda conversion, or any other reduction process. In particular, graph reduc-
tion is advantageous in cither & uniprocessor or multiprocessor context, becnuse it
facilitates the sharing of values. T'here has been much interest recently in reduction

sUniveraity of Cahlformin, Los Alamos National Laboratory, Lox Alumos, NM B7545 Work per-
fortned under the auapices of the U S Department of Fuergy

'Datection’ of implicit parallelism in inperative programs [8] in also possible (and derirable), but
likely to be much more difficu’t, and s fundamentally limited by the sequential nature of the underlying,

schemes based on combinator calculi [2], rather than the lambda calculus, as there is
some evidence to suggest the former are more eflicient [5,9]. The case for combinator
reduction is particularly compelling for distributed computation.

We here describe a project underway at Los Alamos National Laboratory to evalu-
ate the utility of the functional model of computation vhen realized in a distributed,
combinator-based reduction architecture. In Section 2, we discuss some of the techni-
cal underpinnings of this effort, while Section 3 provides an overview of our implemen-
tation. In the final section, we summarize and present possible avenues of future
research.

2. Technical Background. The subject of functional programming languages can
hardly be considered a fledgling research topic {1,6]. Similarly, concurrcucy issues
Lave long been of interest to operating system: and programming language designers.
The referential transparency of functional languages (i.e., the meaning of a function is
independent of the context in which it is used) guarantees that programs behave con-
sistently, whether executed serially or in parallel.

Reduction as an operational model provides an amenable setting for the implemen-
tation of functional langaages. This model, tracitionally based on the conversion
rules of the lambda calculus [2], is characterized by the lack of any sequencing con-
straint other than that imposed by the demand for constituent values during evalua-
tion. Also absent from the model is the ¢« ncept of alterable storage, the hallmark of
the traditional control low model, and a contributor to many of its unattractive
characteristics. In addition, when the expressions to be reduced are represented
graphically, rather than linearly, a fully lazy evaluation scheme is possible, by which
each subexpression is evaluated at most once. This lends the graphs a ‘‘self-
optimizing’ property {9], in which the equivalents of some code movement optimiza-
tions for traditional programming languages, such as moving invariant expressions out
of loops, occur automatically at run time.

In the purest form of the reduction operational model, parallclism is completely
implicit; it arises from the application of strict functions, those that require values for
all their arguments to yield a result. When a value is demanded from such a function,
the demand may propagate to cach of its arguments simultaneously. Where, to
improve efliciency, it is desirable to involve the pregrammer in the control of parallel-
ism, we may consider annotating an expression with suggestions about how subexpres-
sions should be allocated Lo processors, which subexpressions are not worth evaluunting
in parailel, or conversely, which applications of nonstrict functions might profitably be
eviluated eagerly (as if they were strict). The advantage of this scheme over explicit
purallelism in imperative languages with facilities for process crention and synchroni-
zation is that by annotating a program, we may change its perforinance characteris-
tics, but not its result. I"unctional programs are determinate. (Determinacy, after all,
iu the nature of functions!)

model of computrtion

An alternative to the lambda calculus is a combinator calculus, in which the bound
variables of lambda expressicns have been eliminated by the introduction of a small
set of functions called combinators [3]. Just as functional programming languages
may be regarded as syntactic variants of the lambda calculus, a combinator calculus
can be considered a kind of machine code for these languages; thus Turner [9] has sug-
gested compiling functional programs into graphical representations of combinator
expressions. An evaluator for combinator expressions can be significantly faster than
an evaluator for lambda expressions, such as the SECD machine [6], because in the
absence of bound variables, there is no need for an enwvironmnent in which .o rzcord
the bindings of variables to values. A good deal of overhead in the creation and
retrieval of bindings is thus eliminated, the environmental information having been
compiled into the graph. For distributed computation, the gain in cfliciency is even
more significant. A centralized environment can be a serial bottleneck, whereas in a
combinator graph, the environmental information is distributed, each subexpression
being supplied just the values it needs. In the analogy of a combinator calculus to a
von Neumann instruction set, combinators are like instructions such as loads, stores,
and jumps, in that they provide the mechanisim that links the outputs of primitive
operations (such as addition) to the inputs of other opeiations. Theoretically, two
combinators suflice [3]; practically, we may desire a larger, though perhaps still mod-
est, collection of combinators that capture several common patterns of communica-
tion.

Hughes [4] has suggested a variation on Turner’'s combinator reduction scheme, in
which the set of combinators is not fixed for all programs but is optimally chosen for
the expression at hand. These supercombinatois represent the largest subcomputa-
tions, derived from the original lambda expression, that preserve full laziness. If
Curry-Turner combinators are like the fixed instruction set of a generai-purpose com-
pu.er, supercombinators are like specialized microcoded instructions, made to order
for a particular problem. Hudak (7] has suggested a further variation on supercombi-
nators for parallel processing. His s2rial combinators are refinemcnts of supercombi-
nators that have no concurrent substructure. They thus embody the smallest reason-
sble grenularity for concurrency in a computation; we may designate a serial combina-
tor as a schedulable unit of computation, or we may choose to combine several of
them, but there is no point in Jucrinposition below this level.

3. Current Iniplementation. The system nreecntly under development uses a col-
lection of Symbolics Lisp machines connected by an Ethernet and is intcaded to pro-
vide a testbed for further research. The system is based on u message-passing para-
digm, with communication, scheduling, und reducticn ¢mbodicd in separnte processes.
The major functional units of the system are now under code develop.nent.

In a typical scenario, a source program ia the functional programming lunguage
ALFL (7] is compiled into a serial combinator graph. The serial combinators thems-
selves are compiled into Lisp, and from Lisp, into executuble code. Code for all serial
combinators, a8 well as that for the supporting scheduling and communication
processes, is distributed to cach machine in the network. Execution begins on one
machine; as the graph unfolds during the process ol reduction, it diffuses through the

network. It is reduced by cooperating elements of the processor network, eventually
to normal form. The difflusion of the combinator graph is controlled by a decentral-
ized, load-balancing scheduling algorithm (7). This algorithm attempts, through dis-
tribution of spawned tasks to neighboring processors with available capacity, to
disperse work through the network while preserving locality.

4. Conclusion and Directions for Future Research. This paper has presented
the rationale for, and an overview of, a project at Los Alamos National Laboratory to
develop and analyze a distributed implementation of a functional language. The
cperational model employed is serial combinator reduction.

Completion of this implementation will provide us a testbed to evaluate
combinator-based graph reduction schemes in an actual multiprocessor environment,
and to refine our techniques in compilation, scheduling, load balancing, and commun-
ication. It can also give us the means for experimenting with rource language annota-
tions to aid in the control of concurrency. li addition, the implementation will help
us to evaluate the applicability of functional languages to Laboratory problems in sci-
ence, engineering, and artificial :ntelligence.

We hope to apply the experience gained from this work to other varieties of com-
puter architecture to be found among the Laboratory’s computing resources. In par-
ticular, we believe that graph reduction is appropriate for tightly coupled, common
memory multiprocessor configurations, as well as for distributed ones. In fact, com-
mon memory should enhance the valne sharing aspect ¢! graph reduction, while sim-
plifying the problems of load balancing and communication. Of course, one cannot
indefinitely add processors to a common memory machine without degrading perfor-
mance; thus, distribution of processing power becomes necessary. On the basis of
increases in computing power needed for some Los Alamos problems, we can envision
large-scale processing networks with each node a fairly powerful shared memory mul
tiprocessor, perhaps on the order of a Cray X-MP.

REFERENCLES

(1] J. BACKUS, Can prograrmmming be liberated from the von Neumann style? A
functional style and its algebra of programs, Comm. ACM 21 (8), pp. 613-641.

[2) A. CHURCH, The calculi of lambda conversion, Annals of Mathematical Stu-
dies, Princeton University Press, Princeton, NJ, 1941,

[3] H. K. CURRY and R. FEYS, Combinatory Logic, Volume I, North-tloliand Pub-
lishing, Amsterdam, 1958.

(4] R. J. M. HUGHES, Super-combinators: A new implementation technique for
applicative languages, Proc. 1082 ACM Symp. on Lisp and Functional Program-
ming, pp. 1-0.

(5] S. L. P. JONES, An tnucstigation of the relative efficiencies of combinators
and lambda expressions, Proc. 1982 ACM Symp. on Lisp and Functionul

6]
7]

8]

[9]

Programming, pp. 150-158.

P. J. LANDIN, The mechanical evaluation of expressions, Computer Journal, 6,
4 (1963), pp. $08-320.

P. HUDAK and B. GOLDBERG, Ezperiments in diffused combdinator reduc-
{ion, Proc. 1984 Symp. on Lisp and Functional Programming, pp. 167-178.

K. OTTENSTEIN, A brief survey of tmplicit parallelism detection, in J. S.
KOWALIK (Ed.), MIMD Computation: The HEP Supercomputer and its Appli-
cations, MIT Press, Cambridge, Mass., to appear 1985.

D. A. TURNER, A ncw implementation technique for applicative languages,
Software~Practice and Experience, 9 (1879), pp. 31-49.

