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There are many nonlinear differential equations for which two different
types of behavior, such as rhaos and periodicity, are interwoven in a com-
plex and intricate manner, so that the bifurcation parameters form a "fat
fractal”. The result is that statistical averages vary wildly with parame-
ters and, strictly speaking, prediction becomes impossible even in the sta-
tistical sense. (For example, climate, as well as weather, is unpredictable.)
There is, however, order in this unpredictable behavior, which can be
described by a universal strange attractor of the renormalizaticn transfor-
mation.
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Introduction

Diflerential equations and their discrete counterparts, mappings, occur in almost
every branch of science. The generic name for this type of mithematical model is
dynamical system. Loosely put, this is nothing more than a rule stating how some
quantity, or set of quantities change, usually with time. A familiar example is Newton's
law; F = m & describes how the position of an object varies in time. The force F gives
the rule, the acceleration @ relates this rule to position, and the mass m is what is
called a parameter of the equation, i.e. something that stays constant for any given
application, but might vary from case to case. Dynamical systems can be divided into
two broad categories, linear and nonlinear. Although most physical problems are most
accurately modeled by nonlinear equations, linear models have been more commonly
utilized. The reason is expedience; linear systems can be put in a form in which each
variable behaves independently of the others, and are thus solvable. In contrast, there
is no systematic theory for solving nonlinear systems.

Even though it is generally not possible to solve nonlinear equations, it is possible
to simulate their behavior on a computer, and by doing this in recent years considerable
progress has been made toward understanding their qualitative properties. In very gen-
eral terms, the results of some of these investigations can be summarized as follows:

First, the properties of nonlinear equations are dramatically different than those of
linear equations. In particular, they are capable of several different varieties of "sensi-
tive” behavior. The most famous of these is chaos, also called sensitive dependence to
initial conditions, conjectured by Poincare [1] at the turn of the century, and
developed by Lorenz [2] in the early 60's. Chaos has received a great deal of attention
in recent years, since it explains how chaotic, apparently random beliavior can be gen-
erated by a physical system following deterministic laws. The basic discovery is that
for some nonlinear dynamical systems errors in initial measurements grow geometrically,
rather than arithmetically in time. Small changes in initial values produce very large
changes at a later time, and the detailed behavior of the system becomes unpredictable
in anything other than a statistical sense. Chaos is believed to be the underlying cause
of many different phenomena that seem to contain random or unpredictable elements,
such as the weather. It puts an inherent limit on our ability to predict the future, since
with initinl measurements ol only finite accuracy, it is impossible to predict the details
of future behavior.

The long-time behavior of a dynamical system, after "transients” have been
allowed to die out, is often more important than the sort-term behavior. In dynamical
systems with some form of friction, or dissipation, initial cor.ditions are "attracted” to
some subset of all possible values, called an aftractor. For example, the motion of a
mass on the end of a spring will eventually damp out, approaching a state of rest called
a fixed point attractor. A nonlinear oscillator (with an energy source) can have more
complicated attractors, such as a limit cycle attractor; this means that after all the tran-
slents die out, motion always approaches a periodic cycle that is the same regardless of
the particular initial conditions. A metronome, the heart, or the feedback produced
when a microphone is held up to a speaker are all examples of limit cycle attractors. A
more complicated kind of attractor, called a strange attractor, appears when motion on



an attractor is chaotic. This is a good example of the concurrence of order and chaos;
the attractor represents a restriction of the motion, a reduction of possiblities; within
the restrcitions imposed by the attractor, however, motion is chaotic.

A second result that was quite surprising is the existence of universal properties of
nonlinear equations. Even though there are an infinite number of different nonlinear
equations, many of them behave in essentially the same wav. Perhaps the first instance
of this was diccovered by Metropolis, Stein, and Stein [3] in the early seventies. on. An
aspect of this work was substantially expanded by Feigenbaum [4], who showed that one
of the most common ways to make a transition from predictable to chaotic behavior
always occurs in exactly the same way. Universality implies that even though the
behavior of nonlinear equations may be quite complex, there are orderly patterns to the
way in which this complex behavior occurs, common to all equations in 2 given class.

Sensitive Dependence to Parameters

The centra: purpose of the work outlined here is to discuss a lesser kn~wn "sensi-
tive” property of nonlincar systems, called sensitive dependence to parameters, and to
demonstrate some of its universal properties. Roughly put, seasitive dependence to
parameters occurs when a dynamical system’s behavior changes wildly as a parameter
(such as the mass m in F =m @) is varied. Thus, for example, at one parameter value
a systemn might be chaotic, at another nearby value periodic, and then again chaotic,
etc. The remarkable aspect is that arbitrarily close to every parameter value where
there is chaos, there is another parameter value where there is a stable periodic orbit.
At the same time, a finite fraction of parameter values generate chaos. In fact, the
parameter values where the behavior is changing, or the b: furcation parameters, con-
sume a finite fraction of all possible parameter values, equal to the set of chaotic param-
eter values. The practical implications for prediction are bad, worse even than for chaos:
For chaos, .he details of future behavior are unpredictable, but for sensitive dependence
to parameters, prediction is no! even possible in a statistical sense, since the average
behavior when the system is chaotic may be completely diflerent from its behavior when
it is periodic.

This phenomenon was originally recognized by Edward Lorenz, a meteorologist,
who described it in a little known paper called "On Determining the Climate from the
Governing Equations” [5). The basic point of this paper is that the climate, which is an
average or statistical property of the equations that govern the weather, may be
inherently wnpredictable due to sensitive dependence to parameters. A discussion of the
example used by Lorenz will perhaps lielp to make this clearer.

Since the equations thal really describe the weather are quite complicated, and
extremely d'ficult to deal with, Lorenz chose to study a very simple nonlinear equation,
called the "logistic map”, which may thought of as a metaphor for the weather.

T =15 (1-2,) (1)
Here z is a number betwcen zero and one, r is a parameter value between zero and

four, and k is a labei that plays the role of time. For any given initial value 2, and a
fixed value of r this equation can be used to generate a new value z,, which can in turn



Figure 1.

An example of a very simple nonlinear dynamical system,
given by Eq (1).

be used to generate z,, ad inwnilum. The sequence z, might describe some property of
the weather, such as the temperature ou successive days, and » might describe a fixed
property, such as the latitude. Of course, this equation is much too simple for a realis-
tic model of the weather, but Lorenz’s purpose was to provide an illustration; if this
very, very simple equation can do unpredictable, complex things, then complicated equa-

tions such as those that actually underly the weather might also be capable of the same
type of behavior.

Lorenz demonstrated that there are many values of r where the sequence z, is
chaotic, i.e., the values of z, appear to hop around in a random manner, never settling
down. At other values of r, the sequence z, is asymptotically periodic, or in other
words, the values of z, eventually begin repeating themselves, settiing down inwo an
unvarying pattern in which z periodically changes between fixed values (a limit cycle
attractor). Lorenz demonstrated that aroitrarily close to any value of r generating
chaos, there is another value of r generating periodicity. Furthermore, for chaotic
parameter values the average value of z may take on one value, while at the arbitrarily
nearby periodic values, the average may be quite different.. The result is that unless r is
known with infinite accuracy (which it never is), the average value of z is unpredictable,
since even an infinitesmal change in r might produce a substantial change in the aver-
age. If z represents temperature, then the average temperature would be unpredictable.
Identifying the average temperature as a feature of climate, we see that the the climate
ic this case is unpredictable in principle.



Fat Fractals

The fact that there are periodic parameter values arbitrarily close to chaotic
parameter values has led many people to assume that chaos must be unlikely to occur in
such equations, and that the erratic behavior seen in computer experiments must be an
artifact of the computer errors. This is in fact wrong. As was originally demonstrated
by Lorenz [5], and lately proved by Jakobsen (6], the chaotic parameter values consume
a finite fraction of the values of r. To better understand how this seemingly paradoxi-
cal behavior occurs, let us first construct a hypothetical set with analogous properties:
Delete the middle third of a line segment extending from O to 1, leaving two line seg-
ments. Now delete the middle third of each of these, leaving four segments. Continue
this process ad tnwnitum, as shown in Figure 2. What is left is called a Cantor set, and
has some very remarkable properties. First, there is a gap arbitrarily close to any point
in the Cantor set. This implies that the Cantor set is its own boundary. Second, the
points in the Cantor set cannot be counted, even though when "added up”, their total
length is zero. In other words, picking a point at random, the probability that it lies in
the Cantor set of (a) is zero. Thus, this can be called a "thin” Cantor set.

It is possible to "fatten” this Cantor set by changing the scaling between the gaps,
as shown in Fig. 2(b). At the second stage of construction, delete the middie 1/9 rather
than the middle third of each segment, and at the third stage delete the middle 1/27 of
each segment, and so on. The result is that this new "fat” Cantor set has length greater
than zero; if a point is picked at random, there is a nonzero chance that it will be one of
the points in the fat Cantor set. This is true even though there are still holes arbitrarily
close to any point in the fat Cantor set, so that the fat Cantor set is still its own
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Figure 2.
Two examples of Cantor sets, as described in the text. The
one shown in (a) is "thin", and the one shown in (b) is "fat”.



boundary.

The set of parameter values where chaos occurs in the logistic map is also a fat
Cantor set; think of the holes as periodic vaiues of r, and the points in the fat Cantor
set as the chaotic values. The set of bifurcation parameters is just the set of boundary
points, and is equal to the set of chaotic values. Thus every parameter value causing
chaos is also a bifurcation parameter. Note: Since a Cantor set is a very specific thing,

the more general term fractal [7] is often used to discuss objects of this type. Like Can-
tor sets, fractals can be either fat or thin.

In examining a fat fractal such as the one of Figure 2, even though there are gaps
arbitrarily close to every point, only a few of them are visible. The pen used to draw
the figure has a finite width, and in any case your eyes have limited resolution, so that
the smallest gaps are obliterated. The sizc of the fat fractal that you actually see is
larger than the true size. If somehow the pen were finer and your eyes were better,
more of the zzps would become visible, and the apparent size would decrease to reach a

value closer to the true value. The apparent size thus depends on the scale of resolu-
tion.

The same is true of the set of chaotic parameter values of the logistic map. One of

the new results being reported here [8] is that the the apparent size of fat fractals of this
type changes as

L{e)=0L(0)+ ke (2)

where L {¢) is the total length measured using resolution ¢, and k and g are constants.
(This relation is only generally valid for small ¢.) The exponent 8 provides a means of
quantifying the extent to which something is a fat fractal. If g is close to zero, then the
area only changes slowly with changes in the resolution, and the fractal property is very
strong, whereas if g is large, theu the fractal property is weak. g can in fact be used to
dewne sensitive dependence to parameters. Specifically, sensitive to parameters occurs
when when 8 < oo, i.e., when there is a fat fractal in parameter space. This same pro-
perty has recently been shown to hold for other types of equations as well [9].

Thus far, we have been assuming that the motion we are discussing is fully deter-
ministic, i.e., there are 1.0 external random influences acting on the system. In real phy-
sical problems, however, there are always fluctuating, unknown, apparently random
external influences at work. Even though these eflects may be very small, in the case of
sensitive dependence to parameters, they play an important conceptual role. In particu-
lar, as demonstrated in reference [10], random external fluctuations wipe out all the
stable periodic orbits below a certain minimum size, depending on the amplitude of the
external influences.) The result is that external random fluctuations actually make it
possible to predict statistical averages, since they smooth out all the complicated
behavior associated with sensitive dependence to parameters.

The complication introduced by sensitive dependence to parameters, then, is that
the phenomenes observed depend in an essential way on the level of the external flucta-
tions. In thz presence of sensitive dependence to parameters two experiments done with
dilferent levels of external fluctuations will observe diflerent results, with the less noisy



experiment observing more structure and more bifurcations than the other. Strictly
speaking, neither of them is "right”, since another experiment with an even lower level
of fluctuations will always observe more structure. The amount of new behavior that
emerges as the level of fluctuations is lowered can be predicted from knowledge of the
exponent § of Equation (2). Thus g provides a means of summarizing the effect of exter-
nal fluctuations on sensitive dependence to parameters. More detailed predictions can

be made from the properties of the appropriate universal strange ettractor, discussed
below.

Universal Strange Attractors

In spite of all this pessimism concerning predictablity, the logistic equation, ard ~'
other equations of the same type, have some very orderly properties, one of whici:
discovered by Metropolis, Stein, and Stein [2]. In particular, the stable periodic orbits
discussed above can be labelled according to whether each step of the orbit goes to the
left or right of z = 1/2. (z = 1/2 is called the ¢ritical point, and is special because it is
the point that gives rise to the maximum value.) A period four orbit, for instance,
might be labelled MRLR, to indicate that starting in the middle, z first goes 1o the
right, then to the left, then to the right, and back to the middle. An alternative period
four orbit would be MRLL. It turns out that only certain combinations are allowed;
MLRL, for example, is not possible. Furthermore, they showed that as the parameter r
is increased, stable periodic orbits appear in a certain manner that can easily be
predicted in terms of a simple rule.

The remarkable aspect is that this rule is universal, i.e. it is the same for any map
of the same basic type as the logistic equation. For example, z; ., = r sin 7z, is another
map that is similar, but not exactly the same, as the logistic map shown in Figure 1.
The ordering of the stable periodic orbits is exactly the same as that of the logistic map,
and can be predicted according to the same rule. They called this universal sequence of
stable periodic orbits the U-sequence. Although these maps may seem far removed from
reality, in fact the existence of the U-sequence has now been verified in experiments on
chemical reactors [11].

This concept of universality was extended by Mitchell Feigenbaum (5}, who showed
that for & certain subset of the U-sequence, not just the order, but also tke spacing of
the parameter values was the same for all maps of the same basic type as the logistic
equaiion. The subsequence investigated by Feigenbaum, called the period-doubling
sequence, is special because it initiates the transition to chaos. What he showed is that
number describing the spacing of the parameters for the period-doubling sequence is the
same for all maps of this general type. Feigenbaum's predictions have now been verified
for many different kinds of physical phenomena.

The existence of the power law behavior given in Equation (2) suggests that the
scaling properties are of the right kind to extend Feigenbaum’s theory to the whole U-
sequence. Furthermore, preliminary results suggest that the number g obtained is the
sanie in each case, although it should be emphasized that as yet these results are incon-
clusive. These ideas have been worked out in more detail [12] for a similar kind of non-
linear equation, called a circle map, that has another type of transition to chaos.



Building on previous work [13,14], we have shown that the sequence of periodic orbits
causing sensitive dependence to parameters lie on a universal strange attractor in
parameter space. In other words, there is a geometrical object (an attractor) defining a
rule that allows the order and spacing of the periodic orbits to be predicted. The fact
that this attractor is strange (or chaotic) means that the spacing is very sensitive to the
value of parameters. The fact that it is universal means that all nonlinear mappings of
this type are described by the exactly the same strange attractor. Another approach to
different aspects of this same problem has also recently been proposed by Feigenbaum
[15); as yet it is unclear how these two different approaches are related to each other.

We believe that our approach can also be extended to understand the U-sequence dis-
cussed above.

Conclusions

Thus, even though many nonlinear systems exhibit complicated benavior, we are
finding that in many cases there is order underlying this complicated behavior. One
example of this is sensitive dependence to parameters, which happens when the parame-
ter values for phenomena of one type (e.g chaos) form a fat fractal. Although on the
surface this behavior is very complicated, such fat fractals have well-defined scaling pro-
perties. In some cases we have been able to show that there is a sense in which all frac-
tals in a given class are the same, a sense which can be made precise in terms of a
universa: strange attractor. Such universal strange attractors provide us with a means
of classifying behavior, by stating in a precise manner an aspect in which two otherewise
different nonlinear equations are alike. The fact that so far only a few fundamentally
different type of behavior have been seen, with only a few underlying universal strange
attractors, gives hope that it may be possible to group the behavior of nonlinear equa-
tions into a finite number of different categories. The universal strange attractor makes
explicit the way in which the members of each category are the same. Although
phenomena such as sensitive dependence to initial conditions and sensitive dependence
to parameters imply limits to prediction, by exploiting the order stemming {rom their
deterministic origins we can at least approach these limits.
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