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Generalized Helicity and Its Time Derivative
T. R. Jarboe and G. J. Marklin

Los Alacos National Leboratory
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I. Introduction

Spheromaks can be sustained against resistive decay by helicity injection
because they tend to obey the minimum energy principle. This principle states
that a plasma-laden magnetic configuration will relax to a state of minimum
energy subject to the constraint that the magnetic helicity is conserved. Use
of helicity as a constraint on the minimization of energy was first proposed
by Woltjer! in connection with astrophysical phenomena. Use of the helicity
constraint was first applied to the spheromak by Wells and Norwocod.? The
principle was later applied to the reversed-field pinch (RFP) by Taylor,? who
was most responsible for the eventual acceptance and recognition of the
principle as being important for RFP-type confinement devices. Of course,
helicity does decay on the resisiive diffusion time. However, if helicity 1is
created and made to flow continuously into 8 confinement geometry, these
additional linked fluxes can relax and sustain the configuration indefinitely
agains¢ the resistive decay.

In this paper ve will present an extension of the definition of helicity
to include systems vhere B can penetrate the boundary and the penetration can
be varying in time. Ve then discuss the sustainment of RFPs and spheromaks in
terms of helicity injection.

II. Generalized Helicity

HagnetIc helicity has traditionally been defined as a global quantity
applicable to configurations of closed magnetic fields:

K = JK- Bd"y (1)

vith B-% = 0 at the boundary of the volume in question. 1In this form, and in
conjunction with the Taylor principle, this concept has had great utility in
generating bounded equilibrium states. Difficulties can arise, howvever, when
attempts ave made to reduce the concept to wmore local terms, such as by
defining a haelicity dansity or a helicity flux. Analyzing helicity injection
schemes for which B'# ¢ 0 can also present a problem. The central difficulty

iy that the artificisl character of the vector potential, , makes
wanipulation of hellcity sensitive tq the choice of gauge. Indeed, If we
apply the gauge transformation A’ = X + Vu, it is readily ghown frow the above

definition that

K' - K J-uﬁ-ﬂds (2)

80 that for a genevalized volume with Bil w0 ovar some rvagion of 1w surface,
the mugnaetic helicity 18 not well determined.
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In the simple geometry of the CTX experiment, this rather technical
theoretical issue is avoided by a direct approach. 4s illustrated by Moffatt
(1], 1in the case of tvo separate, linked fluxes, Y1 and v¥,, the above
definiticen reduces to K = 2#1w2 In the CTX coaxial source, poloidal and
toroidal fields are separate with the poloidal flux v, being generated by &
coil and the rate of change of the toroidal flux being given by thke source
voltage V The result is the rule dK/dt = 2w Vg for the helicity injection
rate, vhicﬁ has been confirmed by CTX data.

The gauge problem that arises in less e%egentary cases has been studied
independently by a number of workers. The results of these studies
indicate that the issue is now essentially resolved. Three approaches will be
described briefly below: the work of Jensen and Chu at GA Technologies, the
vork of Berger and Field at the Harvard-Smithsonian Center for Astrophysics,
and the results of our thinking on the subject. Jensen and Chu® treated the
case of a boundary with B-% # 0 but with d( -3)/dt « 0. Though a more general
viewv wvas implied, emphasis was on boundaries consisting primarily of
conductors having gaps across which voltages were applied. In such cases, the
vector potential is usefully represented as a superposition of eige functions
(Taylor states) plus an "inhomogeneous" part, ' , arising from g 3 the
boundary. Jensen and Chu noted that a "total ﬁelicity", Kc' could be defined
as

K = Jx-mw - IKI-(V x Kp)dv (3)

and that K. can be shown to be gauge invariant. The second term on the right
is referred to as the “vacuum helicity" and it vanishes when B-d «~ 0. In this
same study, a "Poynting vector® for helicity flux is proposed in the form

d-¢3+ﬁx}f (4)

vhere ¢ is the electrostatic potential. Berger and Field® devote considerable
attention to the topological basis of flux linkage and view the gauge problem
as arising from topological ﬁn%eterminacy: vhen magnetic field 1lines 1leave
the volume of interest ( v 0) their extaernal linkage is unknown. The
rasolution of this uncertainty 1s to compare the actyal fiaeld to a reference
fleld, btained from a magnetic potential (V x F = 0) but having the same
values of ﬁ and d(ﬁ~§)/dt at the boundary. By subtracting the reference
contribution, a "relative helicity" iy obtained which is gauge invariant and
can be shown to satisfy a plausible sum rule. The subtraction step is similav
to that of Jengen and Chu, but the treatment of the problem is wore general in
that d(ﬁ'l)/dt nead not be 2zaro. Also tha transfer of helicity betwvaen
adjacent volunes 1is treated with more care. The rate of change of "velative
helicity" within a particular volume is given (in thelr unity) by
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dHp/dt ,CJE Bdv + 2c[(tp x B - - 2 Ky)efds (5)
where X and A_ are the magnetic ecalar and Coulomb gauge vector potentials of
the referencE case. The work of Berger and Field provides a lucid and -
rigorous discussion of the proper description of wmagnetic helicity and 1its
transport. There 1s every reason to expect that, as it becomes better known,

it will provide *the standard approach tov these toplcs.

For experimentalists, the concepis of field and flux often have more
appeal than *hat of vector potential. 1In terms of these quantities, helicity
cain be thought of a2s a linkage of flux with flux and for a closed volume can
be defired as

Vi

vhere ¢ 1s the amount of flux linking the incremental cloged flux tube dy and
Ve indicates that integral is performed on all flux tubes within the closed
volume of interest.

Ve will now discuss changes in the helicity of a system and then write
down an equation for the time derivative of K. If a flux tube v is added to a
magnetic configuration the helicity is changed by two effects. The ¢ links
some flux ' giving a K = 'y and the flux which 1links the flux ¢ s
increased by ¢ giving another K = yy'. Thus the increuase in helicity 1is twice
that computed for either case. This is a very general result following from
the fact that i1f filux tube ¢ links tube d then d must link c¢. The rate at
which {lux increases inside a closed flux tube dy is -6§‘d along the closed
tube. Thus the rate of change of helicity due to the change of linkage in dy
15 -2¢F - dldy. The factor of 2 is needed Lecause $E-dldy 1is only one of the
twvo equal effects. Thus tor the whole systam

K = -2j£ﬁ-drdw 7

J

wherg the line integral is takon along the flux tube dv in the direction of
the B field. In the case cf an arbitrary boundary ititersacted by these tubes,
the path of dntegration 1s to be taken accosS_the boundary rather than
foél ving the external field. This procaess defines a unlque dE/dt only if
df -ﬁ)/dt w 0. The difficulty (when d(ﬂ-ﬁ)/dt ¢ 0] iy again resolved by
subtractlag o retaerence casor the fields produced in vacuum by the same
boundary values of H'h, T x ﬁ and the same flux linking the boundary tov

multiply conngeted systems.  Thuy
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k - -2”2- aldy + Z‘Hﬁv-dfvdwv (8)

where the subscript v refers to the vacuum fields and fluxes obtained using
the bounaary values of the plasma case. The first term on the right gives the
plasma dissipation of K which for ideal MHD is zero. Thus it 1is the second
term that wusually determ’nes the injection rate although the first term may
cause helicity generation within the plasma. Departing from the vrestriction
of closed field lines, d?dw can be generalized as Edv giving

dk/dt = ~2JE- Bav + 2IBV-§Vdv (9)

This result is equivalent to that of Berger and Field and is therefore not
nev. However, this representation does not explicitly contain the vector
potential and 1s attractive in providing & quick intuitive guide for asse:sing
the prospects of experimental helicity injection schemes. The dissipation 1is
zero in dideal MHD (B = IxB 1is the ohms law) because E‘B = O everywhere.
However, the principle includes resistive MHD and the generalization should
state that the volume integral is zero (even though E-B is non-zero locally)
for all time scales shorter than the resistive decay time. only on a
resistive decay time is helicity dissipated. For example, the volume integral
of the dissipation of helicity for the tearing mcdes should be zero. Thus the
plasma term can be replaced by -K/ty. The form of Eq. is convenlant
especially in the simple geometries when only one vcltage (f v-df = V) 1s
involved and when the *"vacuum" flux to which this voltage is applied is
obrious. For the simple geometries such as the RFP, S-1, coaxial source, and
bumpy Z-pinch the contribution from the vacuum term is

K, = 2V (10)

vhere V 1s the voltage and y is the flux. For the RFP the only vacuum flux is
the toroidal flux so ¢ is the turoidal flux and V is [E-dl along toroidal flux
tube, 1.e. the toroidal voltage. For the S$-1 there is only vacuum poloidal
flux so ¢ i1s the poloidal flux which links the flux corve and V is the poloidal
voltage equal to ¥,. For the olectroda type sources (where negligible flux
penetrates the insulanr such as the coaxial source and the bumpv Z-pinch) V
is the voltage that is applied to the electrodes and ¢ ig the ne: flux into
each electrode. Since B:f -« 0 everyvhere in these cases these results can
alwo be obtained from Jensen and Chu’s equations.

The full generalized helicity injection rate (Eq. 8) is needed for the
P$--1 device and conical O-pinch. They will be discussed together because the
voltage (IEv-dlv) vhich dominates the helicity lnjection is applied to flux
vhich penetrates the boundary through an insulator. This insulator
penetration makes the helicity injection calculation more complicated because,
in general, the IEV-dlV along the field lines betveen boundary penetration
vwill give a differvent voltage for each field line, end also ﬁ-n # 0. In order
to calculate the helicity injection rate into these devices, one would need to
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measure E x 8 and 3-%. This could be done by measuring vecliages betveen
floating hoops just inside the insulating vall to deﬁg mine £ x 11 and by using
flux loops Jjust outside the wvall to deteraine If axiul symmetry is
assumed, these measurements would be quite possible on the pregent
experiments. The helicity generated in these devices may come from the plasma
term (which is forbidden by the minimum energy principle) and the =measurement
proposed here could help to determine the source of helicity generated in
those objects “y measuring the contribution from the vacuum term.

III. Steady State Methods

In order to achleve steady state sustainment K must equal zero so the
contribution from the vacuum term must cancel the losses associated with the
plasma term in Eq. 8. With electrode geometries a positive contribution of
2Vy can be supplied indefinitely by simply maintaining a fixed voltage on and
fixed flux into the electrodes.’'® On the inductive driven .chemes such as S-1
or RFPs the time averaged V must be zero because the applied voltage is due to
a change in external flux which cannot change in the same direction
idefinitely. In this case, steady state time average net injection is
achieved by oscillating both V and a fraction of ¢ in phase go that there is a
net contribution to the product while maintaining a zero time averaged
voltage.?

Most RFPs have been able to maintain the magnetic configuration for
several magnetic decay times of the fields. So far only one sign of V has
been applied so the sustainment is limited by the volt seconds available.
Such experiments are important in establishing the operation of the relaxation
processes that are necessary for sustainmeni by helicity injection but are not
directly extrapolatabla to steady state operation. True steady state by
oscillating fields is being proposed in the Los Alamos RFP program.!?® 1In the
€-1 spheromak the ratio of the toroidal to pololdal flux relaxes toward the
Taylor value and by injecting excess toroidal flux the poloidal flux of the
cspheromak can be increased. This result indicates that the minimum enevgy
principle is operating and steady state drive may be possible by again
oscillating both the voltage and a fraction of the flux.!!
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Figure Caption

The voltage and flux of the coaxial source on CTX as a functicn of time
and the spheromak current as a function of time. The smocther curve with the
current curve 1is computed using Eq. 8.



