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Generalized Eelicity and Its Time Derivative

T. R. Jarboe and G. J. !farklin

Los Alamos National Uboratory
Los Mamos, New !lexico 87545

I. Introduction
Spberomaks can be sustained against resistive decay by helicity injection

because they tend to obey the ❑inimum energy principle. This principle states
that a plasma-laden magnetic configuration will relax to a state of ❑inimum
energy subject to the constraint that the magnetic helicity is conserved. Use
of helicity as a constraint on the minimization of energy was first proposed
by Voltjerl in connection vith astrophysical phenomena. Use 01 the helicity
constraint was first applied to the spheromak by Wells and Norwaod.2 The
principle was later applied to the reversed-field pinch (RFP) by Taylor,3 who
was most responsible for the eventual acceptance and recognition of the
principle as being important for RFP-type confinement devices. Of course,
helicity does decay on the resistive diffusion time. However, if helicity is
created and made to flow continuously into a confinement gaometry, these
additional linked fluxes can relax and sustain the configuration indefinitely
agains. the resistive decay.

In this paper we wi 1 present an extension of the definition of helicity
to include systems where i can penetrate the boundary and the penetration can
be varying in tiue. Ve then diwcuss the sustainment of RFPs ●nd spheromaks in
terms of helicity injection,

II. Generalized Helicity
Wagnetichelicity h as traditionally b@en dOfined as a global quantity

applicable to configurations of closed magnetic fields~

(1)

with ti”ti u O at the boundary of the volunm in question. In this form, and in
conjunction with the Taylor principle, this concept has had great utility in
gener~ting bounded equilibrium states, Difficulties can arise, however, when
attempts at-e made to reduce the concept to ❑ ore local terms, SUCh as by
d~fitling a helici y dansity OK a helicity flux.

it
Analyzing helicity injection

schemes for which ‘ + O can also present a problem. The central d fficulty
iu that the artificial character of the vmctor potantial, i makes
manipulation of helicity sensit ve t

A!
the choice of gauge. Indeed,’ if we

ul)ply the gauge transfotmuation ‘ = + Vu, it irn readily shown from tha above

(2)
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In the simple geometry of the CTX experiment, this rather technical
theoretical issue is avoided by a direct approach. &s illustrated by Hoffatt
[1], in the case of two separate, linked fluxes, WI, and V2, the above
definition reduces to K = 2+1W2. In the CTX coaxial source, poloidal and
toroidal fields are separate with the poloidal flux WS being generated by z
coil and the rate of change of the toroidal flux being given by the source
voltage V . The result is the rule dK/dt = 2W9V9 for the helicity injection
rate, vhic~ has been confirmed by CTX data.

The gauge problem that arises in less e e entary cases has been studied
independently by a number of workers. 4,&,t The results of these studies
indicate that the issue is now essentially resolved. Three ●pproaches will be
described briefly below: the work of Jensen and Chu at CA Technologies, the
work of Berger and Field at the Harvard-Smithsonian Center for Astrophysics,
and the results of our thinking on the su ject.

i
Jensen and Chus treated the

case of a boundary with $.fi # O but with d( “i!)/dt = O. Though a ❑ ore general
view vas implied, emphasis was on boundaries consisting primarily of
conductors having gaps across which voltages were applied. In such cases, the
vector potential is usefully represented M a superposition of ei e functions
(Taylor states) plus an “inhomogeneous” part, 1!~ , arising from Q at the
boundary. h?ensen and Chu noted that a “total elicity”, Kc, could be defined
as

(3)

and that K can be shown to be gauge invariant. The second t rm on the right
israferre~ teas the”vacuum felicity” anditva,,ishes when S- =0. In thisill-i
same study, a “Poynting vector” for helicity flux is proposed in the form

where + is th~ elect~ostatic potential, Bergeu and FieldG devote considerable
attention to the topological basis of flux linkage and view the gauge problem
as ari:~ing from topological

i!
n eterulitlacy! when utagnatic field lines leave

the volume of interest ( “t # O) thair external linkage s unknown! The
rasoluti n of this uncertainty is to comp~re the act al fiald

i Y
i to a referencu

field, ,
1

btained i om a ma a~~q potentiul (V x = O) but h~ving the sama
valueu of ~.~ and d($”~)/dt fi~e%oundury, By subtracting the reference
contribution, a “relat.iv~ helicity’t ig obtained which ig gauge invuriant and
CM be shown to satisfy a plausible awn LW1,Q, TliB subtractioli step is similou

!

to that o Jensai] and Cliu, but tha tbeatmai)t oi the p~obl~m is more general ili
that d($*t)/dt nead not h zero , Algo tha tran~fer of h~licity bctwoell
adjac~nt volunte9 is treatwl witl~ moro ciire. ‘Me rate of uhange of “relative
halic’lty” withitl u PLittiCUIUr Vohtma iD givot) (ill thair LInits) by
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(5)

where x and ~ are the magnetic ?calar and Coulomb gauge vector potentials of
the referenc~ case. The work of Belger and Field provides a lucid and
rigorous discussion oi the proper description of magnetic helicity ●nd its
transport. There is every reason to expect that, as it beco=s better knovn,
it will provide the standard approach to these topics.

For” experimentalists, tbe-;oncepts of field
appeal than ‘ha’( of vector potential. In terms
can be thought of as a linkage of flux with flux
be defined as

and flux often have ❑ ore
of these quantities, helicity
and for a closed volume can

(6)

where $ is the amount of flux linking the incremental closed flux tube d+ and
+t indicates that integral is performed on all flux tubes vith.in th~ clo$ed
volume of interest.

We will now discuss chanbes in the helicity of a system and then write
down an equation for the time derivative oi K. If a flux tube + is adaed to a
❑agnet~c configuration the helicity is changed by two effects. The + links
SOmQ ~lUX +’ giving a K = ~’+ and the flux which links the flux $’ is
increased by $ giving anather K - w’. Thus the increase in helicity is twice
that computed for either case. This is a very gener~i result following from
[he fact that if fil]x tube c links tube d then d uu t

i#
ink C. The Kate at

which flux increnses inside a cl.os~d flux tube d~ i~ -~ ‘d ●long the closed
tube.

!!
T us the rate of change of helicity due to the chsnge of linkage it] d+

is -2&!d d+. The factor of 2 is needed because JII”dld$ is only one of the
two equal effect9. Thus for the whole system

(7)
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(8)

where the subscript v refers to the vacuum fields and fluxes obtained using
the Munaary values of the plasma case. The first term on the right gives the
plasma dissipation of K which for ideal HED is zero. Thus it is the second
term that usually determines the injection rate although the first term may
cause helicity generatio within the plasma.

?
Depa ting from

i
the restriction

of closed field lineo, d d~ can be generalized as dV giving

(9)

Tkis result is equivalent to that of Berger and Field and is therefore not
new. However, this representation does not explicitly contain the vector
potential and is attractive in providing E quick intuitive guide for aase~sing
the prospects of ●xperimental helicity injection schemes. The dissipation is
zero in ideal HBD (~- d~ is the ohms law) because E-B = O everywhere.
However, the principle includes resistive MD and the generalization should
state that the volume integral is zero (even though E-B is non-zero locally)
for all time scales shorter than the resistive decay time. Only on a
resistive decay time is helicity dissipated. For ●xample, the volume integral
of the dissipation of helicity for the tearing mocks should be zero. Thus the
plasma term can be replaced by -K/TK. The form of Eq.

!
is convenient

especially in the simple geometries when only onc vcltage (J ““dfv . V) is
involved and when the “vacuum” flux to which this voltage is applied is
obvious. For the simple geometries such as the RF,?, S-1, coaxial source, and
bumpy Z-pinch the contribution from the vacuum term is

k, - 2V9 <10)

where V iQ the voltage and v is the flux. For tl,e RFP the only vac~um flux is
the toroidal tlux ivo Y is the turoidal flux and V’ is $E”dl along toroidal flux
tube, i.e. the toroidal voltage. For the S-1 there is only vacuum poloidal
flux so v is the poloidal flux which links the flux core and V is the poloidal
voltage equal to+.

[
For tl~e electrode ‘type sourceu (where negligible flux

penetrates tha insula or such as tho coaxial source and the bumpy Z-pinch) V
is the voltage

iti
that s applied to the electrod~s and v is the ue: flux into

each el~ctroda, Since I M O everywhere in these cmsc!+ th~se result~ cm
al~o be obtainad from Jonsm and Chu’9 equations.

The fIJll generalized h~licity injection rato (Eq. 8) is needed for the
PS-.1 device and conical 0-pinch, They will be discwmed together because the
voltage (l!lv~dlv) Whi(!ll dominates tha h~licity injection iu ~ppliad to flux
which P(3tl&lt~JJtQS the boundary through an itlsuluto:. This insulator
penetration makern tha hglicity injection calculation more complicated bectiuse,
in gattarul, the f~v’dlv along the fifald linaJ batwem bcmdury pmotratiot~
will give R differetlt vol.taga for eacli field lina, and al~o i In#O, In order
to calculate Ltta helicity injection rake into the~ei device~i, one would need to
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measure flXit and $-i?. This could be done by measuri
?i

Vo tages between

floating hoops just inside the insulating vail to de ● ■ime x
ii

and by using
flux loops just outside the vail to determine * . If axial syumetry is
assumed, these measurements vould be quite possible on the present
experiments. The helicity generated in these devices may come from the plasma
term (vhich is forbidden by the minimum energy principle) and the measurement
proposed here co~~ld help to determine the source of helicity ge.neratad in
those objects ‘~y measuring the contribution from the vacuum term.

III. Steady State Methcx.?q
In order to achi eve steady state sustainment ~ must equal zero so the

contribution from the vacuum term ❑ ust cancel the losses associated with the
plasma term in Eq. 8. With electrode geometries ● positive contribution of
2V~ can be supplied indefinitely by simply maintaining a fixed voltage on and
fixed flux into the electrodes.~’a On the inductive driven ~chemes such as S-1
or RFPs the time averaged V must be zero because the applied voltage is due to
a change in external flux which cannot change in the same direction
indefinitely. In this case, steady state time average net injection is
achieved by oscillating both V and a fraction of + in phase co that there is a
net contribution to the product while maintaining a zero time averaged
voltage.g

Host RFPs have been able to maintain the magnetic configuration for
several magnetic decay times of the fields. So far only one sign of V has
been applied so the sustainment is limited by the volt seconds available.
Such experiments are important in establishing the operation of the relaxation
processes that are necessary for sustainment by helicity injection but are not
directly extrapolatable to steady state operation. True steady state by
oscillating fields is being proposed in the Los Alamos RFP program.l” In the
s-l spheromak the ratio of the toroidal to poloidal flux relaxes toward the
Taylor value and by injecting excess toroidal flux the poloidal flux of the
spherotnak can be increast:d. This result indicates that the ❑inimum ene~gy
principle is operating and steady state drive may be possible by again
oscillating both the voltage and a fraction of the flux.LL
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Figure Caption

The voltage and flux of the coaxial source on CTll as a function of time

and the spheroma.k current as a function of time. The smoother curve with the
current curve is computed using Eq. 8.


