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ABSTRACT

The underlying concepts of nonequilibrium statistical mechanics, and
of irrevereible thermodynamice, will be described. The question at hand
i{s then, How ars these concepts to be realiszed in computer simulations of
many-particle systems? The ansver vill be given for dissipative deforma-
tion processes in solide, on three hierarchical levels: heterogeneocus
plastic flow, dislocation dynamics, and molecular dynamics. Application
to the shock process vill be discussed.

1. STATISTICAL FOUNDATIONS

We bagin by ruviewing the underlying concepts of statistical mechan-
fca, both nouequilibrium and equilibrium, and of thermodynamice, both {r-
reversible and reversible. Thesa concepte are rather old, wnd are hardly
teaught in echool nowadays) undoubtedly many of the younger students will
be ecurprised (startled?) to learn that there exists a weli-e:tasblished and
logical framework for treating general ponequilibrium processnes. While
the assential pointe will be covered in the present paper, ndd\&lgnnl Ae-
taile can be found in two recent raferences of a review naturr, '’

Nonequilibrium Statistical Mechanicse

In order to define the virious statistical and thermodynamic theo-
ries, nna to see thelir regions of applicabillity and their faterconnuc-
tions, 1! le easiest to start with the moet genaral theory, namely nun-
equilibrium statistical mnchunice. PFor this discussion, the system wa
coneider {s a nearly-ideal gas; it is composed of atome whose only impor-
tant intevactions are biniry eiastic collisions. The gas fa divided iunto
4 large number nf cells, each with & constant total mase. (Alternativaly,
one can choose the cells to have constant volume, it {s merely a conven-
tion.) BEach cell contains nwlnrlo number of atome, and lg treated as »
statistical subsystem. Let |} Tepresent the atcamic momenta, and let N be
the mass of one aton. The jogentus distribution for the cell located at
position r, at time t, f» I(I.p.t). The important n!cgnnlcnl propertiae
of a ce’l are fte density p(r,t), fte mean velocity v(r,t), and fts total
auergy c(r,t):
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S8ince we are dealing with a nearly ideal gas, the energy is entirely
kinetic energy.

Ve now inquire about a nonequilibrium process for a systeam, subject
to*tgltlll conditions and boundary conditions on the womencum distribution
f(x,p,t). For a nearly ideal gas, the process will be complgtely described
by the Boltsmamn equatien, which gives the ¢volutiom of f(r,p,t). This evo-
lution ia consistent with conservation of mass, mosentum, and energy, and
also containe a time-irreversidle term, namely the collision lntegral. For a
nongaseocus system, thare does not at present exist a transport equation capa-
ble of describing the evolution of the mcoentum distributiom. For such a
rysteam, a partial description of a nonequilibrium process is obtained from
the . ustions of continuwm mechanics, wvhich are the aquations for couseyva-
tigm of mass, atym, snd energy, locally applied to the densities p(r,t),
v(r,t), and e(r,t), The continuum mechanic equatiens are alwvays correct, but
they alone are not sufficient to determine a process.

Equilibrium

For uniform boundary conditions, e.g. an lsoclated system with a fixed
volume, the system will spproach an equilibrium state. 1o discussing equi-
librium, wve take the mean velocity of the system to be sero, or else trans-
form to center-of-mass coordinates, thu: aliminating onc parameter. Then for
a nearly ideal gas, the Boltzmann equation tells us that the equilibrium wo-
mentum distribution {ie conotnut*ln space and time, and {s merely a function
of the msomentum magnitude p = |p|, and of two scalar parametaers § and p1
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£,(p1Psp) = c(p,p) (4)

c(B,p) is a normalising function, such that the asystem density {s p,

p = [ tolpiBip)dp . (s)

Then B turns out to ba related to the kinetic rnergy density:

£ = %F . (6)

At this point, it is vorthwhile to recall the relations among the whole
family of equilibrium theories. Firet, the Boltamann equilibrium limit {s
equivalent o the ensemble theory of equilibrium statistical mechanice. The
Boltamann distribution fo(PIB.p) corresponds direcily to the canonical en-
semble, in which phase-space avcrago!ﬂﬁro performed for a fixed density
vith the canonical wveight fuaction e « Equilibrire thermodynanice (which
is oftan called "thermodynamicy" for short) i{s made squivalent to aquilibrium
statistical mechanics through the identification of f with the tomparature Ti

1
-L, (1)



vhere k s Boltamann’'s constant. Rquilibrium “hermodynamics then describes
~avereible processes, since by definition these are processes which sre con-
strained to pass continucusly through equilibrius states. Incidentally, the
customary notion that a process wi'l be reversible 1if it i» dome slowly
enough is not always cosrcct, as is shown by the emawple of elastic-plastic
deformation in a solid.

Irreversible Thermodynamics

Let us suppress tgo position and time veriables, and write the momd<atum
dietribution simply f(p). Ibp the fumction space for f(p), the equilibrium
funct ione f°(p|ﬁ,p; occupy an extremely small part, only a two-dimengionsl
surface (B and p) {n en infinite-dimensional space. This is an important
observation, becsuse it {s only on the equilibrium surface that the equilibd-
rium quantities are defined, In particular, the temperature T and the
entropy 5 are defined orly oo the equilibrius surface.

Ve now conuld!r processes wvhich are close to equilibrium. Specifically,
this ssans that f(p) is locally given by

1(3) = £,(piB,o) + 81(P) (8)

vhere 6!(;) can be treated as a parturbation, Hemce f(;) is still restri-ted
to a very small part of the total function spacer {t is close to tha equi-
libriue surface. VWithin chis region, however, the equilibriums quantities are
defined approxisately, and the thermodynamic relations among these quantitias
still hold approximately. This is the region of irrevereible thermodynam-
fce. In other worde, an irreversidble-thermodynamic process js one which
passes through states which are sufficiently close to equilibrium s0 that the
thermodynamic quantities can be meaningfully defined. Irrevetrsible thermo-
dynamice thus represents a very emsll part of the theory of nonequilibriue
statietical machanlics.

Irreversible thermodynamics is characterised bty dissipative force-flow
processes. The force-flow relation {s called the constitutive equation. For
example, in heat conduction, the force is th) temperature gradient GT. the
flow 1s the heat current j, and the constitutive equatirn 1

Ja.od , (9)

where « 1is the thermal conductivity of the material {n questiocn. MNote that
conetitutive aquations are not cootainaed in any equilibrium theory. The die-
sipation prcduces entropy; Tn the case of heat conduction this L given by

Tds = & , (10)

where Q ie the quantity of heat transported. To calculets an frraversible
process, one needs s complete est of aquations. For a process such 38 a
shock, vhere materiu! 1o sccelerated, the complete set of equations cousists
of the equations of cortinuum mechanics, the constitutive equation. T
whatever irreversible processes are driven by the rhock (e.g. plastic [low,
heat transport), the entropy-production equation, and some thersodynamic
ralations. Note that an antropy-production inequality, Td§ > srmething, i
not sufficient for irreversible tharmodynamics.

The question arises, hov can one tell if irrevarsible thsrusdynamfces {»
fn fact a valid theory for a given process in a given materisl! For a
nesrly-ideal gas, this question can be answered by cnecking {rreversinle
thermodynamice againet the Boltamann equatfon. It s known in general that



the mear-equilibriwm solwtion of the Boltsmana equation is just tha irrever-
sible-~tharmodymamic solution for a viscous heat-conducting nn-l For other
systems, computer simulatioms may eventually take the place of the Boltamann
equation. Or eles oms :an first calculate ihe process from irreversible
thermodynamice, then compare the spatial and temporal rates of change with
appropriate relaxation leagths and times, to see if the syJtem could in fact
remain nssr equilibrium throwghout the process.

II. MOLECULAR DYWANICS

Ordisary MD

The procedure in ordimary MD ie to place N particles in a computational
cell, specify the potentials of interaction among the perticles, and calcu-
late the motion of the particlas by nuserically integrating the classical
equations of motion (Mewton's law). The calculation is usually done with
pariodic bowndary conditions, in vhich the computstional cell {s surrounded
by identical image cells, and particle intevractions are allowed to cross cell
walls. Periodic T’gndary conditions eliminate the large surface affects, of
nlulvo order N~ , and introduce emaller effects of relative order
N An extangive discussion of ordinary-MD techniques may be found in a
recent review.

There are two types of differences between an MD calculation and resl
nature, The first type of difference is in the intevatoamic potentials, which
we never know emxactly. The second type is due to computer artifacts, {.a.
specific properties of the computar system which are not present in natu:e.
This includes small-N effecte: in natural systems N is enorsous, while on
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Fig. 1. Tiwe davelopment of the kinetic energy per atom for an MD eystem of
sodium atome. Initfally the atome are on bcc lattice eftes, with &
distribution of kinetic energias; the eystem avolves to an
enuilibrium fluid.



the computer we have N . 103. Another computer artifact is oumerical in-
tegration with a finite timestep At; I do not knowv how mature {mtegrates the
classical moti{on of a many-particle system, but it is probably not with a
finite At. A group of us at Los Alamos has carried ouwt extensive calcula-
tions °E ’sulllbru- thermodynaaic properties of solid and fluld metallic
sodium, = a '-t.iill for which we have a good repressatation of the inter-
atomic potentials, For equilibrium calculations, coeputer artifacts appear
to be under comtrol. The situstion in nonequilibriuvem calculations is not yet
known.

For an ordinary MD system of 686 asodium atoms, the evolution of the
kinetic epergy is shown in Figure 1. The calculation was started with the
atome at he equilibrium sites of a bec lattice, and with a random Haxwaellian
velocity dlstribution, When the system comes to equilibrium, 1.e. vhen the
mesn and bandwidth of che signal becose essentially constaant, the sodiuas 1i»s
in the fluid phase. VWhile this is an ordinary everyday graph of an ordimary
MD run, {¢ is to o s fascinating result. From a nonequilibrium initial
state, the computer finds and establishes the correalations appropriate for
the fluid equilibrium state. Furthermore, it 1is at least possible that the
timescale of the approsch to equilibrium, as seen in Figure 1, is a physical-
ly msaningful relaxation time for real metallic sodium.

Exotic MD

While it f1e a difficult problem to effectively simulate nature on s com-
puter, it is no trouble a" all for the computer to do things which are quite
beyond nature's v&ldo.t imagination. It {s this circumstance which has led
to the statemant,

"There used to be two realities in the world of physics:

Experiment and Theory. HNow there are three, and the third one

fs The Computer.”

Of course, the computer’'s role is s legitimate one, and the computer will be
of enorsous help to us in many-particle problems. The pofint which will
always require care is in proparly interpreting what we do with the
computaer.

A major varfation of molecular dynamics, wvhich has achieved wide popu-
larity in recent yeare, i{s to direct the cosputer to make specif.c Ch.T!.. in
perticle positions and/or velocities, at specific timesteps. A .dersen pro-
posed "MD at constant temperature,’ achieved by altering the = mentum of
random particles at random instants of time, and "MD at cor- .ant presaure,"
achieved by rescaling perticle positione at each timest .. By means of a
more general rescaling of particle positions, invol" .ng chnn;cu‘én shape as
well ss volure of the computstional cell, Parrineilo and Rahman-’ extended
Andersen's method to "MD at constent etress.” Still lnothcf vay of rescaling
particle positions and veloc{ties has been used by Abraham. 6. This
general variation of molecular d/namics s fine as a technique for sampling
phase space, !n the same way that the systems of an enssmble represent a sam-
pling of phase space. The specific rule according to which particle poai-
tiona and/or velocitlies are changed will then define the typs of eneemble
which i{s represented. However, this variction of solecular dynamica doer pot
give the real physical evolution of a nonequilibrius eystesm,

An entire fleld of nonequilibrium wolacular gyasnlcn has been developed,
largaly from the ploneering work of Bill Hoovcr.l Hoover's tachnique ia
to spply macroscopic forces to the MD system. from an external source, or
through tne boundary conditions, and also to sodify the equatione of motlion
by the sddition of frictionsl forcee applied to the individual particlcs.
Thaese two effects are then balanced eo that the MD system remains in a non-
aquilibrium steady state. In this way, the syetem bahavior can ba simulated
fri states far from equillbriun. Of course, the question arises as to the



trwe source of irreversibility. In comtrast tc the usual wint of view,
wvhere the equations of motion are reversible, and irreversibility presumadly
resuliLs from nomiategrability, Hoower uwses equatiocas of motion which are in-
trinsically irreversibie, Since one does -ot have & physical justification
for trictiomal forcees in the stomic equatlons of motion, tha physical mesning
of Hoover's techaique is at present unclear.

1IZ. SOLID DEFORMATION OW THREE LKVELS

The three levals refer to different scales of size and timea. The finest
scale 15 the atomic scale, vhere the motions of individual atoms are studied;
the intermediate scale is dislocation dynamics, where moving and interacting
dislocations are studied; and the macroscopic scale is the continuum fileld
theory of heterogenacus plastic flow. These scales form a hierarchy, because
physical properties Are related between neighboring levels.

Heterogenaoua Plastic Flow

Let us bagic by describing the ".olid-dominant model” for plastic flow, ?

Consider a single crystal of matarial, containing one edge dislocation, anm
showvn by the left drawings in Pigure 2. This single crystal may be the
entire ssmple under study, or it mcy be a small element ineide a much larger
sample. Vhen a shear stress 1 {s applied to the eurface of this crystal, it
deforms aelastically, as shown in Figure 2. [Elastic forcas are present
throughout the crystal; these forces support elastic strain eserywhere except
at the dislocation core, and there thu elastic forces drive the Jislocationm.
When the dislocation moves, the top half of the crystal slides over the
bottom half; the amount of this sliding i{as the plastic strain ¢. The vela-
tior between the plastic strai-rate | and the applied shear stress 1 is the
plastic constitutive relatfon for the cryastal.

Now replace the entire slip plane of the diglocation by a shear band, as
1l1lustrated in the dravinge on the tight of Figure 2, When the sa~e shear
stresy 1 is applied, the crystal deforms slastically, with exactly the same
elastic etrain as before, Elastlic forces are agaln present throughcut the
crystal, supporting elsstic strailn evarywhare excapt in the thear band, where
the alastic forces drive dislocations. Again the top half of the crystal
slides over the bottom half, but now the sliding {s presumably much faster
than with only one dislication present: & is wuch greatear than befores.

Hence the essentlal difference batween the presence of one disiocation, and a
shear hand, 1s a difference in the plastic constitutive relation.

We cun sumaatize the main points of the solid-dominant mocdel, as
followw. Elastic strain and plaetic 4trailn are both present, sund are inde-
pendent variables. The shear stress aatin?ies simultaneously the aleastlic
stresn-atrain relation, and the plastic constitutive relation. Work {s done
by stress driving straine; elastic work is revernible, and plastic work 1a
mootly irreversible,

It is useful to contrast the behavior of & fluid with that of a solld.
For a ‘riscous fluid there is only one strain variable, namely the total
strain, and the const{tutive ralation sets the ethear stress proportional to
ri.e shear atraintate. The fact that fluid behavior Joes not contain an inde-
peadant plastic setrain variable {s sufficf{ent to show that an elastic-plastic
solid cannot be represented by » fluid., Consider again the crystal {(1llus-
ti1ated in Figure 2. The diavings on the right are stiil correct if the shear
bend {e replaced by a thin Jayer of viscous fluid; thc cryetal still has (n-
depandent elastic and plastic straine, und the only thing that changes (s the
plastic coastitutiva relatfon. 1In order to eliminate the plaatic strzin as



an independent varfable, one has to go all the way to the "fluid-dominant

model,” in vhich the materisl {s supposed to be a fluid with some bits of

solid distributed in it. Only in this limit will the material behave more
like a fluid than a solid.

With a computer, we can calculate (simulate) a macroscopic process in-
volving heterogeneous plastic flow, by numerically integrating the complete
set of coupled differential equations. This eet 1s composed of the equations
of continuum mechanics, the nlastic constitutive equation, the erntropy pro-
duct{on equatior, snd sose equilibrium thermocelustic relations. Such a com-
putation is generally called hydrodynamics, although solid dynamics would be
a more accurate term, Note that it is possible in principle to resolve tha
haoterogeneities, such ss shear bands or growing voids, which may appear in a
solid-dynamic prucess. This will certainly be done in the future. In the
meantime, the prrctice is to replace the heterogeneities by a homogeneous
mcdel, Such a wmodel contains parameters which represent the properties of
the inhomogeneitias, for example their density and their constitutive beha-
vior. Tg&lzgpproach is riprolnntodzgy the work of Lae Davison and co-
workers, ‘"’ and of ':mes Johnson.

As a summary of the macroacopic theory of heterogeneous plastic flow, we
list the essential input and output of this theory. The {input is the
complate set of coupled differential equations, together with the appropriate
material proparties, namely the thermodynamic and constitutive data, The
output is a description of a macroscopic flow process, as e.g. a shock
process.

I R, Fm

r

rig. 2. On the left, a single crystal with an edge dislocation whoee alip
plane s the dashed line; application of a shear etress t (lowar
diagram) causes the crystal to defors elastically, and cauces the
dislocation to move with valocity v. On the right, the same crys-
tal with the olip plane replacead by a shear band; the same shaar
wtrese T causes the same elastic deformation,



Disloration Dynsaics

We vow want to simulats solid deformati{on on a different laevel, namaly
by atudying the motion of indf{videal dislocations. To do thias, we construct
a computer model of a system of dislocations and obstacles, vs 1llustrated
in Figure 3. The obstacles may be any physically asppropriate barriers to
dislocation motion, including other dislocatlions. To calculate the disloca-
tion dyoamics, we have to construct an equation of motfion for the disloca-
tions. The aquation of motlon contaias & driving force, which results from a
stress applied ro the material, and a dislocation line tension, and terms re-
presenting intersctlons with the barriers, including barrier penetration pro-
babilities. Tne equation of motion can sleo contain a dislocetion drag term,
a>d mechanisms to generate and sunihilate dislocations. The procedure than
is to numericelly {ntegrate the equatfor of wotiou, to simulate the dislocs-
tion dynamics. Realistic simulations for esteady-state flcws can be accom-
plished with current computer toa&ngéo;y; such simulations arTe represented vy
the work of Schwars and Labuesch.”™ ~

In summary, the essential Ilnput end output for the compute - simulation
of dislocation dynamice {s as follows., The input consists of a dislocatien
squation of motion, and the basic properties of a dislocation or dislocation
systam, namely its energy, ite interaction with all sorte of barriers, and
ite generation and annihilation mechanirms. The output consiste of the plas-
tic constjtutive propertias of the material, ino terms of dilslocation density,
tha nstutre of the barriers, the temperature and so on. This ocutput informa-
tion becomes the inout for a heterogensous plastic flow calculatlon.

Atomic Dvnamice

The ultimate level on which one can simulate solid deformation is the
atow{c leval. Figure 4 {llustrates the arrangement of atons on the cross-
sectional plane of an edge dislocation in s simple-~cubic lattice. What wa
would llke to do is construct a three-dimansional system of atoms on the com-
putetr, in the arrangement of a crystal latt’-e containing a single disloca-
tion, then specify the potentials of {nteraccions among the atomns, and calcu-
late the wmotion of the atome In the system. This le in fact ap ordinary MD
simulation, a7 we discussed {n Sertion II. What can be lesroed from such a

L

Fig. 3. {slocations (lines) moving through an array of obstacles (dots).
is the force per unit leangth on a dislocation.



simulation? First of all, for the atatic lattice, which represents a crystal
at sero temperaturw but without zero-point meotion (since the cheory is clas-
slical), one can find how the atoms relax their positions around a disloca-
tinn; hence the dislocation core structure and energy cin be calculated. 1In
the mame way, the gtructure and enargy can be calculated for related defect
configurations, such as dislocation jogs snd dislocation partials. Further,
the effect of temperature om these defect configurations can be studiad by
doing ordinary MD simulations at finite temperatures, right up to the malting
temperature of the material under conslderation. One can apply a shear
stress to the MD system, and watch the dislocation move. The interactfon of
a moving cdislocation witli the lattice can thus ba studied. Fipally, in prin-
cipla, the interaction of s dislocation with an {mpurity, with a point
dafect, or with another dislocation can ba determined by means of ordinary MD
simulations.

Such calculat’ons sre Wnormously difficult. They are difficult for two
reagons, In the first place, the alastic deformatlon of the lattlce around a
dislocation is long range, hence the atomic simulation of a dislocaticn re-
quires an extremaly large computationsl cell. Present-day computer tae:hmol-
ogy is just barely able tr do a realistic dislocation simulation. Secondly,
we aran't quite sure of how to construct tha ioteratomic potentisls which
oparate irn the region of a defect. To explain this problenm, cgglldcr lmple
metals, for which pseudopotactial parturbation theory applies. The effec-
tive potential betveen ions opsrstes :hrough the conduction electrons, &nd
the conduction electron density {s nearly conatant {n space. This theo
glves ues good potentiale for Ehg vibrating ions in a nondefect crystal, up
to the malting temparature,”’”’° and even for the moving ions in the
fluid, Howaver, if u defect is prasent in a crystal, the conduction alec-
tron density might have a large variation in the vicinity of the defect; {f
this happens, we do not know how to calculate the intarionic potential (n
that regton. The interionic potential then has to be found self-consistently
with the lonic structure. This lsa a problem which I recommend to the
theorists.

In spite of the difficulty of doing computer simulations of dislocations
on the atomic level, this technique offers great promise for learning about
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Fig. 4. Visaw of the atom~ {n a planar crues section of an adge dislocation

in a s'mple-cubfc lattica.



atomic properties of dislocation in the future. Current state of the art (s 10
reprasented by the work of vitak and collaborators, who have simulated the

core ntsgcsTrc and tha motlon of dislocations in bcc metals and in ordered

alloys. ™ In theee calculations, the long range deformation of the lat-

tice in directions transverge to the dislocation line is represanted by
elastic-continuum boundary cond'>ions for atoms outside the computational

cell.

In sysmary, the essential input for the atomic asimulation of disloca-
tions is the atomic equation of mocion and the interatomic potentials; the
output is the basic properties of a dislocation in the crystal, its energy
end ite interactions with the lattice and with other defects. Thias output
information becomes the input for dislocation dynamics simulations.

IV, APPLICATION TO SHOCKS

Nature of a Shock in a Solid

Let us first consider sound waves, which in first approximation are adi-
abatic elastic waves (where sdiabatic means {sentropic). When a swall-ampli-
tude elastic wave is generated in a solid, a large number of dissipative pro-
cesses are driven. Tor example, because the local density and temperature
vary in the presence of an elastic wave, the conduction slectrons and the
phonona are continually changing their distributions in an effort to stay in
equilibrium, and this process ia dissipative. Also because of the local tem-
perature gradients, there is dissipative heat conduction. The sound wave
scatters from deafocts, impuritlies, and grain boundaries; the free sagments of
pinned dislocations are caused to vibrate; domain walls are caused to move;
these and sany other discipative processes are driven by an e.sstic wave in a
solid. But the important point is, for a small-amplitude elastic wave in a
solid, all of the dissipation effects are small. Ve koow this from the fol-
loving simple observati{on, A teal sound wave, in the sonic or ultrasonic
frequency rangs, is an adiabatic elastic wave clothed with all the accompanv-
ing dissipative processes, And real sound waves In solids normally travel
for many wavelengths without significant attenuation.

The nathire of a shock in & solid can be sean by contrasting a shock with
a sound wave. For a sound wave, we can neglect dissipation entirely, and
still have the essential physics, in terms of reversible tharmoelastlc
theory. For a shock, the dissipative transfer of mechanical work into heat
is an essantial part of the process. Since in a solid this transfer takes
place by plastic flow, we conclude that stress relaxation by plastic flow has
to occur In the sheck front. Here, plastic flow 1s used in the general
sense, to include stress-relaxing structural changes, such as twinning.
Other characteristics of a shock, such as the presence of an elastic (or
partly elastic) precursor, and the presenca of dissipation mechariams in
addition to plastic flow, 3hould not obscure the fact that the existence of
plastic flow ls cruclal to the shock process in a solld.

Heterogeneous Plas=ic Flow

A few years ago, we applied the continuum equations of thermoelastic-
plastic flow, in ggc !olld-donlnnnt nodel, to the process of weak planar
shocka in solide.’?'3° The assumption made in this application is that
the space- and time-scales of the heterogeneities in the plastic flow are
small compared to the space- and time-scales of the shock process. If this
ware not the case, the shock wave would break up into different structures at
different locations, on a plene of constant distance from the {impact
surfacea. In the visse. experiments on 6061 nlunlnun,au there .8 no indics-
tion of such macroscopically Inhomogeneous wave structure, witnin the spatial



and temporal resclution of the instrument., It was therefore apnropriaste to
analyse these axperiments with the above mentioned theory. 1In particular, by
combining the experimental data with known therscelastic properties, the
plastic constitutive behavior of 6061 aluminum, averaged ovar the shock-in-
duced heterogsneities, was obtained. ' This snalysis {s difficult, and 1is
subject to errors in the numerical integration, and errors i{n the input ex-
perimental data, but not significant aerrors in the underlying theory.

Grady has strassed the axlgg.gge of shear-band structures in samples re-
covared from shock exparimaents.’ ' In the case of aluminum, and 6061
alyminum, the spatial scale of thesy -trggturnl appesrs to be of order or
less than the width of the plastic wave. The exigtenca of shear bands has
led Grady to propose for the shock process a set of equations which are more
repregsentative of fluid behavior than they are of solid behavior. Let ¢
denote the total compression inducaed by the shock, tha compression in the
Hugoniot state. PFor a aolid, € contains both elastic and plastic contriby-
tions, hence ¢ is not the varisble for specifying plastic strain, nor plastic
dissipation, as Grady does (Ref. 35, eqs (1) and (3)). For the energy diss!-
pated In a weak shock, Grady uses fluid theory (Ref. 335, eq. (3)), which
gives a dissipation of order 53, while for a eolid the dissipation {s formal-
ly of order €¢“, as we have shown.

In the weak shock regime, the Gecrease in shock risetime with increasing
shock strength is s plastic strainrate effact: higher shear atresses drive
plastic flow at higher rates. By extanding gha gquntionc of thermoelastic
plastic flow to overdriven shocks In metals, 8135 ve expect the risetime
to be of order 10~!%s for shocks up to a faw Mbar., Ve are alsc able to show
that heat trgnlport is necessary for the existence of an overdriven steady-
wave shock.’ Finally, for shock strengths above a few Mbar in metals, tha
electrons and phonons will not be able to rcggin near equilibrium, and hence
frreversible thermodynamics will break down.>”'"?

MD Simulations

one-dimensional chains of interacting atoms.” These waves arec genertated

by asimuleting planar impact experiments; such experimonts generate shocks in
rea]l materials. But the coeputer simulations generate nonsteady waves, char-
acterized by a continually growing length of nonequilibrium material immedi-
ately following the wave front. This result has led to the suggestion that
the steady-wave jqu conditions cannot ba used to {nterpret experiments on
shocks in solide."” But such a conclusion 1s not warranted, because waves in
a one-dimenaional atomic chain have no plastic flow, The computer-cimulated
waves are not shocks, but are damped nonlinear elastic waves.

There have been a number of computer llmTlgglon- of supported waves in
-

The same situation cen appear in computer-generitad waves in threa-
dinaﬂzlonal lattices. Thus, the computsd nonsteady profiles of MacDonald and
Teal are not ehocks, and conclusions about real shocks in resl materials
cannot be drawn from these computer simulations. But a realletic shock can
be penerated {1 a tgrcc-dlmunllonul lattice, as shown by tLhe simulations of
Holian and Straub.” For a sufficiently strong compressional wvave, a highly
speacific mode of pastic flow ie driven, namely a etress-relaxing dissipative
structural traneition. The resulting wave structure ies & docuyigg elastlc
precursor, followed by a plastic compression to a steady state.”

Finally, we note that MD simulation of dissipative stress-relaxing flow
in a viscous fluid is {n principle much simpler than for an elaastic-plastic
crystalline solid. This ie bacauee viscous fluid flow occurs on the atomic
scale, vhile plastic flow usually occurs on the scale of dislocations.
Hence, computer simulatione of shocks fn fluid eare Ilrlldl in reasonably
good agrecment wvith continuum irraversible thermcdynamics. 7an8
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