LA-UR -85-2529 | | AUGO7 1385,

LOs Alamns National Laboratory 18 opereted Dy the Unversity of Calformia for ihe United States Department of Energy under coniract W.7405-ENG-36

TITLe. THERMOELASTIC-PLASTIC FLOW AND DUCTILE FRACTURE IN SOLTDS

LA-UR--85-2529

DEBS5 015699
AUTHOR(S): Davis L. Tonks

Lectures at:
Instituto di Ingegneria Nucleare, .
CESNEF-Politecnico di Milano,

Milano, Italy, August 12-30, 1985 ij;,‘

SUBMITTED TO

DISCLAIMER

This report was prepared as an account of work sponsored by an agency uf the United States
Government. Neither the Unitod States Covcrnment nor any agency thereof, nor any of their
employecs. makea any wacranty, express or jnipliod, or assumes any logal liability or responsi-
bility for the accuracy, comploteness, or usefulnces of any information, apparstus, product, or
process diaclosed, or represents that its use would not infringo privately ownxd rights. Reer-
ence hesein \o any specific commen.. 'l product, process, or seivice by trade name, trademark,
manufacturer, or otherw: : does not necessarily constitute or imply its endorsement, recum-
mendrtion, or favoring by the United States Government or any ayency thereof. The views
and opinions of nuthors oxpressed herein do not necessarily state of reflect those of the
United States Government or sny agoncy thereof.

By acceptance of this article the publisher recognizas that the U € Governmuent retains & noneaclusive. royaity-free ticense 10 publish 0’ reproguce
\he published form o1 this conte.bulion of 10 allow olhers 10 do 10 for US Gove nment purposes

The Lau Alamos Naslional Laboratary raquests that the pubhisher identity this articia as work nerfurmed undet the susprces of the | § Depariment ot Energy

A Los Alamos National Laboratory
L@S A @[ﬁﬁ]@ Los Aiamos,New Me< xico 87545

FORM NA 81a ms BNICTO m T e sare me i o

e
e

|


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


THERMOELASTIC-PLASTIC FLOW
AND
DUCTILE FRACTURE

IN SOLIDS

Davis L. Tonks

Los Rlamos National Laboratory
Los Alamos, New Mexico

1985



CONTENTS

PREFACE

LECTURE I - MATERIAL RESPONSE
1. Equilibrium and Nonequilibrium
2. Elastic Response and Plastic Response
3. Fluids

LECTURE II - CONTINUUM MECHANICS AND ANISOTROPIC THERMOELASTICITY
1. Mechanical Equations
2. Thermoelasticlity
3. Approximation of Small Anisotropy

LECTURE III - PLASTIC FLOW AND IRREVERSIBLE THERMODYNAMICS
1. Plastic Yield
2. Plastic Flow
3. Constitutive Equation for Heat Transport
Y. Irreversible Thermodynamics
5. Application to Unlaxial Compression
6. Steady Shock in an Isotropic Solid

LECTURE IV - THERMODYNAMICS OF DUCTILE FRACTURE
1. The Thermodynamical Framework

-~

2. Specific Examples



PREFACE

The main aim of these lectures {s to deveiop the theory of elastic-
plastic flow in solids, with application to a particular class of processes,
namely those in which the dissipation of plastic work cannot be neglected.
Examples of such processes are highspeed impact phenomena and cratering, shock
compression, often shock release as well, and explosive deformation and
welding. An important part of the development is to include the anisotropic
elastic properties of a solid, and for this reason the theory applles to
solids in general. On the other hand, it 1s possible that some of the
results will have limited validity for nonmetals. The secondary aim of the
lectures 1s to develop a general framework for ductile fracturs, and describe
the current practice in the field. Our theory is incremental in nature and
suitable for integrating along a process in amall timestepns as is done in
"hydrodynamic" computer programs. A notational conflict arose, because in
continuum mechanics the extensiv» quantities are taken per unit mass, while in
thermodynamics they are usuaily [er unlt volume. The continuum mechanics nor-
malization {.e. per unit mass, is used througnout, with the result that
uncommon factors of density show up in the thermodynamic eyuations. For the
first three lectures, I have heavily borrowed from a review document by Duane

Hallace.1



LECTURE I-MATERIAL RESPONSE

In this lecture, the basic material-response concepts underlying the
entire theory are described in words. Some of the observations on time-rate
effects, and in support of local thermodynamic equilibrium during plastic

flow, were originally published in Physizal Review.2

1. Equilibrium and Nonequilibrium

A system is a quantity of materlal whose behavior we want to study, as
e.g8. a cublc centimeter of gold, or a boaker of water. An {s0lated system is
one for which nothing flows in or out of the system. If a system remains iso-
lated, it will presumably reach a state which remalins constant in all its
macroscopic properties. This is an equilibrium state. Let us for the moment
consider only states for which the forces applied to the system are {sotropic,
and make a partial 1list of the macroscopic properties of the equilibrium
state: V = volume, P = preasvre, U = internal energy, T = temperature, S =
entropy.

Equilibriur thermodynamics is the study of processes by which a
material (or several materials simultaneously) can pass from one equilibrium
state to another, along paths which are conatrained to pass only through equi-
librium states. The primary physical laws {nvoked are conservaticon of energy,
and the existence of an exact differential dS; the rest of equilitrium ther-

modynamios is (almost entirely) mathematics. When the stress is isotropic



pressure, there are only two independent variables, which means two vari-
ahles completely specify an equlilibrium state of a given material. These
variables can be any two from the above list, or two combinations of them, or
other extensions. Take for example V ancd T as the independent variables.
Then for all possible equilibrium states of a material, relations of the fol-
lowing form hold: P = P(V,T), U = U(V,T), S = &(V,T). The term "equation of
state" i3 somet!mes used to denote the abcve equation for the pressure. A
more general usage of the term, and that which will be followed in the
present work, is to denote any or all of the information contained in the set
of e¢quations above.

To enter the realm of nonequilibrium states and processes, it is help-
ful to thirk in £erms of statistical mechanics. Consider a monatomic nearly-
ideal gas; mentally subdivide the space occupled by the gas into a large
number of volume elements, each with the same volume. Each element contains a
large number of atoms, and can be treated as a statistical subsystem. The im-
purtant statistical measure of a subsystem is the distribution f(B) of the
atomic momenta B. The equilibrium distribution is Maxwellian, with a tempera-
ture T: f(B) is proportional to exp(-BSZ/ZM). where 8 = 1/kT, k is Boltzmann's
constant, and M is the atomic mass. When the gas {s in equilibrium, the mass
and tempera‘ture are the same for each element. When the gas is not in equi-
l1i{brium, the momentum distribution can be anything. If the d}stributlon is
not at least approximately Maxwellian, then the temperature cannot bhe
defined. However, even when equillbrium-thermodynamic qQuantitios such as

temperature are not defined, mechanical quantities are aiways defined. The




most important macroscopic mechenical quantities representirg e€_ch volume ele-
ment, which in fect are just the zercth, first, and second moments of r(B),
are the total mass, total linear momentum, and total energy. If the gas is
thoLght of as a continuum, these quan:ities translate into local fields repre-
senting density, fluid veloclity, and enerzy density.

We can now define nonequilibrium states which are "close to
egquilibrium." Any element of the gas i3 close tn equilibrium if its momentum
distribution 1s close to Maxwellian; sapecirically this means that r(B) -
exp(-BBz/ZM) + 5r(5), where the only restiriction on cr(B) is that it is small
enough to be treated as a perturbation. But this will be the case only if the

spatial and temporal variations of the mechanical quantites, the density,

fluid velocity, and energy density, are siufficlently small. It is important
always to differentiate between mechanical and thermodynamic¢ quantities, and
to remember that equilibrium thermodynamic quantites can be defined only for
states which are close to equilibrium. A good exercise would be to explain in
one’s own words why this 1is so.

Irreversible thermcdynamics is the study of processes which pass
through nonequilibrium states, but only those which are close enough to equi-
librium states so that the equilibrium-thermodynamic processes are
characterized by the [ollowing propertlas,.

(a) A "driving force" {a present, which causes a flow tnat tries to
canczl the driving force. The force-flow relation ls called the constitutive
relation, and the material properti2s which enter this relation are caljed
constitutive properties. Tho constitutive ralation couples to, and alters

parts of, the equation of state.



(b) Dissipation is present (generation of entropy). The work done by
the driving force against the flow is always at least partially dissipated,
and usually 1t is totally aissipated. The equation for entropy increase ac-
quires a dissipation term in addition to the heat flow term.

Consider a material in which there 1s a local temperature gradient;
heat flows, 1in an attempt to r~ancel out the temperature gradient. A common
constitutive relation sets the heat current proportional to the temperature
gradient. The coefficient of proportionality, the thermal conductivity, 1s a
constitutive property of the mate¢rial. Consider a beaker of water, stirred
gently with a stirring rod, and then isolated. Viscous stresses are present,
working agalnst the velocity gradients, and the macroscopic mechanical motion
of the water gradually dies away, as it is turned into heat. The linear rela-
tion between viscous stresses and velocity gradients 1s the constitutive
relation, and the viscosity coefficlents are constitutive properties of the
water.

It 1s important to remember that constitutive properties of a material

are entirely separate from equilibrium properties; that equation-of-state data

does not contain any information about ronstitutive properties of a material.
In short, tne constliutive relation, or constitutive behavior, of a material
describes Lh- diasipative force-flow part of an irreversible-the: modynamics
process.

The present work is concerned only with processes in the irreversible-
thermodynamic regime: equlilibrium-thermodynamic quantites can 1lways be

defined, at leasat approximately. A point of usage needs to oe addressed. It



seems that physicists are rais2d tc think of adiabatic, when used in the ther-
modynamic sense, as meaning i1sentropic. LCngineers generally use adiabatic to
mean "Without heat flow." We could simply abandon this word in the present
work, except that we will have much need for the adiabatic elastic moduli,
which of course are isentropic elastic modull. The following definition will

therefore be followed: adiabatic means isentrop‘-.

2. Elastic Response and Plastic Response

The significant property of condensed matter, which makes it condensed,
i1s the dominance of forces within the material. For an ordinary solid or
fluid composed of atoms, or more accurately, composed of ions and electrons,
the forcea cderive from effective potentials between the ions. These forces
are elastic forces. Since the effective lon-ion potentials operate through
the <lectrons, they ar: "instantaneous" potentials, as far as the present
work 1s concerned. There are also forces arising from thermal energy in a
maverial, e.g. the thermal excitations of electrons and phonons. Thermal
forces can remailn close to equilibrium as long as thelr spatial and temporal
variations are slow compared to relaxation .engths and times within the
electron-phonon system. 3uch relaxatlon lengths and times are quite short,
being measured in terms of lattice spacings and picoseconds, respectively.
The elastic forces and thermal forces taken together are called thermoelastic
forces, and for solids we have the following conclusion: stresses are sup-
ported hy the thermoelastic forces, and local thermoelastic equilibrium will
be a yalid approximation up to very high spatial and/or temporal rates of

change.



When an anisotropic stress is applied to a sclid material, a multitude
of processes begin, all of them act'‘ng to reduce the stress. Some of thecse
processes can be effective only on geological time scales; others are impor-
tant in mirutes or days. In the present work, we are interested in rather
fast processes, say things which happen in one second or less. We will not be
concerned with any stress relaxation mechanism which operates on a slower
t.imescale. We will be concerned with the mechanisms of plastic flow and duc-
tile fracture. Plastic flow does not have to be due to dislocatlons; however,
i1t usr1ily 1s, and we will often use dislocation corcepts in examining the na-
ture of p. stic flow.

Consider a small reglon of a solid material, and suppose there is an
anisotropic stress in the region, which results from forces applied by the
surrounding material. There may be a dislocation in the region, o; one might
be generated; 1in any case the dislocation moves in such a way as to reduce
the local anisotropic stress., Transforming this picture to the language of
irreversible thermodynamics, we say that the stress drives plastic flow, and
that for a glver material in a given state, the material constitutive equa-
tion specifies the plastic response to any applied stress. We have thus
arrived at an lmportant point of logic in the present theoretical construc-
tion, stated as follows: For plastic flow within a solid material, at all
times and locations, the stres.ns satisfy two separate condjitions, v:iz. the
equilibrium thermoelastic equations, and the plastic constitutive equation. If
ductile fracture is also taking place, a constitutive relation for the frac-

ture damage is also obeyed.
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There 18 a subtle discord between the nature of plastic flow and the
customary "textbook picture™™ of irreversible processes. This can be {1-
lustrated with a simple example. Suppose a shear stress 1 1s applied to a
solid, and the solid deforms elastically for 1 < Ty and at T, the solid
begins to flow plastically. The irreversible-thermodynamic driving force 1s
o This constitutive behavior cannot be represented by a linear
phenomenological law, according to which the driving force 1s zerov in equi-
1ibrium, and i{s a linear function of some measure of the departure from

equilibrium. The essential nonlinearity of plastic constitutive behavior has

led to the statement that "plastic flow cannot be treated by Irreversible
thermodynamics." This statement can safely be ignored. But let us continue
with the example, and ask about the connection between time-rates and revers-
ibility. The customary picture is that if you make a process slow enough, it
will be arbitrarily close to equilibrium; that slow ls reversible. 1Is this
really true? In an ordinary solid, adlabatic elastic waves can be transmitted
at very high frequenc.es, under near-equilibrium conditions. On the other
hand, in driving plastic flow, the shear stress can be adjusted 8o that the
plastic stralnrate is arbitrazrily small, yet the process is st{ll
irreversible: the driving force To is finlte for an arbitrarily slow process.
This result allows the following important conclusion to be made: The ther-
modynamic reversibility of a process is not determined by its rate.

So far, we have ignored the heterogenzous nature of plastic flow. 1In
fact, plastic flow is intrinsically heterogeneous, and what 1s worse, it Is
heterogeneous on several different length and time scales. The finest scale

of heterogenelty is that of a single dislocatlion. A dislocation is a lline
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defect, surrounded by a nonuniform elastic strain field, When a dislocation
moves, 1t presumably acts as a source of mechanical excitations, and with the
appropriate relaxation time, this mechanical energy becomes thermalized to
heat. Larger scales of heterogeneity are associated with dislocation sub-
structure, the networks and cells and so on. On this large scale, plastlic
instabilities may develop during the course of a process. For example, shear
bands may form, within which the plastic flow may tend to become localizzui,
The question arises, how i3 the heteroge;eous nature of plastic flow to be ad-
dressed by irreversible thermodynamics?

First we will simply assume that the finest scale of heterogeneity can be
ignored; that single-disloczation effects can be averaged for any mass element,
whether the mass element contains only a few dislocations, or 1is located
within an active shear band. There are two ways in which larger-scale in-
homogeneities can be treated. The first way is simply to resolve the
inhomogeneities which occuf in a given flow process. After all, the
continuum-mechanic and irreversible-thermodynamic theory 1is a local field
theory, and applies in principle to spatially and temporally inhomogeneous
processes.

An alternate procedure, which entalls a sacrifice of resolution on a cer-
tain scale, is to r:place a certaln type of !nhomogeneity by a homogeneous
model. In this way, an additional field varlable, or parameter, is introduced
into the continuum theory, and the modeled inhomogeneity formally disappears.
It should alwauys be remembered, however, that the model has to be consistent
with the basic thermoelastic propertles of the solid. For example, consider a

sfngle crystal with a single straight dislocatlon; apply a shear stress (o
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the crystal and the dislocation moves. Now replace the whole siilp plane of
the dislocation by a shear band, and apply the same shear stress. The stress
is supported elastically, with the same elastic stress-strain relation in both
cases; the only difference in the two cases is the plastic constitutive
relation. Hence, the appearance and growth of shear bands can be modeled
homogeneously, by using a combination of plastic constitutive relations,
together with a local field variable denoting what part of the total plastic
flow 1s due to the shear bands. Another example is the growth of voids in a
metal under tension. A single void contributes to the flow problem in the
following way: plastic flow proceeds around the vold's surface, as the volid
grows, and the cross section of the void does not support stress. These et'-
fects have been modeledJ in a manncir consisient with the thermcelastic

properties of a metal, in a calculation of necking and ductile fracture.3

3. FEu%ds

A;& flulds are presumably viscoelastic. This means the fluid response Is
viscoﬁs at low and moderuate strainrates, but the response is elastic at high
stralnrates. For a simple monatomic fluid, the elastlic regime begins at
stralnrates around the inverse mean-atomic-vibration time, or 10133-1 at ordi-
nary temperatures and pressures. The elastic response in a fluld 1s due to
the Interatomic potentials, and does not occur in a gas, where all interac-

tions are represented simply by two-particle elastic collisions. That a fluid

and a gas are essentially different is demonstrated by the behavior of the

viscos.ty, which decreases with temperature for a fluid, and increases with

temperature for a gas. The onset of elastic response in a fluid at high
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strainrates suggests that viscous stresses cannot be arbitrarily large; this
is certainly the case in the shock process, as will be discussed in later.
When we ;peal: of a viscous fluid, we mean a real fluid (a viscoelastin
fluid) which is operating in the viscous regime. The most universally popular
myth in high-strainrate materials response today is that an elastic-plastic
solid 1s equivalenc to, or approximately equivalent to, a viscous fluid. The
difference in constitutive behavior between an elastic-plastic solid and a
viscous fluld is not trivial, it is vital. Ary experiment performed on a
solid, and interpreted with viscous fluid theory, will indlicate an enormous
'viscosity," and one which depends intimately on the experiment itselr. To
add t¢c the 2onfusion, there is also the popular "viscoelastic solid." Just
because this term 13 contzined in a textbook, in a list of constitutive

models, does not mean that any solid or earth behaves this way.
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LECTURE II-CONTINUUM MECHANICS AND AN1SOTROPIC THERMOELASTICITY

In this lecture we assume the student has a basic kncwledge of the
topice, either from prior study or other lectures. We will list equations to
establish notation and will point out special features that are important to
nonequilibrium thermodynamics. We treat in abbreviated form anisotroplc and

finite sirain elasticlity with which the student may be unfamiliar.

1. Mechanical Equations

The Eulerian form tlhe the equation for conservation of mass is the

followlng:
ap/at]; + 3(v1p)/3xi]t -0, (2.1)

where t !s time, o 1s mass per nunit volume, ; is the vector of Eulerian posi-
tion coordinates, and v1 is the {th Cartesian component of the particle
veloclty. The term "particle" means a small plece of the material which con-
tinues smoothly into its neighbors and does not imply that the material is
broken up into pieces. Double indices are to be summed over. The Eulerian
position coordinates are simply the coordinates in a voordinate frame fixed {in
space through which thc material moves. This equation describes how th-o

material's mass compresses or expands as the material moves. The momentum con-

servation equation appears as:
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pavJ/at]; - 3, /:axi]t , (2.2)

J

where TiJ 1s the Cauchy stress tensor (referred to real areas in the Euvlerian
conrdinate system), and i 1s the Cartesian Lagranglan coordinate which gives
the position of a particle at some initital time. Thus, a particle is labeled
uniquely bty the i it had at this initial time. The partial with respect to
time holding i fixed means a materlal derivative cr one which follows the pur-
ticle along its path. This equation is simply Newton's second law in
continuum form: "force = time rate of change of momentum." This equation is
given in the mixed Eulerian-Lagrangian form commonly used {n computer
calculations,

One can define a mean compressive stress P as - (1/3) = P 1a not to

1t

be confused with the "presrsure", however; which we reserve to mean the
"thermodvnamic pressure." The pressure is defined only when the stress itensgor

is isctropic, T = P §,,, and when the materlial Is in loczl thermodynamical

1 13

equilibrium. The minus sign is present because stresses are outward forces,
while pressure ls a force inward on a body. '"ence, even when local ther-

modynamic equilibrium obtains, P is not the "pressure" (f 1 is anisotropic.

13

The concept of thermodynamical pressure (s not then general enough to it the

gsituation. For exanple, P is always a single vaiued function of V and T, bhut

P can be made to take on a continuous range of values for fixed V and T by ad-
Justing the components of TIJ.
The energy belonging to each mass element i{s divided into two parts, the

translational kinetic energy, (1/2)32 per unit mass and the center-of-mass or
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internal energy, E per unit mass. The increase of translational kinetic

energy of the mass element is

dlr1/2)mv°] = mv, v, /atly dat . (2.3)

A change in the center-of-mass energy is 1/ vided into two parts, work
done and heat transported. Before introducing the equation for internal energy
congervation, we provide a description of heat. Heat is the exclitation of a
system, or a mass e¢lement, at fjixed configuration. For an atomic solid or
fluid, it 1s the motlonal energy of the atoms in the center- of-mass frame;
in a metal, the excltation of conduction electrons is also included. Heat is
defined without regard to thermouynamic equilibrium. Also, there is no
(significant) transport of mass or momentum associated with heat transport.
It should be recognized, however, that the real operational definition of heat
13 not contained in these words, but is contained in the constitutive equation
for heat transport which one uses in any gliven calculation. Clome common forms
for this equation are discussed later.

The equaticn of internal energy conservation, for a single material par-

ticle moving in the solid, is the following:

p BE/BtJi - leacij/at]i - aJi/axi]t , (2.4)

where E {s the Internal energy per unit masd4, and 3 {3 the Eulerlan heat flux

veotor, {9 the {nftnltesimal straln tensor defined In terms of Infintesi-

€4y

mal Eurlerian displacements uJ from the current conflguration as followsa:
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€ - 1/2 (aui/ax + du /axl) . (2.5)

1 J J

We will define u,,6 to be aui/ax in equation (2.4) is

13 3 J

the total internal mechanical work done on the particle per unit volume, which

Tke term involving aei

we call dW. The term involving J1 is the total increase in heav- per unit
volume for the particle, whica we call dQ. 1The above lLagrangian equation can
be more simply expressed as: dE = dW + dQ, where dE is the internai energy in-
crease of the particle.

We need to emphasize an aspect of the incremental work dW: ¢this 1s work
done on a mass element, by its surroundings, through the action of stresses.
Nothing was said about dW belng conservative, or reversible, and in fact it
generally is not. The applied stresses can drive plastic flow in a soliid, or
viscous flow In a fluid, and these are both dissipative processes. The work
tern can be partially or totally dissipative. Because of this, it is not poa-
sible to keep track of the heat content of a gliven mass element by simply
integrating the “erm dQ; dQ represents the net heat transported into the mass
element, but dW acts partially or totally as a source term for heat as well.

An important point is that the continuum-mechanic conservation equations
(2.1) - (2.4) above hold for any material with any constitutive behavior; they
apply to dissipative processes. They were derived from very basic physical
principles which always hold. They don't need to be "correcteu." The quan-
tities they contain are general mechanical quantities which are defined

whether or not thermodynamical equilibrium holds.

2. Thermoelasticity
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We will be concerned with thermoelasticity for a solid of arbitrary crys-
tal sycmetry in the presence of anlsotroplc stressesa. For irreversible
thermodynamics, we need the assumption of local thermodynamic equilibrium, in
which the thermodynamic variables are fields, but all the equllibrium rela-
tions hold locally. 1In other words, we assume that if the material 1is
subdivided finely enough, the equilibrium thermodynamic relations wilz’apply
to the pleces individually with suitahle terms added to account for irrevers-
ibility. Equilibrium thermodynamics assumes that the thermodynamic quantities
are uniform throughout the solid, 1in irreversible thermodynamics we assume
that quantities are uniform locally. The thermodynamic relations will hold 1in
the rest frame of the material.

It is worth mentioning that the equilibrium thermodynamic equations are
independent of time. They involve only differences between equilibrium states
in which time is not involved.

With enlsotropic stresses, an equlilibrium thermodynamic state can pe
specified by the elastic configuration, or by the stress tensor, plus one more
variable such as entropy or temperature. We will take the independent vari-
ables to be the elastic configuration and the entropy. Since it will be
necesgary eventually to distingulsi, hetween elastic and plastic strains, we
will use a superscript e to denote elastic strains. The incremental elastic
strain gradients du';J carry the current configuration ; into the next con-
figuration ; + d;. We do, in fact, include finite strains but introduce only
infintesimal strain ghanges in the theory. The incremental entropy dS repre-
sents entropy from all sources. It includes that from heat flow hero and will

be generalized in the nonequilibrium case to include dissipation. Thus, the
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independent incremental variables are the set {du;,, dS}. The symmetric elas-

=~ (D

J

e € e e
tic strains de1J are de1J 1/2 (duij + duJi) . The rotations are to be

thought of as rigid. Elastic strain does not contribute to rotation, nor does

plastic strain. Hence, rotation increments are denoted simply dw,,, where

1)

dw,, =~ 1/2 (du, ,~ duji)' Note this implies that the displacement gradients

1 1]

are not entirely elastic: the antisymmetric part of du is rigid rotation.

13

Using the elastic an rotation tensors, the complete set of independent vari-

ablez becomes def y dw

J 1)
In crder to simplify notation, we will omit the indication, in partial

, and dS.

derivatlves, of which variatles are to be held constant. This can be done
because we use a single set of independent variables; any partlial derivative
1s carried out with the remaining independent variables held fixed. In our

algebra, we will take all efJ and w,, to be ndependent variables with the

constraint that efJ is symmetric in 1j and wiJ

In thermoelasticlty, all strains are elastic and we can write the energy

1s anti-symmetric.
increment equation as:

p dU = Tijdefj + pTdS . (2.6)

This equation does not contain dw,,, which indicates that dU is {nvariant

13

under rigid rotations. The customary expressions for stresses and tempera-

ture, as energy derivatives, follow directly from equation (2.6):

T = p aU/acf (2.7)

13 J !
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T = 3738 . (2.8)

We will express increments in ¢ and T in terms of those of the inde-

1
pendent variables, and break the thermodynamic heiarchy there. We will
conaid:- ~ the coefficients In the resulting equations as known, from experimecnt
or thec :tically. These equations, then, are the ones to bde used in actual
calculations.

A subtle but very important point arises. Both sides of a thermodynamic
equation are evaluated at the same state and both sides are true for any ther-
modynamic state. Hence, 1in principle the equation can be cifferentiated,
since differentiatiun 1s just a procevs of taking differences between
neighboring states. Howevzr, equation (".7) for 1 is not a general

13

relation; the left hand side is TiJ only when the strains EiJ

it cannot be simply differentiated with .‘espect to this quantity. The wrong

are zero. Hence

angwere results, A proper general equation 1is given in reference (4) where the
proper way to differentiate this eguation 1s described. The algebra 1s not Loo
hard to follow, but too lengthy to he included here. The result, along with

the result for stress changes with rotation, !s written schematically as

\e -
3Tij/atkl Bljkl ' (2.9)

Brijlawkl - 1/2 (Tlldjk - T:ksjl + leéik - Tjkdil) , (2.10)
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where BiJkl is an adiabatic stress-straln coefficlent. It tells how the stress

tensor changes when the strains change infintesimally. It is symmetric in 1]
and k1 but not with respect to Iinterchanging i{jJ and kl. This eguation does not
include rotations of the mass element. If the mass eiement has in fact
rotated, then the stress has rntated with it. Hence, components of stress in
the laboratory system are changed, and it is this change which equation (2.10)

glves. To give added insight into the B coefficients, we write them in

13kl

terms of the speclal sccond order elaatic constants, Cthl:

Bijkl - Cijkl + 1/2(1“(6;]1 + lildjk + Tjk611 + 1"115“( - 211:]6[(1) . (2.11)

The CiJkJ are defined by p 3U2/3n1JBnklevaluated at the {nitial condition of
zero nij' where niJ are the symmetric finice straln parameters of Murnaghan
defined by

n = 1/2 (ui + U (2.12)

13 [IRLTTRRL WL WRAR

is the displacement gradient aui/ax and displacements are here not

"1 3
limited to infintesimal displacements. When the stresses are zero, the C1Jkl
correspond physically to what one ls used to thinking of as elustic constants
in the Infintesimal strain case. But when stresses are nun-zero, they can be
different. Equation (2.11) 1s derived in reference (4). Some idea of why the
stress dependence should occur In Bijkl is given by the following simple
example. Conslder a long rectangular bar of unit cross sectional area and of

{initial length Lo pointing along the x-axis. We stretch it quasistatically to
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length L, keeping the cross-sectional area constant. Incidentally, the bar is
in the same condition it would be if it were part of a solid of infinite cross
sectional area that experienced a uniform x-displacement to length L. We call
this condition of the bar state 1. The total force on the bar is the same as

the stress %1 normal to bar's end and can be simply related to the stretch of

the bar ,L - L, by the equaticn Oyq = k (L - Lo) where k is & "spring

constant." We have used Voigt notation in o¢,,. We now stretch the bar further

by the infintesimal length AL which increases the stress by AoU = kAL. The

infintesimal strain experlienced by the bar in this last stretch is ¢ = AL/L,

11

with all other components being zero. Hence, we now can get the B coeffivent

IR

for the bar of length L ( st.te 1) by dividing Ao to get kL. The

13 %Y €y

C{l coefficient is defined as the usual elastic coefficient when the bar is in
its initial unstressed condition. One can take two nartials of the potential
energy per unit volume 1/2 k (L'-LO)Z/Lo with respect to the infintesimal

strain e{1 referred to the initial condition to obtain 0{1. This strain is In

fact (L'—Lo)/L0 , which enables_one to easily cobtain C;1 o Kk Lo' Finally, we

rewrite B11 = kL as k Lo + k (L - Lo). which is easily seen to be 0{1 PR

This completes the example. The result can be seen to follow because the

infintesimal strains used to define 811 and 0{1 are referred to different

configurations. We note that in equation (2.11) above which relates B to

13kl
CiJkl and le' the Cijkl is referred to the current positions or to state 1,

while 0{1 above was referred to state the initial condition. The C{1 neverthe-
less fits into equation (2.11) when specialized to this simple case. The

resolution of the puzzle is that C!, equals C

1 for this simple example.

11
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We continue the program of calculating derivatlives required to construct

equations fo- d-riJ and dT. The anisotroplic Gruneisen parameters Yij are

def ined by

BTiJ/BS - TYiJ . (2.13)

Tha YiJ represent the thermal energy contributicn, o>r heat contribution. to

the stresscs, as can be seen by rewriting equation (2.13) in the form

pYyy = - ATy /au]n . (2.14)

J
The subscript n means at constant elastlic configuration. The heat capacity at

constant configuration is Cn” defined by 93T/9S = T/Cn' Finally, the strain

derivatives of the temperature are

E —
3T/3eiJ = - T Y1J ) (2.15)

BT/BmiJ =0 . (2.16)

One can understand why Y appears in both the equation for 9T and the equa-

N

tion for 311 when these equations are expressed in terms of partials of U,

J
Interchanging the order of differentiation ylelds the same derivative of U in
both cases.

Now we can write down the final equaticns:
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e w
dTiJ Bijkldekl + dTiJ pYideS ’ (2.17)
e
T = - + Td o 2.
d TYijdEIJ T S/Cﬂ (2.18)

As an interesting exercise, one might think of how, for a single crystal
of tetragonal or lower symmetry, one would measure C, and also how one would
measure Cn. Show that a measurement of Y is contained the the first experi-

ment, and a measure of Y is cortained in the second experiment.

N

A common circumstance in treatises on elastic-plastic strain is that only
Hooke's law {s considered. In the present work, the first term on the right
of equation (2.17) is Hooke's law, in differential form. Omitting considera-
tion of the rotation term, there 1is still another contribution to equation
(2.17), and that is the term in TdS. That term is necessary for the

specification of dt Even i1f one changes variables, the equivalent of the

13 °

TdS term will always be present . In other words, stress can never be ex-

pressed in terms of strailn alow~.

3. Approximation of umi:ll Anisotropy

Thermo«'ast:<1i r was developed in the first place to describe experi-
ments, especially stress-strain experiments and wave-propagation experiments,
on single crys-als in the presence of applied stresses. Applications of ther-
moelasti~ity can Lerome quite complicated, especlally for crystals of low
symmet~y. On the other hund, in plastic flow experiments, :i Is often pos-
sible to consider the a8olid under stud a3 nearly isotropic. A

polycrystalline ~3gregate, for example, is approx .:ately isotropic for many
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purposes. It is therefore useful to simplify the thermoelastic equations for
the case of an isotropic solid. Of course, as soon as an anisotropic stress
is applied, the solid undergoes anisotropic elastic strain, and in this stat:z
the solid is not isotropic. But if the anisotropy of the elastic strain is
small, then the material anisotropy will be small, and this will be the basis
of our approximation. Ultimately, we rely on plastic flow to keep the
anisotropy of elastic strains small, or equivalently, to keep the stress close
to 2 pure pressure. There will always be some solids for which the approxima-
tion is not acceptable,

The small-anisotropy approximation consists in replacing the second-order
» and B

thermoelastic coefficients Cn' Y by what they would become if the

1] 13kl

anisotropic strains were changed to have the same volume dilation with no
other strains. The approximation is easily visualized in terms of an equi-
librium thermodynamic process. While the process goes along a line in
anisotropic-state space, having volume V and entropy S at any point, a unique
image point moves along a line in isotropic-state space, always having the
same V and S. The second-order coefficients are evaluated at the image point.

The approximation leads to the following replacements: Cn + C +

’ Yij

Y$ , and the B s Wwhich have the follow-

1

ing symmetry:

are replaced by the isotropic Ba

13kl B



where we have written B

indices take values 1-6

2y, Xz or zx, and Xxy

B1Jk1 is symmetric in

B because of the

ap’

press B1 as A + 2y -

1

and y are the Wallace

We will write the equations for dU, drt

26

1 12 12
Biz B B2 0
B12 B12 B1'I
Byy 0 0
0 0 BNM c
0 0 Buu )
13kl in the Voigt notation form BOIB where the Greek
which correspond to the index pairs xx, yy, 2z, yz or

or yx, respectively. This replacement 1s allowed because

1j and symmetric in kl. There are only two independent
additional relation B, = 1/2 (B11 - 812) .

P, where P 13 the pressure of the Isotropic state and A

One can ex-

Lamé elastic coefficlents. is equal to y - P.

Buu

1y and dT in the small anlisotropy

limit. It will be convenient tc change the stress variables from TiJ to the
set 5. 31J , where the siJ are stress deviators defined by
- + P . .
Syy ™ Tyy * Poyy (2.19)
We will also us: conservation of mass In the form d 1nV = dc?1 + dcg2 + de§3.

This equation introduces a new notation,

ten as numbers 1,2,3,

in which Carteslian indices are writ-

and repeatwvd numbers are not summed. There are times
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when the algebra is sinplified by enumerating the Cartesian indices, and ex-
plicitly writing out all the terms in a calculation. The small-anisotropy

equations are the following:

dU = -PdV + TdS + VsijdefJ . (2.20)
dP = - B d 1nV + pYTdS , (2.21)
dT = - YT d 1nV + TdS/C (2.22)
ds,, = 26[de§, - (1/3)d 1nV] + ds}, , (2.23)
ds,, = 2G dej, + dsi, (2.24)

where the remaining diagonal and off-diagonal stress deviators are given by
obvious relabeling of (2.23) and (2.24), respectively. The rotational terms

are

+ s, .dw, ) ’ (2.25)

w
ds 2(812dw 13993

" 12

ds”_ = (s

12 *8

02 " 311)dw12 2b1w13 + 813dw23 , (2.26)

and the remalining rotation terms are given by cyclic permutation of indices in
(2.25) and (2.26) above.

Once again, consider an equilibrium thermodynamic process, in which the
s0lid moves along a line whose points are specified by [§.Sl. while its image
moves along a corresponding line specified by (V,S};. The image is undergoing

a process in isotroplo-state space, anu nence is governad by the equations of
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pressure-volume thermodynamics. Let us use the subscript I, for isotropic, to
denote variables belong.ng to the image. Then comparison of the small-
anisotropy equations with their isotropic limits, and remembering that V(;) =

V, gives the results

P(X,S) = PL(V,S) (2.27)
T(x,S) = (1S, (2.28)
U(;.S) - UI(V.S) + UA(;.S) ’ (2.29)

where UA is the anisotroplc elastic¢ energy of the solid, and is given by
» e
UA(x,S) J Vsijdcij . (2.30)

The integral 1s alcong the path of the process, from the initial state to the
current state. The above equations show that the approximation of small
anisotropy reduces the thermoelastic process to a "minimally anisotropic" one:
the mean compressive stress and the temporature can be obtailned from the
isotropic equation-of-state state, and the presence of anisotropy is contained
only in the exlstence of nonzero stress deviators, and of the anlsotroplc
elastio energy. Of course, whoen thermoelasticity 1{s coupled to continuum
mechanios, the presence of these an{sotropic terms will affect the course of
the process, at each timeatep.

As an exerclse, the student can Imagine how, for a glven polycrysta’lino

s0l!d, he would make the best currently-possible estimates of the quantitlas
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B, C, Y, and C, for pressures up to 100 kbar (105 atmospheres) and for tem-

peratures from rcom temperature to melting.
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LECTURE III ~ PLASTIC FLOW AND IRREVERSIBLE THERMODYNAMICS

In this lecture we emphasize the irreversible thermodynamical aspects of
plastic flow. We assume general knowledge of the yield and flow conditions,
but give a summary of the Prandl-Reuss-von Mises theory for oompleteness and
to establish the notation. Some standard textbook references for this thery,
which is the simplest for 1sotropic solids, are the works by Hills.

Mendelsons. and Kachanov.7 Techniques for computer calculation of elastic-

plastic flow problems in one- and two-dimensions are discussed by w1lk1ns.8

1. Plastic Yield

Before describing the plastic yield condition of von Mises, we discuss a
few useful aspects of stress in a solid. Since the stress tensor TiJ is a
real symmetric tensor, a coordinate system exits, called the principle axis
system, In which the stress 1s dliagonal. In thils axis system the three
diagonal element’s of the stress tensor can be taken as the coordinates of a
vector; l.e. the stress can be represented as a vector. Given a plane, the
stress acting on {t can be resolved into a normal component and a tangential
component. In principal a es, the spherical stress line (also called the
hydrostativ iine) is the octahedral line Tt Tan " l33

gomponents are to be plottud as a vector as described above. Planos perpon-

, Where theae dlagona!

dicular to this line (ooctahedral planes) are planes of constant spherlical
stress, whlioh I8 constant mean compresaive streas in our notatlion. An ar-
bitrary stress {s decomposable into a projection onto tha spherical streas

line, and a projection onto the octahedral plane, in this principle axis

———
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space. In our notation, these projections are proportional to the mean com-

pressiv2 stress, and the shear stress. Specifically, the stress vector in

2 , .2
To2 * 33

- V3 P along the spherical stress line, and has the the projection of length

principal axes has the length v (151 + ), has a projection of length

/(282) in the octahedral plane, where S, is the second invariant of the stresa

2
deviators, (1/2) 81484

The concept of yield is as follows. If the stresses applied to an
elastic~plastic solid are increased from zero, the response of the solid is
initially elastic, and when the anisotropic stresses reach a certain "point,"
plastic flow begins. The point reached is a point on the "yleld surface."
The ylield surface depends on the state of the solid when the experiment is
performed; it depends, for example, on the temperature, the pressure, and the
dislocation density. For the moment, let us consider merely the stress de-
pendence: the yleld surface is given by an expression of the form f(rij) = 0,
For an isotropic solid, the yield surface should depend on the stress only
through the rotational invariants. From the decomposition of the stress in

princlpal axes, and arguing that the yleld surface should not depend on P ,

because it is the anisotropic part of the stress that drives plastic flow, one

expects the yleld surface to depend only on S This {s the approximation of

2.
von Mises: yleld occurs when the component of tangential astress on the oc-
tahedral plane reaches a fixed value.

In the present work we define a rotationally invariant effective shear

stresas 1, according to

17 = (374) 32 - (3/8) BiJ”iJ , (3.1)
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where t is equal or greater than 0. The von Mises yield condition 18 then ¢ =
K, where K 13 a material property which determines the yield strength of the

material.

2. Plastic Flow

The plastic strain (or flow) will be denoted by a superscript p, as defj.

For a process in which elastic and plastic strains are going on simul-

tuneously, it is possible to add the two kinds of strain in infintesimal form.

The total strain de1J is then dc?J + del;J . Since the rotation is rigid, in-

volving nelther elastic nor plastic strain, |{ncrementsa of the displacement

gradients are

- € P
duij dci‘j + dciJ + dwij . (3-2)

Mow a problem arises. Conslider the transformation a, which transforms
the initlal configuration i to the current configuration ;. such that the

+ »
function al(*) gives x, . The functions ay (X), defined by Bul(X)/aX give

i J J'

the gradients of the ourrent oconfiguration ; with respect to the original con-
figuration *. and show how the current configuration has evolved from the

initial configuration. The uiJ relate the lncremental vector di at the ini-

tial oconfiguration with the inoremental veotor d; of the current configuratlon

as follows:

dx (3.2)

1 - uinXJ .

Inorements dulJ oan be caloulated from duiJ from the equation d°1J - d”ik“kJ ’
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which can be proved from the definitions above. Hence, these increments can ve
integrated along the material process to give a(i+;) for any configuration ;.

Thus the total configurati n is known, for every mass element and for every

time. Furthermore, it is possible to write equations for dafJ and da?J
separately, under the condition that a1J - uijaig . The total 01J have the
same meaning as before, but the component matrices ue and up have no inde-

1] 1

pendent physical meaning, because they do not commute. In other words, when
elastic and plastic strains are going on simultanecusly, 1t is not possible

to integrate the strains alcng the process to find separately the current

elastic and plastic configurations 1In any objective sense. Some worker39
have used the ufj and °?J and given them the following lnterpretatlon. afj

takes the initial configuration and applies a pure plastic strain which rear-
ranges the atoms but dces not generate any stresses. The resulting condition
is thought of as an intermediate unloaded state. Then, the afJ strains are
applied which load the material elastically to the current stresses. This
scheme 1s workable, but the intermediate state has no objective physical
meaning. The material as a whole cannot exist in this state without breaking
apart. To make the scheme work, one must think of the intermediate state as
existing for each plece of muterial individually, not in connection with those
of the nelighboring pleces. Other, dlfferent schemes for decomposing the total
strain into elastic and plastic purt are possible1o and all suffer from
similar problems.

We prefer to deal with the situat{on as follows. First, the incremental
strains dce and dcp are perfectly good differential var{ables for the

13 1

coupled differential equations of a flow proocess; these equations oan still be
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integrated step by step. However, we do not have the elastic configuration
available as an integrated state variable. But the integrated stresses TIJ
can serve as state variables for thermoelasticity. These and one other vari-

able, say S, completeiy specify a thermoelastic state, including the elastic

configuration. For the plastic strain, we will introduce a non-negative

scalar measure of the total plastic straln increment, and the integral of
this will provide a measure of the total strain which has occured in the
méterial.

The simplification of plastic strain is accomplished by the Prandtl-Reuss
approximation: it is assumed that piastic strain increments are proportional

11,12

tc the corresponding stress deviators. That 1s, de =8, di, where di is

p
1) J
some scalar irnfinitesimal. To identify an effective plastic strain in diA, we
divide by the effective shear siress 1, and write the Prandtl-Reuss approxima-

tion as
-
de;J 331JdW/ (lUt) ’ (3.4)

where dy ls the effrective plastic straln increment. With the Prandtl-Reuss
approximation, there is no volume change due to plastic straln, {.e. d 1an -
dci’1 = 0, becaLse 311 = 0. This property is in accord with the experimental
observation that plastic strain is volume ~onserving.

Another property of the effective plastic straln results from the physi-
cal nature of the process, namely thuot plastic straln iIs a stress-relaxling
proocess., For any {ncremental procesa which occurs at constant total con-
figuration, {.e, dc

= 0, the set of »lastlc increments dc must be such as

p
1 4
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to reduce the magnitude of each and every s With the Prandtl-Reuss ap-

13°
proximation, this will be t..e case if and only if d¢ > 0. The simplest way

to show that dy > C 1is to calculate the Incremental plastic work done on a

mass element. This 1is given by p dwp =T defJ. Thus, the plastic work is

J

work done by the stresses against the plastic strains (there 1s no restriction

on the total de1J here). With TiJ replaced by 51J - PGIJ' and with the
Prandtl~Reuss approximation, the plastic work is
P . . - P .
p dW (3/41) (s1J PGIJ)JIde . (3.5)

From this it {s seen that the mean compresas!ve stress does no work {n plastic
strain, because Sy "= 0. With theo definition of 1, equation (3.1), the plas-
tic work becomes pdwp = 2tdy. Now in any mass element, plastic straln cannot
proceed Iin such a way as to do work on the surroundings. Therefore. ' we must
have dwp > 0, and since 1 > 0, {t follows that dy must be greater or equal to
¢ero. This condition is not to be regarded as a constraint, because it
should be automatically satisfied in any correct calculation. As a result of
dy > O for any mass eleme-~t, the integrated plastic strain ¢ 1s a nondecreas-
{ng function of time. As an infrrmative exercise, one can prove, for a
process at constant total configuration, with the Pradtl-Reuss approximation
and with the approximatior of small anlsotropy, that the magnitude of every
31J decreases If and only if dy > 0.

With the Prandtl-Reuss approximation, the consctitutive behavior of a

solld 1s almost completely specified. It remalns to specify the behavior of
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the effective shear stress 1. This alone is an extremely difficult undertak-
ing, because of the complications of plastic flow behavior in real solids. We
will merely try to list the varjiables which control the behavior of 1, and
that for an lsotroplc solid only. The von Mises constant K is generalized to
a flow surface, l.e. 1t still equals K, but K is no longer constant. K should
depend on the thermoelastic state, which for an isotropic solid is specified
by V and S. A depender.ce on pressure 1s implied here. In contrast to von
Mises' original point of view, which neglects the dependence of K of 5. be-

cause P does not drive plastic flow, we may want to apply the theory at

pressures high enough to alter the material properties. Hence the dependence

on pressure ls kept. The effect of work hardening 1s represented by d4 depend-
ence of K on the plastic strain ¢, and also K should depend on the plastic
strainrate |}, which is the Lagrangian time derivative of y, | = aw/at]i .
Hence in the plastic flow regelme, 1.e. when y > 0: 1 = K(y,},V,S). When the
effective shear stress is inside the flow surface, the plastic flow ceases and
the solid is in the elastic regime, with § = 0: 1 < K(y,P,V,S). These two
equations represent a common way of expreasing the plastic constitutive be-
havior of an lsotroplc solld. However, the relations are presumably unique,
which means invertible, and it is logically simpler to think of the! plastic
strainrate as the dependent variable. Thils approach also has better stability
properties for numerical calculatlions. Hence one can write the above two

equations together as the plastic constitutive relation: § = §(<,y,V,S)

3. Constitutive Relation for Heat Transport
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For most problems of thermoelastic-—plastic flow in solids, the propaga-
tion of thermal energy 1s not important. Heat 1s generated locally, by
plastic dissipation, and the important process of heat transport ls heat
conduction. With this approximation, the constitutive equation for heat

transport reduces to Fourier's law of heat conduction:
J - - kT . (3.6)

This Is consistant with an infinite velocity of propagation of heat which then

occurs by diffusion.

Yy, Irreversible Thermodynamics

Consider processes which are sufficiently close to equilibrium so that
the total center-of-mass energy U can be identified as the thermodynamical in-
ﬁernal energy E. Then dE which equals dW + dQ is equal to dU. Writing dW as
the sum of elastic and plastic contributions then puts the energy equation in

the form
dU = dw® + dawP + dQ . (3.7)

The key step in completing the irreversible thermodynamic description is the
1den£jficat10n of the entropy production. Heat transport produces entropy dS'c
» according to the usual relation TdS< = dq. Also, the plastic work is as-
sumed to be totally dissipated, ®o TdSK - dwp. The total is dS'c + dSw , and

the energy equatlion reads
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p dU = Tijdeij + pTdS . (3.8)

With 2tdy for the plastic work dwp. the total entropy increment is given by

p TdS = pdQ + 2tdy . (3.9)

At this point, it is useful to make a list of the complete set of equations

which describe the irreversible-thermodynamic elastic-plastic flow process in

a solid.

Conservation of mass (2.1)

Conservation of linear momentum (2.2)

Conservation of energy (3.8)

Entropy production (3.9)

Stress tensor increments (2.17)
Temperature increment (2.18)

Plastic consitutive

Heat-transport consltutive (3.6)

For most problems, this system can be simplified considerably. Further,

it 1s always posi3ible to eliminate the elastic strains dETJ' in favor of the
total strains de and the plastic strain dy. This is done merely by writing

i)
dci’J - deiJ - defj. and then using ilhe Prandtl-Reuss approximation to replace

defJ with dy. This is a useful step, because the equations of motion deter-

mine the total dEiJ' Let us make a sketch of how the system of equations
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works 1In numerical calculat;on. Suppose that all the field functions are
known in the current state {3,8}. Given a time increment dt, we want to

evaluate the fun~tions at the next state {x + d;,S + dS}. The equations of

W

1] 13°
The plastic constitutive equation gives dy = Jdt. Then the heat transport

motion (conservation of mass and mementum) give the increments de and dr1
equations and the entropy production equation give the total dS. With these
incr xments, the changes in the internal energy, the stresses, and the tempera-
ture can be calculated, and all the functions are then determined in the next
state.

It should be emphasized that the present theory can alsoc be used to ad-
vantage in analyzing e:xperiments, For most experimental conditions, all the
material properties in the theory are reascnably well known, except for the
plastic constitutive behavior. Hence the complete set of equations, together
with a well-designed set of experimental measurements, :1l11 determine the
plastic constitutive behavior of a given solid. This procedure was used in
analyzing ncnsteady shock profiles, to determine the plastic behavior of an
aluminum a’loy, for plastlc stralns up to 5%, and for »lastic strainrates up
to 107s ",

n assaigning the entropy production, it was assumed that the plastic work
ie .otally :.ssipated. Experimental support for ‘his in metals goes back to
the work of Farren and Tay#or,13 and of Taylor and Quir.ney.1u who foun' that
approximateiy 90% of the plastic work is dissipated, for sti'ajins greater than
a few percent. &ubsequent rescarch on the energy stored in cold working was

15

reviewed by Tichener and Bever. iy stored ener,y goes into the def=ct

structure of the solid, moat nu' 1y the dislocation structure, and the energy
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is in fact recoverable. However, this energy is not included in ordinary
t hermoelastic theory, and an explicit accounting of it would require a
redefini_ion of the thermoelastic quantities. For example, the presence of
stored energy will give rise to a negative contribution to the heat capacity,
which is strongly dependent on the heating rate, because of annealing. Hence
the assumption of total plastic dissipation, besides being a good approxima-
tion as rfar as the total plastic work is concerned, also gsimplifies the
complete theory. In the same vein, the remaining thermoelastic coefficlients,
namely the anisotropic Grunelsen parameters and the stress-strain coeffi-
clents, are presumed to be independent of the defect structure introduced by
plastic flow. To the extent of the author's knowledge, this is in accord with
experimental observation. On the other hand, the significant effect of the
atored part of the plastic work, namely work hardening, is contained in the
theory, through the presence of the plastic strain ¢ in the plastic constitu-
tive equation. Finally, an observation c¢an be made regarding experiments
designed to increase our understanding of high-strainrate processes in solids.
If one is studying a process in which the temperature rise due to dissipation
is important, then a measurement of the temporature can be helpful in extract-

ing constitutive behavior from the experiment.

5. Application to Uniaxial Compression in a Unlaxial Solid

The purpouse of this section {s to further 1llustrate the gene¢ral theory.

The example of unlaxlal flow {s chosen because of {its geometrical simplicity,

and also because {t Includes planar wave processes. The restriction to com-

pression is done merely to avoid worrying about the sign of the shear stress:
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it is always positive in compression. The case of rarefaction, or tension,
requires changing a few signs in the equations of the first two sections.
While the general theory of the shock process 13 beyond the scope of this
monograph, the basic equations underlying recent progress in shock theory are
constructed.

In a Cartesian coordinate system, material motion 18 in the x-direction
only. For a glven mass element, the transverse surfaces do nol move. A
subtle point arises immediately. For uniaxial compression, when plastic flow
occurs, atoms actually move in transverse directions. 3But this transverse
motion of atoms does not give rise to a net transport of mass, or a net momen-
tum, so the transverse motion is not seen in the continuum-ncchanic equations
for conservation of mass and momentum. The occurrence of plastic flow is ac-
counted for by the continuum variable y; the boundary conditions on the
materlal motion, in the present case that transverse surfaces do not move, are
instumental in controlling the amount of plastic flow which takes place. The
same observations apply to continuum elastic-plastic flow in other geometries
as well.

For unlaxial flow, the first step is to write down the simplified 1list »of
continuum-mechanic variables. We let x be the laboratoury coordinate , X = xa
be the Lagranglan coordinate, and v = 3x/3t at constant X be the material or
particle velocity. The transformation matrix is Ty = ax/ax]t and equals
pa/p. uyy and a,., aqual one and aij- 0 for { not equal to j. No summation is

implied by repeated indices x,y, or z in the above. The symmetric infinlites-

imal strains are dcxx = d 1lnV , with all other de = 0. The stress tensor

13
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has only two independent components, the normal compressive stress o, and the

sheur stress 1, where

0= - T
xX¥ '

(0 - 27) = -Tyy -1, ' | (3.10)

and TiJ = 0 for 1 not equal to J. The components o and t are both positive in
compression. The 1 here is the effective shear stress defined earlier for
plastic flow. Also note there is no rotation in the case of uniaxial flow.
As a consequence, the elastic and plastic decompostion of aiJ mentioned ear-
lier can be done unambiguously in thls case, i.e. the u°1J and afj

The Lagrangian equation (2.1) for conservation of mass reduces tc

commute.

2
(pg70%) ap/at]x + av/ax]t =0 . (3.11)
Conservation of linear momentum in Lagrangian form becomes
Py Bv/at]x + ao/ax]t -0 . (3.12)

To proceed to the thermoelastic equations, we need to find expressiony
for the elastic and plastic components of strain., We will make repeated use

of the symmetry in y and z. The stress deviators follow from (3.10). 3 x is

-4/3 ¢ and Byy = 2/3 t. The Prandtl-Reuss approximation gives dch = - dy and

dcsy = 1/2 d¢ . Then solving the total strain increments for the eolastic
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parts gives deix = d 1nV + dy and de;y = - 1/2 dy. Hence in uniaxial compres-
sion with plastic flow, there are only two independent straln measures, which

we will take to be d 1nV and dy. The energy equation now reduces to

pdU = - g d lnV ~ 2 1 dy + pTdS , (3.13)
and the entropy production is

pTdS = - a.J/ax]t dt + 2tdy . (3.14)
The heat current J 1s in the x-direction. The quantity of heat Q has been
eliminated in favor of J, since this generally simplifies computations. A

tricky point should be noted and remembered: elastic strain and plastic strain

are not separately apparent ln our equatlons, because they have been coupled

through the boundary condition. In (3.13), for example, the first two terms

on the right, involving both dlnV and dy, are just the elastic work TIJdE?J'

An isotropic solld under blaxial elastic strain nas tetragonal symmetry.

[a

The adiabatioc stresa-astrain coefficlents Sag have the following symmetry:



by

1 12 12

2l 22 23

21 23 22
Buu 0 0
0 N B66 0
0 0 566

The coefficients Buu and B66 do not enter the equations for the stresses and

e
N

the anisotropic Gruneisen parameters: YIJ - YB' The tetragonal symmetry is

temperatue, because de =0 for 1 w J. Voigt notation will also be used for

With these sym-

1 2"

metries, the earlier equations for the stresses and the temperature are

accounted for by writing Yxx = Y, and Yyy and Yzz equal Y
evaluated to glve

do = pY,TdS - B,,d 1nV - (B

1 " 1 B1z)dw ' (3.15)

dv = 1/2 p(y, - Y2)TdS - 1/2 (B,, ~ B21)d 1nV

1 "

- 172 (B11 + 1/2322 + 1/2323 - B, - 521)dw . (3.16)
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dT = - Y1T d 1nV - (71 - YZ)wa + TdS/Cn . (3.17)

We have now written the set of equations for uniaxial flow. The energy
equation is uncoupled from the rest, and can be discarded. Further, whenever
the transport of heat can be neglected, then pTdS = 2tdy, and dS can be
eliminated from the set of equations. It was this latter set of equations,
with J = 0, which was used to extract plastic constitutive data from weak-
shock profiles for an aluminum alloy.‘sFollowing that, it was possible to
calculate equation-of-state data from the shock measurements, explicitly ac-
counting for the nonsteady nature of the shock prorilea.17This procedure gives
more accurate equation-of-state information than does the customary method of
using Hugonlot jump oconditions for the shock analysis, since the Jump condi-
tions hold only for steady waves.

We mention an interesting aspect of the weak-shock work. In such shocks
the strains, elastic or plastic or total, are amall. They were less than 5%
in the work cited. This allowed the equations (3.15), (3.16), and (3.17) for
do, dt, and dT to be expanded in the strain. Both elastic and plastic strains
are of roughly the same magnitude In weak shooks and were considered to be
Joint expansion parameters in the expansion. Terms up to the second order were
kept. This proved to be enough terma for the weak shocks of interent. The
BiJkl were thus expressed in terms of second and third order elastic con-
stants, both of which had been experimentally measured for the 6061T6 Aluminum
material investi{gated. Heat oconduction was neglected which i{is a good ap-

proximation for weak shocks. Hence the entropy production was due entirely to

tho plastio work: pTdS = 2t dy. Since both 1 and dy are of first order (both
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depend in a "linear" fashion on the expansion parameters), the entropy is of

second order. Hence in equation (3.15) for do, the term pY, TdS can be replaced

1
by pYaTdS. where Ya is the zeroth order 1initial value, since TdS is already
of second order. Also, the the equation (3.16) for dt, the TdS term disappears
when terms of second order are kept, since the factor Y,- Y, 1s of second

order. Thus the shear stress has only elastic contributions to this order of

approximation.

6. Steady Shock in an Isotropic Solid

The risetime of weak shocks in metals is long, and the nonsteady wave
profile can be observed in detall with VISAR optical interferometric
teohniques.18As the shock strength increases, the risetime decreases, until at
a hundred kbar or so, the risetime can no longer be resolved. However, as far
as it 1s known experimentally, a planar shock always travels at a constant
velocity. Hence for moderately strong shocks, specifically for overdriven
shocks, one expects a shock to propagate as a ateady wave. The steady-wave
condition allows the equations of motion to be integrated, which profoundly
simplifies the complete set of equations for the flow process.

The symmetry is that of unlaxial compression, as described in the last
secton. For any function of g(x,t) or g(X,t), the relations between

Lagrangian and Eulerian derivatives reduce to
ag/ax]t - (p,/0) ag/axJt (3.18)

ag/at]x - ag/at]x 1 v ag/ax]t . (3.19)
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A steady wave 1ls a wave which travels at constant veloctly without changing
its shape. By this we mean that for any material property g(x,t), the graph
of g vs t through the wave profile is the same for all x. Hence g(x,t)
depends on only a single varlable z, the "laboratory steady-wave variable," z
= x - Dt , where D is the wave velocity. The steady wave conditon is g(x,t)
= g(z) . Partial differentiation ylelds ag/ax]t = dg/dz and ag/at]x = - D
dg/dz . With (3.18) and (3.19) above, the Lagranglan derivatives are found

to be
ag/ax]t = (p /p) dg/dz (3.20)
g - ag/at]x = (v -~ D) dg/dz . : (3.21)

As an exercise, one can prove, using conservation of mass, that the steady-
wave condition g(x,t) = g(z) implies, and is implied by, the condition g(X,t)
= g(2), where Z = X - Dt is the Lagranglan steady-wave variable,

The stata ahead of the shock is assumed to be a thermodynamic equilibrium
state, characterized by zero particle velocity v, zero normal stress g, and
zero heat current J. The state behind the shock ls the Hugoniot state,
denoted by subscript H, and {t {s also assumed to be a thermodynamic
equilibrium state so that JH = 0 . In the steady wave analysis, it 1s oon-
venient to use the compression variable ¢ defined by ¢ = 1 - V/Va . In terms

of ¢, the equation for consarvation of mass |{s

ac/at]x + av/ay]t -0 . (3.22)
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With (3.20) and (3.21) above, and noting that €, " 0, this integrates to
e = v/D . In the save way, the equation (3.11) for conservation of linear
momentum integrates to o = paDv . The curve of normal stress vs compression
through the shock process is called the Rayleigh line, and from the last two
equations this curve is a straight line:

g = paDee . (3.23)

This equation holds for intermedlate points in the wave as well as for the
final condition of the wave. It is important to recognize that t'.. Rayleigh
line is a straight line as a result of conservation of mass, conservation of
momentum, and the steady-wave condition; no more and no less.

The energy and entropv equations, (3.13) and (3.14), for uniaxial flow
are already in total differential form, except for the heat current term.
With the relations z = x - Dt, Bg/ax]t = dg/dz, and ¢ = v/D, this term can be

written, for a -teady wave,

—aJ/ax]t dt = pdJ/(p D) (3.24)
Then the energy and entropy equations become

au = oVadc + dJ/(paD) (3.25)

TdS = dJ/(paD) + 2Vidy . (3.20)



With n replaced by paD2E and with the initial conditions va = g_=J = 0,

the integral of aU is
2 2
U - Ua = 1/2 D7e + J/(paD) . (3.27)

The Hugoniot is the locus of equilibrium states behind shocks of varying
strengths; tpe Hugoniot exists for steady or nonsteady waves. The shock
velocity D serves as a parameter specifying the shock strength. The Hugoniot
Jump condit‘ons are the statements of conservation of mass, momentum, and
energy, across a steady-wave shock. From the preceding integrals of the equa-
tions of moticn, the Hugoniot jump conditions for a given shcok velocity D

are

vy = Dey (3.28)

oy = PDV (3.29)
. ne 2

UH - Ua = 1/2 D EH . (3.30)

It is important to remember that these conditons hold only for a steady wavs.

Since &H = 0, the shear stress Ty is presumably on the (static) yleld

surface. If one sets " 0, as an apprximation, then Oy becomes the pres-
sure PH , and the equations (3.28)-(3.30) become the Hugoniot jump conditions
for a fluid. For a fluid, the steady-wave Hugoniot can be constructed from

the jump conditions together 'ith the equation of state.
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As a result of the steady-wave condition, space- and time-dependence has
been eliminated from the equations of motion. This cannot be done for the
constitut’ve equations, in general, but the dependence can be reduced to the

single variable z. The heat conduction equation becomes

J = - ¢ dT/dz , (3.31)

and the plastic constitutive equation becomes

(v - D) dy/dz = }(1,¥,V,S) . (3.32)

We can now make a list of the complete set of equations, called the Rayleigh-

line equatlions, which govern the steady shock process.

Rayleigh line (3.23)
Entropy production (3.26)
Normal stress (3.15)
Shear stress (3.16)
Temperature (3.17)
Heat-transport constitutive (3.31)
Plastic constitutive (3.32)

In these equations, one can think of ¢ as the independent variable, and
of course V is equivalent to e. The equations listed are seven equations {n
the seven dependent variables, o¢,1,5,T,J,¢, and z. Hence for any given D, the

steady shock process can be calculated from the seven equations. In fact, the
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set of equations can be reduced algebralcally. With the squation for the
Rayleigh line itself, ¢ 1s trivially eliminated from the set. Also, one can
use the energy equation to replace S Sy U, If thils change of variables is
desired. The real space- and time-dependence of the procsss can be calculated
from z(e). For example, a2t a constant x, say x = 0, t(e) = - z(¢)/D, and at
constant t, say t = 0, x(e) = z(¢) .

As a useful exercise, prove that dZ = (p/pa)dz. If z(e) is known, how
can you calculate t(e) at a constant X, and X(e) at a constant t?

Note that there are two rate-dependent processes going on simultaneously
in cthe shock, namely transport of heat, and plastic flow. At any point in the
shock, the time-dependence of the profile must be simultaneously consistent
with both of the dissipative processes. In other words, the shock risetime is
consistent with both processes at once.

‘he above list of Rayleighrline equations was used for a detalled
analysis of the process of overdriven shocks {n solids.19 In doing this, the
plastic constitutive equation was purposefully removed from the set, on the
grounds that It 1s a totally unknown quantity under such shock conditions.
With one equation removed from the set, it is still possible to learn a great
deal about the steady shock process, and to establish several theorems regard-
ing the existence of solutions. For metals, the theory predicts that the
Shock risetime will decrease to around 10-125. and will not decrease further,
as the shock strength 1ncreases.20 Finally note that for shocks stronger than
a few Mbar in metals, irreversible thermodynamics breaks down, and a new

theory has to be constructed.
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LECTURE IV-THE THERMCOYNAMICS OF LUCTILE FRACTURE

We discuss a model for doctile fracture in which the material damage
proceeds through the creation and growth of small, diffusively distributed
volds. This simplified model 1illustrates many of the general features in a
clearer way than a brittle fracture-crack model would. An example of such a
model 1llustrating its complexity was given by Davison and Stevens21. We will
give the genreral thermodynamical framework, with a few specific examples of
the coef~iciconts involved in the framework. To the author's knowledge, no
thoroug’l, detalled treatment of this topic, either for ductile or brittle
fraccure, is avallable. We describe the currently popular approximations and

d21-tions.

1. The Thermodynamical Framework

Ductile fracture of the kind we have in mind proceeds by the nucleation
under tension of small volds in the material which proceed to grow by plastlic
flcw Iin the material surrounding them. Since plastic flow 1s Involved, we
will need the thermodynamical framework for plastic flow already developed and
will generalize it to include volds. It is experimentally observed that a
tension threshold exits within which no appreciable vold growth or nucleation
occurs and beyond which these processes proceed raplidly. The situation
resembles the yield threshold in plastic flow; which {s to be expected since
plastic flow 1ls the basic process in the growth of voids. Little is known
about the microscopic nucleation process, but it probably has things in common

with plastic flow. We note that in shock wave phenonmina, the process of rapld
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ductile or brittle fracture has the name "spall." This has referenc. to the
thin plates of material that are thrown or "spalled" off from the rear surface
of a plate when a shock wave reflects from the rear surface as a tensile wave.
The same general phenomina is going on here as i{n fracture at lower tensiors
and strainrates; only the magnitudes are different. Our thery will encompass
duciile fracture of both kinds.

As before, we consider infinitesimal deformations from an arbitrary,
stressed initial condition. For this reason, rotational frame invariance is
not always explicit in our equations. One can consult References 22-24 in
which non-infintesimal deformations are used, to see how these appear in the
equations.

We will describe ﬁhe volds by the macroscopic internal variable D, which
gives the void volume per uniti volume in the unloaded sltuation. This variable
13 a perfectly good state variable for describing the thermodynamical equi-
librium condition. D is an internal varliable because there 13 no way
externally of controlling it and because the processes which change it are
much slower than the electron-phonon processes. For this reason, in a given
material state, D may well want to change to raise the system's entropy. This
charige 13 described by 'he constitutive relation for D,

The thermodynamic descrintion of ductlile fracture will involve adding D

to the previ-~us set of equations for plaatlc flow. The set of {ndependent

e
13’
upon loading the iniilally unstressed, damaged material. It is important to

variavles now becomes ¢ S, and D. The elastic stra'n i{s thaut whlch occurs

realize that further vold expansion occurs upon elasti{c loading that is not

included in D. This expansion should not be confurad with D and does not make
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the definition of D ambiguous. The thermodynamic equations can be developed in
a fashion strictly analogous tv that used to develop the plastic flow
equations. First, one takes all partials of the specific internal energy U to
obtain:

p dU = 1 + pTdS + fdD (4.1)

3%y
where £ is p3U/9D and is analogous to a force. f shows how much reversible
energy 1s stored per unit increment of D. Thus fdD is work associated with dD
that 1s stored and not dissipated. This equation pertains to equilibrium
states of the materlal and does not explicitly include nonequilibrium
processes or dissipation. We will discuss these aspects later when dS is dis-
cussed.

We proceed to the second helirarchby of the thermodynamical scheme by

taking all possible partials of 11 T, and f, In turn. The result for d= is

3’ 13

dt - pTY ,dS + b, .dD + d (4.2)

e
13 " Byy1%i 3 1

13

where b1J is 3(03U/3E?J)/3D and can be thought of as a "stress-strain' coeffi-
clent for dTIJ and dD. the result for dT is

e
dT = TY“de1J + T dS/cn gdD (4.3)

where g 18 - 32U/asao. and is a "Gruneisen parameter" {or S and D. The result

for df is
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df = (b1 - fé + - pgdS + BdD (4.4)

e
] 1] 11J/(1 - D))de1

J
where B is a "stress-strain" coefficient for for df and dD. As before, we
break the hilerarchy here and formally assume that all coefficlents in the
equations (4.2) to (4.4) above are known, either from experiment or theoreti-
cal calculation.

In actual fact, not much at all is known about the coefficients as-
sociated with dD, viz. biJ' B, f and g. Here i1s an area for future research.
It may prove that g 1s small because the thermal effects associated with dD

25,22

are small. In the spali treatments that the author is aware of, all terms

in dD {n the equations for dT and dt are left out and the equation for df is

1
left out entirely.

We now consider nonequilibrium processes in which volds are being grown
and created. Unti{l the spall tenslon threshold is exceeded, D remains fixed
and no nonequilibrium procceses involving the growth or creation of volids
vccur. When growth and creation are occuring, neighboring equilibrium states
in the process have entropy changes of dissipation assoclated wlith tho growth
and creation, that are i{n addition to the entropy changes of plastic flow and
heat flow. The extra entropy change 1s due to the dissipated vold work (-5 -
f)dD . We write

pdS = dQ/T + = + FdD , (4.%)

p
ljdcij

where FdD 18 tho work disaipated by void growth. F muat equal -P -f, which

can be sean by considering the total work (- P)dD, done by the void expansion.
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This work equals that dissipated, FdD, and that which goes reversably into in-
;ernal energy, fdD. The result for F follows immediately. Our information
about f comes from equation (4.4) for df, whose coefficients ws optimistically
considered as known.

A common practice in actual calculations is to consider all the work of
dD to be dissipated, so that F equals - P and £ is zero. A microscoplec void
groﬁth model of Johnson25 has this property. The void growth i3 assumed to
involve no volume dilation, and all motion is due to plastic flow. Although
the tension increases during voild growth, no elastic energy ls stored because
no elastic strains occur. In this case all the vold work 1s dissipated be-
cause the plastic flow of void growth Is all dissipated. However, a
thermodynamical inconsistency arises for stressed materials from this assump-
tion and the knowledge that void growth changes the elastic modull and the
stress-strain coefficients. (A material full of holes is softer and
stretchier, and so the bulk and shear moduli become smaller.) Imagine loading
up a sample elast.ically at a given D. Then load up a sample similar but for a
different D. Since the elastic constants are different between the two cases,
the resulant total eneorgies muut differ. This shows that f must be non-zero
for a streased solid, belng more so the higher the straas.

As an aai{de, we note that this problem does not arise Iin our model for
the plastio flow, sino3 we aasume Lhat the thermodynamical state i3 completuly
independent of the plastioc strain. The plastic straln enters in conly ao a
source of heat. This is not atrictly true in practice, as dimsoussed earlier,
slnoe a small part of the plastic work ls revernibly stored. As a consequenco,

the stress-strain {norement rolationship should depend somewhat on plastic
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work. It does indeed do so in the plastic flow condition when the work hard-
ening associated with the stored plastic work allows a amall increment in both
the elastic strain and the stress during plastic flow. With no work hardening,
no such incremonts can occur no matter how large the plastic strain becomes.
It is in this sense that the stress-strain increment relationship during plas-

tic flow is independent of the plastic strain.

We can write the total strain equation as

- de® P
de1J dc1J + d81J + dD 61J/3 , (4.6)

since the different kinds of strains are infintesimally additive. We will
sketch at this point, how the above equations can be integrated to obtain the

complete thermudynamical history of the mate-~ial Yuring a process. (We assume

as known all coeffiecints in the equations for dr , dT, and df.) At any one

13

point one has knowledge of all quantites and one wants to find them for a
small step forward in time. First, the equations of motiun, i.e. those for
conservation of mass and momentum, will tell one what the total stralns and
rotational strains are. Then the plaatio and void growth/creation constltu-

tive equations will tell one what de and dD are. From these and equatlon

p
1)
(4.6) for de,,, one can calculate dce

14 1’
the dissipated vold work and add {t to the dissipated plastic wourk and the

From f .-5. and dD one can calculate

entropy {norease due to heat flow and get dS, the total entropy increment. At

this point, one kiows all the incroments of the indepondent variables, and can



58

use them in the thermodynamical equations (4.1)-(4.4), to get the increments

of all other thermodynamical quantities.

2. Specific Examples

One needs a constitutive relation for the time rate of vold
growth/creation, or for dD/dt. such a relation serves a role analogoua to
that for plastic flow. Such constitutive relations are not understood as well
as those for plastic flow. The best ones avallable seem to be the ones
derived experimentally by the group at Stanford Research Institute.26
Experiments were done in which materials were loaded to various levels of
stress for varlous times and then unloaded and sectioned to determine the den-
sity and distribution of voids. OQur theory only recognizes the density and so

we will be concerned only with thelr results expresed in terms of this

quantity. They summarized their experiments with the following equations

R =n(g) = CN{exp[(o - ON)/OIJ -1} , (4.7)

00 L3 ) v (4.8)

where N {s the time rate of creation of new voids of volume vo per unit volume

of s0lid matter. °N is a tension threshold beluw which no new volds grow,

while CN and o, are material parameters. N is to be taken as 0 if the

threshold is not exceeded. Equation (4.8) gives the growth rate of volume v(i)

of vold {. A(g) 1s given by CG(o - OG)/OI' where C_ 1s a material parameter

G
and o. is a tenslon threshold for vold growth, below which V(l)

.1
G is zero n
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the above ¢ means (1/3)111. which is the "tension". With v defined to be the
average vold size ziv(i)/N. where the sum 1s over all voids surrounded by a
unit volume of solid material, we can make the identification D = Nv/(1 + Nv).
Finally, realizing that the total void volume per unit solid material changes
in time by both the growth of already present volids, 210(1), and by the crea-

tion of new ones, Nvo. one can with a bit of algrebra arrive at a consittutive

relation for D:
D = [hvo + 3807(1-D)} (1 - D)2 . (4.9)

Finally we note that for void-damaged material, all the thermodynamic
coefficients in the conventional equations for plastic flow seen earlier have
a dependence on D. This dependence has not been {nvestigated for the general
Stressed state. Some approximations exist for the case of an un-
stressed, isotropic material. We give the following estimates for the bulk
modulus B and the shear modulus u due to Davisson et 3122 based on the work

of Budiansky2( :

B = B, [1 - (372)(1 - vy) D/ (1 - 2v) 1, (4.10)
TS [t - (1571 - v,) D/ (7 - 5v0>] . (4.11)

where B_, u_, and v_ = (1/2)[(35o - 2u )/(3B ¢+ uo)] are the values of the

modull for undamaged materials. These formulas are approxi{mationa for small
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damage. Formulas for the thermal conductivity, the thermal expansion coeffi-
oient B, the isotroplic Gruneisen parameter Y and the heat capacity are also
given by Budiansky. The thermal expansion coefficient for the damaged material
is the same as for undamaged material. For the damaged material, the heat
capacity per unit mass is saild to be very close to that of the undamaged
material. The Gruneisen parameter for the damaged material can be derived trom
B. B8, and Cv of the damaged material from the standard thermodynamic identity
Y = BB/CV. The formulas are only good for D less than .5 or so. However on
page 30, Reference 28 notes that voided material becomes unstable in its mo-
tion for D much bigger than this, so perhaps the formulas will serve for most

practical cases,
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