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CONFIGURATION SPACE METHODS IN THE
THREE-NUCLEON PROBLEM

J. L. Friar

Theoretical Divirion
Los Alamos National Laboratory
Los Alamos, NM 87545 USA

ABSTRACT

The assumptions underlying the formulation and solution of the
Schrodinger equation for three nucleons in configuration space are
reviewed. Those qualitative aspects of the two-nucleon problem which
play an important role in the trinucleon are discussed. The
geometrical aspects of the problem are developed, and the importance of
the angular momentum barrier is demonstrated. The Faddeev-Noyes
formulation of the Schrodinger equation is motivated, and the boundary
conditions for various three-body problems is yeviewed. The method of
splines is shown to provide a particularly useful numerical modelling
technique for solving the Faddeev-Noyes equatiun. The properties of
explicit trinucleon solutions for various two-body force models are
discussed, and the evidence for three-body forces is reviewed. The
status of calculations of trinucleon observables is discussed, and

conclusions are presented.

1. INTRODUCTION

The four bound few-nucleon systems (2H, 3H, %He, %Hc) have played
a role in nuclear physics far out of proportion to their abundance on
the earth, and their study constitutes one of the oldest and most
important subfields of that discipline. In one of the first review

articles treating nuclear physics!), a separate section was reserved



for the few-nucleon problem. Since that time many such articles have
been written, and many symposia like the current one have been held.

The specizl importance of these four nuclei stems from the great
difficulty in solving the many-body problem. Special techniques exist
for solving that problem when the number of particles becomes huge, a
limit of no particular relevance to nuclear physics. On the other hand
we can also solve "exactly" (in the numerical sense) well-posed model
problems with four or fewer nucleons. Our lack of ability to construct
from first principles a tractable Hamiltonian for the interaction of a
single pair of nucleons which describes all the phenomena associated
with this system means that we routinely use semiphenomenological
Hamiltonians, which incorporate physical constraints and some para-
meters which are fitted to two-nucleon experimental data. Thus, the
three- aud four-nucleon systems constitute a special testing ground for
newv ideas and concepts in nuclear physics, simply because we cen solve
for their wave functions and because their properties have aot been
incorporated into our Hamiltonian models.

Although much of the modern work in our field is formulated in
momentum space, most of the older work and the work described in this
lecture were formulated in configuration space (CS). Many techniques
have been used to calculate CS wave functions, beginning with the
august Rayleigh-Ritz variational principle!). Most methods expand the
wavefunction into well-defined components and solve for the amounts of
these components. The modern variational calculations?), the hyper-
spherical harmonic methoda), and our own work fall%) into this
cstegory. The powerful Green's function Monte Carlo methcd®) is the
one exception.

Why do we and others work in configuration space? In our case the
answer 18 simple: our physical intuition and insight are greatest
there. There are, however, distinct advantages to momentum space for
certain problems, such as relativistic treatments of few-nucleon
rystems. In what follows we will emphasize almost exclusively the bound
few-nucleon systems in configuration space, and the approach of the Los
Alamos-Iowa collaboration to solving the Schrodinger equation fcr these

svitems.



2. TWO-NUCLEON PROBLEM

No discussion of the three-nucleon problem is complete without a
schematic discussion of the two-nucleon Hamiltonian. Many of the de-
tailed quantitative features are irrelevant, while a few seemipgly
unimportant qualitative features determine most of the trinucleon
properties.

The key underlying assumption is that few-nucleon dypnamics is non-
relativistic. This important simplification relies on the fact that
typical values of mean internal nuclear momenta, ﬁ, are 100-200 MeV/c,
and thus (v/c)2 = (g/Mc)? for a nucleon of mass M=939 MeV is one-few
percent. Since (v/c)? gives the scale of relativistic corrections,
this estimate woulad indicate that a nucleus is largely nonrelativistic.
The argument hides the f.ct that short-range potentials can be very
strong and induce local momenta which are correspondingly large; the
estimate above should only be interpreted as "in the mean". Moreover,
our potential models "hide" the effects of relativity in the phenom-
enological parts.

There are three salient features >f the two-nucleon potential
which drastically, and unfavorably, affect our ability to solve the

few-nucleon Schrodinger equation. These are:

(1) forces between like nucleons (e.g., pp or nn) are weaker
than the forces between unlike nucleons (np);

(2) the two-nucleon spin-triplet potential contains a strong
tensor force which couples neighboring orbital waves;

(3) the short-range force exhibits very strong repulsion,
which makes the probability of nucleon-nucleon overlap
at short distances very smell.

Without these complications, the few-nucleon Schrodinger equation is
nearly as easy to snlve as the corresponding atomic physics problem (lie
atom). Feature (1) induces important spin and isospin correlations in
the wave function. I1f the forces betwzen 21l particles were identical,
only ¢ single (disferent) scalar function of the particle separations
would describe each of the few-nucleon systems. With a tensor force
present, the deuteron wave functior has a tensor (d-wave) component, as

do the triton and a-particle, which greatly complicates solving the



Schrodinger equation. A strong short-range repulsion produces 'holes"
in the wave function. These holes must be accurately generated in any
solution, which is thus rendered considerably more difficult.

In addition to these qualitative aspects of the nucleon-nucleon
force, we note also that the odd-parity nuclecn-nucleon partial waves
(e.g., 1Po, 3P0,1,2) are relatively weak, and we will see later that
they play a very small role in the triton.

3. BASIC PRINCIPLES AND THE GEOMETRY OF THE TRITON GROUND STATE

A few basic principles motivate the procedures used to solve

numerically verious three-body problems. These are:

(1) Nuclei (including the triton) are weakly bound, and
avevage momenta are consequently small compared to the
nucleon mass;

(2) In the triton the average momentum is comparable to the
inverse of the radius (R) and consequently the angular
momentum barrier suppresses higher partial waves of the
nucleou-nucleon force;

(3) Unlike the case of heavy nuclei, the Pauli principle
doesn't play a particularly large role;

(4) The details of the force are relatively unimportant in
the overall binding, slthough they can severely com-
plicate achieving a solution.

As we previously discussed, a nonrelativistic treatment of the triton
should suffice, as indicated by (1). One estimate of the average
momentum is 5 = Jﬁf; £ Hck, where Eb = 8.5 MeV is the binding energy,

and consequently, 5 ® 90 MeV/c. A typical trinucleon size is 2 . ', soO

)
that pR ~ 1. Because Bessel functions of argument z and order £ peak
for z > £, it is clear that the angular momentum barrier will greatly
suppress orbital angular momenta greater than 2 in the triton.

The geomectry of the triton illustrates the greater difficalty in
solving the Schrodinger equation for the triton compared to the
deuteron. The deuteron is described by a single vector ; separating the
nuclevus, and only its magnitude is relevant for a description of the
two scalar functions, u(r) and w(r), which determine the s-wave and
d-wave parts of the wave function. Figure 1 shows the triton, where we
have arbitrarily numbered the nucleons. Three points define a plau«

and thus only two vectors, X, and ;l’ descril~ the system. Becau-«

1



the orien'ation of the plar: -, arbitrary, only three independent
interparticle coordinates (xl, vy 61) are required to specify the wave
function. Our choice of vectnrs is arbitrary, however, since any set
of the Jacobi coordinates formed from the nucleon coordinates ;i (i, 3,

k cyclic) is adequate:

> >

;i = rJ.-rk s (1)
»__1_-)»_-»
y; = 2(rj+rk) r, . (2)

Clearly the sums of the ;i or ;i vanish and they are linearly
dependent. Traditionally, the set (;1.;1) is relabelled as (;,;),
where X and ; are denoted the "interacting pair" and "spectator"

coordinates, respectively.

Figure 1. Jacobi coordinates (xl'yl’el) for trinucleon problem.

Group theoretical methods are used to classify in a well-defined
ways) the wave functiou components which can occur for the positive
parity, spin-% trinucleons. Most of the important qualitative aspects
of this scheme are rather obvinus, however. Like the deuteron, the

principal triton wave function component is s-wave jin character.



However, because there are several cooidinates describing the problem,
this can be further broken down into three distinct categories. (1)
the S-state, completely symmetric under the interchange of spatial
coordinates; (2) the S -state, which has mixed spatial symmetry
(neitber symmetric nor antisymmetric); (3) the S”“-state which has
spatial antisymmetry. The latter state has negligible size because the
antisymmetry requires very large momentum components, which are lacking
in the ground state, and because they are generated by the weak odd-
parity nuclear forces. The S’'-state vanishes when the np, nn, and pp
forces are identical, and for this reason can be view.d as a space-
isospin-(spin) correlation in the ground state. Its physical
importance will be discussed later. The S-wave components are clearly
spin doublet, since the trinucleons have spin %; they are also iso-
doublets if we ignore the Coulomb force in 3He. There are also three
independent spin-quartet D-state components, analogous to the deuteron
case. Unlike the deuteron case, it is possible to construct a positive
parity vector (X X y), and this leads to three quartet and one doublet
P-state components, which are very small. Adding everything together,
there are 10 S-, P-, and D-state components, specified by 16 scalar
functions.

The Schrodinger ec ation for the deuteron involves 2 coupied
equations in one variable (r). The Schrédinger equatinn for the tritor
is a get of 16 coupled partial differential equations in 3 independent
variables. This large number of equations makes the problem roughly
equivaient to a single 4-variahle problem, which would require heroic
efforts, even for modern supercomputers. The way to circumvent this
scemingly intractable situation is to use our knowledge of the physics
of the problem: the angular momentum barrier suppresses many of the
problem's complexities.

Figure 2 shows two of the energy scales of the triton. The upper
graph illustrates the spin-and isospin-independent MT-V nucleon-nucleon
potential model’), plntted versus nucleon-nucleon separation, x, and
for comparison, the angular monienti. part of the kinetic energy (for
2=2): HK22(2+1)/Mx2. We see that the latter dwarfs the potential

energy. Clearly, for highcr values of £ this mismatch is even greater.
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Figure 2. Comparison of centrifugal kinetic energy with the

MT-V potential (top) and partial-wave projected triton
correlation functions for that potential (bottom).
The implications for the binding of the triton are immediate:
potential energy contributions for the higher nucleon-nucleon partial
waves rapidly decrease as L increases. We can easily see this by
assuming a spin- ard isospin-independent potential V23(x) between

nucleons 2 and 3 and expanding this in a partial-wave series in both X
and y:

V23(x) = 5 |u>V23(x)<a| , (3)

vhere

le> = [Y,(OBY ()], (4)



and the "'channel'-label a is simply £ in this case. This series is
nuch simpler than the general case, because we have assumed the same
potential in every partial wave. Taking the expectation value of the

potential between all three pairs of nucleons gives

[« -}
- = 2 =
<W> = 3V, (x)> = 3§ _(l)'dx X“Cy (¥)V, 4 (%) _i N 2SI (5)

where the partial-wave projected correlation function is

Ci(x) = <a|¥>(22+1) . (6)

Only the completely space-symmetric S-state occurs in the wave function
for this problem, and only even values of £ are nonvanishing because of
this. The lower plot in fig. 2 shows the first four Cz's, which
rapidly decrease in size with increasing £. The dominant Co(x) is
small at the origin because of the repulsion in V(x), while the
remaining Cl(x)'s behave as ng for small x. This means that only
increasingly larger values of x contribute to the integrand in eqn.
(5), which are suppressed by the finite range of the force. The values
of <V£> (for £ =0, 2, ..., 10) for this simple potential model are
given by [-36.6, -.163, -.019, -.002, -.0004, -.00008] MeV,
dramatically illustrating the rapid convergence as £ increases.

Clearly it should be sufficient to restrict £ to 4 or less. We will see
later that this convergence rate also applies to more realistic
potential models.

By expanding the potential in a series and then truncating the
series after a reasonable number cf terms, we have in effect reduced
the problem to solving a set of coupled equations (for the partial
waves) in two variables x and y, which makes the problem tractable. A
good estimate of the time scale for numerically solving the deuteron
problem, starting from scratch, is one or two months. The scale for
the triton bound state is perhaps two years! The problem is still very
difficult, and requires a substantial -commitment of personal and com-

puter time.



4. SCHRODINGER AND FADDEEV-NOYES EQUATIONS

We wish to solve a partial differential equation, the Schrodinger
equation, for the triton bound state. It is sometimes forgotten by
those who don't perform numerical calculations that such solutions
require the imposition of well-defined boundary conditions. Simple
bound~state prcblems only require the imposition of finiteness require-
ments for the wave function at the origin and at asymptotically large
distances, where the wave function vanishes exponentially.

The scattering problem is more complex, and finiteness alone is
not enough. Years ago, Foldy and Tobocman®) showed that the three-budy
Lippmann-Schwinger (LS) equation for scattering has no unique solu-
tions, even when outgoing scattered waves are specified in the usual
way. Even the two-body Lippmann-Schwinger equation has no unique solu-
tion, without further subsidiary conditions, if the problem is posed in
a particular way! The problem we pose is: what is the outgoing-wave
solution for two nucleons with a total energy of 20 MeV? This is a
"trick" question, because we have deliberately not specified the
center-of-mass (CM) motion of the two nucleons. As rtated, an arbit-
rary linear combination of wave functions for a deuteron with 22.2 MeV
CM energy, two nucleons in & 150 threshold state with 20 MeV CM energy,
and two nucleon: with an internal energy of 10 MeV and 10 MeV CM energy
solves the probler  Trivially, we can avoid the problem by working in
the CM frame, which fixes the relative two-rucleon energy. Unfortu-
nately, even in the CM frame of the three-nucleon problem this does not
suffice, since the recoil of a third nucleon can compensate for the CM
motion of the remaining pair in any state of internal motion commen-
surate with conservatinn of energy. Because of this, complicated phe-
nomena are possible, which makes the ad hoc impositicn of boundary con-
ditions a dubious exercise. An incoming plane wave tor a proton-
deuteron system (pd) can scatter directly to a pd final state, or break
up into a ppn finsl state, or the initial proton can pick up the neu-
tron in the deuteron and that deuteron cau escape. These many physical
chaunels are not orthogonal and specifying outgoing waves is not

enough.
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Of particular importance is rearrangement, such as the neutron
pickup example described above. We write the Schrodinger equation in

the form
[E-(T+V12+v13+V23)]w =0 , (7)

where T, E, and vij are the kinetic energy, total energy, and potential

\Y
3 and 13 can

support a deuteron bound state, an initial plane-wave state of nucleon

energy for the pair (ij), respectively. If bcth V2

1 and bound nucleons 2 and } [denoted (1;23)] can asymptotically become
nucleon 2 plus a bound (13) pair [(2;13)]; the converse is alsu true
and both wave functions contain both physical processes. The difficulty
is that while the LS equation specifies that the (1;23) configuration
has an incoming jlane wa're and outgoing spherical wave, it does not
rule out incoming plane waves for (2;13). In order to achieve a unique
solution the LS equation must be supplemented by additional homogeneous
equations, which is a cumbersome procedure.9’19)

Faddeev!l) provided the means to circumvent this dilemma.
Although Faddeev's procedure was developed in momentum space, Noyes!2)
later cast that work into a physically equivalent configuration space

form. We arbitrarily write

Y(E,Y) = Wk, Y G, T, H(%,7 ) = Wt t, (8)

where the variables (;i’;i) are the Jacobi coordinates defined ea.lier,
and the function ¥ in eqn. 8 is the same for all three terms. The

original Schrodinger equation becomes three separate equations:

(E-T-V,, )0 = V,,(d,%0,) (9a)
(E-T-V) 00, = V (b 0) (9b)
(E=T=V 0, = V(0 40,) . (9¢)

Clearly, eqns. (9b) and (9c) are simply permuta:ions of (9a), and we
need solve only (9a). Since that equation involves only V23( and not
V13) the problem of the rearrangement reaction has disappeared for wl.

It is contained in wz. By this clever mechanism, Faddeev showed that
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we only need to specify explicitly the much simpler boundary conditions
for ¢1, rather than for VY.

This is seen most clearly in fig. 3, where the regions of interest
for the variables x and y are illustrated. The configuration (1;23)

corresponds to an asymptotic state with y»®, and x<x the physical

dl
extent of the bound pair (23), and is denoted the "deuteroa strip".

deuferon
sirip

Sl

A"

Rg
x= pcos 8’
y'J'ziplln e’
Figure 3. Configuration space regions for Nd scattering problem.
Rearrangement corresponds to small X, = l;l-;3l (i.e., a bound state in

(13)) and this occurs when O = 0, and U% = x/2 or 6" = 30° in terms of

the polar coordinates

X = pcos®” (10a)
y = lgpsine' . (10b)

In complete analogy with the two-body problem, we can impose boundary

conditions most easily for the reduced wavefunction



¢1 = xwl' (11)

In practice the region of the (x,y)-plane to the right of the

deuteron strip is smooth for ¢1 and asymptotically behaves as

1Kp
o) ~ S5t (12)
p

where f is an unkncwn angular function, while on the deuteron strip it
behaves as

o) ~ e 0, (13)

where ¢d(;) is the reduced deuteron wave function with energy Ed =
-KE/H, k is the irccident nucleon wave pumber, and K is [3k2/4-Ké]¥.
Similar boundary conditions apply to the triton bound state case with
k*ikd and K*iK. One enforces ¢1=0 along x=0 and y=0, and ¢1~¢?+¢g
along the arc!?) P=Ppax"

These physical considerations can be seen graphically in fig. 4
and fig. 5 for 6=0, which depict wave functions for the scattering of
zevo energy (k=0) reutrons and deuterons in the quartet spin state.

The smouoth function *1 in fig. 4 has structure only along the deuteron
strip, while fig. 5 depicts vy, a component of the total wave

function ¥, which has structure along the deuteron strip and a ridge
with "wings" along 6 '=30°, which is the outgoing wave in the rearrange-
ment channel.

The bound-state problem clearly has simpler boundary
conditions?4): we need only make the wave function vanish for some
large PP ax" Nevertheless, the Faddeev motivations for the scattering
problem work equally well for the bound state, and we anticipate the
Faddeev wavefunction ¢1 will be smoother and easier to model
numerically than ¥. Indeed, the Illinois~Argonne group?) has recently
found that incorporating the difference bYetween the bound state

analogues of eqns. (12) and (13) in their variational calculations



Figure 4.

Figure 5.

_13-

Faddeev wavefunction for quartet nd scattering, ¢1° plotted
versus X and y.

Schrodinger wavefunction component, v., for 6=u° generated
from wl in fig. 4, plotted versus x aﬂd y.
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(spin-triplet versus spin-singlet behavior along the deuteron strip) is

quantitatively important.

5. NUMERICAL MODELLING

Having made the decision to partial-wave project the nucleon-
nucleon force, it ‘s necessary to determine the ccnsequence of this for
the Faddeev-Noyes equation. For simplicity we assume a force which is
independent of spin and isospin and acts only in the s-wave. In terms
of our previous discussion, such a force looks like |0>V(x)<0|, where
the projector [0> refers to s-waves. This produces

2%, 392
43y

7 = Ux) + Kz] o(x,y) = U(x)I}dp [;52-] ¢(x2.y2),

ax? 2Y2 (14)

where U(x) = MV(x)/K2, p=cos6, and ¢(x,y) = %{:dp¢1(x,y,p). Note that
¢ does not depend on p; it is completely independent of 6. Moreover,
for the s-wave force chosen, all higher partial waves of ¢1 must
vanish, because V vanishes for those waves, and therefore ¥(x,y,p) =
o(x,y) + ¢(x2,y2) + ¢(x3,y3). This is an extremely important result,
since all of the angular () dependence in ¥ comes from the permuted
terms, ¢(x2,y2) and ¢(a3,y3), anc the computation of a 3-variable
function has been reduced to one of only two variables. When many
partial waves are computed, one has coupled equations in the two
variables x and y. Nevertheless, the angular momentum barrier makes
the required number tractable, and the calculation possible.

We still must make a choice ¢. numerical methods in order to solve
the equations. A technique which l's proven exceprionally powerful in
modern engineering applications is the finite element method, and its
variant, the method of splines “ . Figure 6 depicts at the top a
function which we wish to sppriu.imate for computational purposes,
between the points X, and X4 and for demonstration purposes we choose
to do so by dividing the distance into 4 equally spaced regions or
intervals. The finite element method consists of approximating the
function in each interval by a (different) polynomial of order N and

forcing the function and its first m derivatives to be continuous at
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Figure 6. The function at the top is approximated by the sum of 5
spline functions in the middle. The use of such splines
with a second-order differential equation leads to the
banded matrix shown at the bottom.

the '"break points'" between intervals. For definiteness we will choose

cubic spliues (N=3) involving 4 purameters, and force the function and

its first derivative to be continuous. There are a total of 1§ para-

meters, and two imposed conditions at each of 3 breakpoints, leaving 10

free parameters. The function is chosen to vanish at the endpoints,

leaving 8 pa.ameters which are chosen so that at two "collocation"
points (indicated by x's) in each of the 4 intervals the function
agrees exactly with the function we are modelling. If we ere solving
an equation for this function, we force the equatioa to be exactly
satisfied at those points.

An alternative scheme is to use splines, which eliminates much of
the labor. The finite elements in a given interval are grouped with
those 1n a neighboring interval, which are then overlapped as shown in

the middle of the figure. That is, at any point, x, .he function is
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approximated as the sum of two overlapping functions, each defined in a
double interval. These spline functions and their first m derivatives
are required to vanish at the right and left ends of the double inter-
val and to be continuous at the middle boundary. For our case (N=3 and
m=1) the B finite element parameters for any double interval are re-
duced to two by these six conditions. We have graphed these (Hermite)
splines as even and odd functions in the double interval, and the
remaining parameters are simply the overall strengths of each of these
functions. The beauty of this scheme is that the use of overlapping
splines now guarantees that the function and its first derivative are
continuous without any extra work! The boundary conditions are
trivially satisfied by making the even function in the end intervals
vanish, and the remaining 8 parameters in the 5 overlapping spline
functions are determined at the cu.location points, as before. The
strength of this method is that the overall number of unknowns has been
reduced to the minimum before we even set up matrix equations.

The orthogonal collocation method allows one to choose the col-
location points so that the power of Gauss quadratures and splines can
be combined!®). If we were to perform an integral over the fuuction in
the figure, a natural way to do this would be to integrate between
break points and use a Gauss quadrature forwula in each interval.

Using those quadrature points as collocation points constitutes the
method of orthogonal collocation, which substantially improves rates of
convergence when solving equations using splines.

Because splines are local functions, separately defined in each
double interval, the collocation conditions couple splines from
neighboring intervals only. The complete set of such conditions for all
parameters (8 in our example) constitutes a matrix equation, and this
matrix has a very special form because of the locality; it is a band
matrix, with most of the elements zero, as shown at the bottom of fig.
6. Such matrices are much eacier to invert than dense matrices, and
should be preserved, if possible. In order to deal with the angular
integral iu eqn. 14, we transform from (x,y) coordinates to the polar
coordinates (p,0°). The integral destroys the double "band'" structure

in x and y; polar coordinates preserve this structure in the variable p.
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There are a number of important advantages wiaich accrue from using
splines to model a function: (1) The spline approximant and a
specified number of derivatives are automatically continuous; (2) The
splines automatically provide an interpolating function at eny point;
(3) They lead to a band .etrix; (4) They are "optimally" smooth; (5) It
is easy to change from the equally spaced intervals of our example to
any desired distribution; (6) The splines are easy to program on a
computer; (7) Boundary conditions are easy to impose; (8) The appioxi-
mants exactly satisfy the constraint equations at the collocation
points; (9) Piecewise local functions such as splines do not propagate
approximation errors, as global functions do; (10) The relative
accuracy of the wave function and the eigenvalue should be comparable.
We also note that the use of overlapping double intervals corresponds
closely to one derivation of the powerful Gregory's integraticn rule

from Simpson's integration rule.

6. TWO-BODY AND TIIREE-~BODY FORCES
6.1 Two-Body Force Results

There is little difference in principle between solving eqn. (14)
for a single nucleon-nucleon (NN) partial wave and using many partial
waves. The size of the matrices becomes much larger, and the matrix
bookkeeping becomes very tedious and intricate. 1In general for each
nucleon-nucleon partial wave, there are two spectator partial waves
associated with the two spin states of the latter, except for total
angular momentum, J, equal to zero, which gencrates only one. The four
NN partial waves (SLJ) for each J (1JJ’3JJ'3J-1J’3J+1J) thus generate 8
trinucleon channcls, except for J=0, which has only two, associated
with 180 and aPo. As we indicated earlier, the 150 and 351 waves
should be dominant, and we must also include the SD] wave, which is
strongly coupled by the tensor force to the 381 wave. This combination
is the standard 5-channel calculation (all positive-parity NN waves
with J<1), while 9 and 26 channels constitute all positive-parity NN
waves with J<2 and J<4, respectively. The 18- and 34-channel cases

use all NN partial waves with J<2 and J<&.
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A brief summary of results!?) for the Reid Soft Core (RSC)!8),
Argonne V., {AV14)19)  Super-Soft-Core(C) [SSC(C)]2°), and Paris?!)
potential models is given in Table 1 as a function of charnel number.
Several conclusions are obvious: (1) The 5-channel approximation gives
most of the binding (within .2-.3 MeV); (2) The negative-parity NN
waves don't have a large effect; (3) The binding is roughly 1 MeV below
experiment; (4) The point-nucleon rms charge radii (i.e., the proton
radii) for 3He and 3H are larger than experiment. Because the posi-
tive-parity waves dominate, this table doesn't demonstrate the rate of
convergence of the partial-wave series. This is shown in Table 2 for
the RSC 34-channel case, where <V> is broken down into contributions
for fixed J and fixed parity. All but 1% of the total potential energy
(indicated by X in the last column) is generated by the first 5
channels, and most of the rest from the remaining positive-parity
waves. The sm-.' negative-parity NN forces give 200 keV more binding,
which is not obviously reflected in Table 1 (compare 18 channels to 9
channels). The reason is that the negative-parity forces couple
directly to the small components of the wave function and this leads to
nearly cancelling contribution from first- and second-order pertur-
bation theory. First-order perturbation theory works well for all the
other small components.

The probabilities of the important S°- and D-state wave function
components are small. The D-state probabilities for the triton are
very nearly 3/2 times the corresponding D-state probability of the
deuteron for each potential model.

Table 1. Binding energies, point charge radii in fm, and wave function
component percentages for various two-body force models!?).

. 2% 2.4

E (MeV) NS SR SO
Model 5 9 18 26 34 34 34 34 34
RSC 7.02 7.21 7.23 71.34 71.35 1.85 1.67  1.40  9.50
AV14 7.44 ;.57 7.57 1.67 1.67 1.83 1.67 1.12 8.96
ssc(c; 7.46 7.52 7.49 7.54 7.53 1.85 1.68 1.24 7.98
Paris?2)7.30 7.38

Expt. 8.48 1.69(3) 1.54(4) --  --
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Table 2. Potential energies (in MeV) for the RSC 5:-channel case
broken down according to J (total nucleon-nucleon angular
momentum) and parity, and the kinetic energy for comparison.

J 0 1 2 3 4 2

<VJ> -13.729 =43.647 =-0.435 -0.115 -0.020 -57.946
<v3> -13.553 ~43.874 -0.188 -0.117 -0.014 -57.746
<V3> -0.176 0.227 -0.247 0.002 -0.006 -0.200
<T> 50.600
<H> -7.345

6.2 Three-Body Forces

6.2.1 Motivation apd Evidence

Our results strongly indicate that there is a defect in binding
from conventional two-body forces. Moreover, the too large
(calculated) radii are likely a symptom of this same problem. Theire
are gseveral plausible explanations: (1) Relativistic corrections have
not been calculated; (2) Three-body forces, which depend on the
simultaneous coordinates of all 3 nucleons in the triton, have not been
included; (3) Our model Hamiltonians are simply inadequate, and the
effects of nucleon structure or meson degrees of freedom should be
taken into account. In fact, these categories are not distinct.
Relativistic corrections can be broken down into one-body (kinetic
energy) terms, two-body (potential) terms, and three-body (and higher)
potential terms. The size estimate we previously made of relativistic
corrections, (1-few percent) taken for the kinetic or potential
energies (150 MeV) predicts a scale of 0.5-1 MeV. Those calculations
that have been performed on the one- and two-body parts are consistent
with this estimnte, but find a tendency for cancellation between the
attractive kinetic energy correction and a repulsive potential energy
correction, leaving a small residue. It is also known®’23) that a

substantial part of the two-pion-exchange three-budy force is a



relativistic correction of ou:der V;/Mcz, where Vn is the usual one-
pion-exchange potential (OPEP). Moreover, the conceptually important
isobar part24) of the former force is due to nucleon substructure: a
pion emitted by nucleon 1, (virtually) polarizes nucleon 2 into an
isobar, which decays back to a nucleon plus a pion, which is absorbed
by nucleon 3. Most of the currently popular three-nucleon forces have
been derived by considering meson degrees of freedom. These forces
clearly exist in nature, but are they large enough to solve ouc
problem? Before discussing the results of various calculations, we
consider possible additional evidence.

One long-standing problem hes been a good theoretical under-
standing of the 3He charge foirm factor, or the Fourier transform of the
charge density. The form factor hes a typical diffraction shape, as a
function of q, the momentum transfer, falling rapidly through zero.
becoming negative in the secondary maximum, and then positive again.
The difficulty has been that theoretical calculations have predicted
too small a (negative) strength in the secondary maximum. The point-
nucleon charge density pch(r) constructed from the experimental form
factor Fch(qz) is consequently much lower than theoretical calculations

near the origin%), as shown in fig. 7. This follows from
_ 1 2y 2.
Pen(® = —3 Jo Feplahadg (15)

Clearly, a large negative contrilution to Fch lowers pch(O). The
argument that we have presented is somewhat controversial, because
values of Fch for very large q are needed in order to make the integral
converge, and this requires considerable theoretical assumptions and
extrapolation, some of which may be ('lubious. Nevertheless, there is a
problem with the form factor.

In impulse approximetion, the charge density measures the
probability of findirg a proton at a distance r from the trinucleon
center-of-mass, indicated by the x in fig. 1. Taking nucleon 1 to be
that proton, we have r = %y, and forcing r to zero makes y zero. This
is the condition for all three nucleons existing in a collinear con-

figuration. Binding, on the other hand, prefers equilareral or isos-
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*He charge density
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Figure 7. Experimental (x's) and theoretical charge densities for

?He. The thecretical curves correspond to including or not
sncluuing a Covlomb force between the protons in 3He.

celes configurations, so that each nucleon can be attracted by the
short-range force of each of the other nucleons. Bnth of our problems
with experiment could be solved if the three-nucleon force were
attractive for equilateral configurations and repulsive for collinear
ones. Schematic models of the force have this structure, and produre
both effects, altnough other models do not.

In addition to bound states, the trinucleons have a rich continuum
structure. At very low (essentially zero) epergy the scattering of a
nucleon from the deuteron can be characterized by a single observable,
the scattering length, a, which can be decomposed into spin-doublet
(az) and spin-quartec (aa) components. The latter is quite
uninteresting, because it seems tc depend only on the deuteron's
binding energy; consequently, all '"realistic" force models produce
nearly the same result. Calculations of the doublet scattering length,
on the other hand, have been too large. Typical values?®) are shown in

fig. 8, where a, has bheen calculated for a variety of realistic and

2
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Nd doublet scattering lengths
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Figure 8. Doublet nd and pd scattering length plotted versus 3He and
3He binding energies, respectively. Individual points are
from theoretical calculations (triangles, squares, and
circles correspond to realistic two-body force models, the
additional inclusion of three-body forces, and vurealistic
two-body force models).

unreaiistic two- and three-body force models. These np and pd scat-
tering results separately fall on "Phillips lines" when plotted versus
the corresponding triton or 3He binding energyzs). The fit to the nd
results passes through the experimental datum; the pd result does not,
which is a mystery at this time. The fact that all of the nd doublet
results track the same Phillips line indicates that whatever physical
mechanism corrects the binding defert will also produce a correct value
for 85 at least for the nd case.

Finally, analyses of the nn-scattering length, 8 from two
scparate experiments, n+d+(a+n)+p and n +d*(n+n)+y, have produced three
differeni values of 8 n It has been argued??) that three-nucleon

forces, conspicuously missing in the latter reaction and not included
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in the analyses of the former reaction, might produce agreement among
the values of 8 n from the different reactions. Only schematic
calculations have been performed to date?8),

6.2.2 Bound state calculations.

The evidence we have presented is tantalizing, but circum-
stantial. At present the best evidence exists in the properties of the
bourd state. Can current models of the three-nucleon force produce a
substantial increase in binding? At least four such models have been
used recently: (1) the Tucson-Melbourne (TM) two-pion-exchange
force?%); (2) the Brazilian (BR) two-pion-exchange force39); (3) the
Urbana-Argonne (UA) schematic force3l); (4) the Hajduk-Sauer isobar
model32). Hajduk and Sauer do not exrlicitly include a separate three-
body force in their model, but rather include isobar components in
their wavefunctions. Three-body force contributions, implicitly
included in their model, must be deduced later.

The early calculations used different force models and various
approximations which resulted in a chaotic situation, some calculations
finding negligible additional binding and otuers finding more than one
MeV. The situation has recently been clarified in partaa). Most
calculations have resorted to perturbation cheory using 5-channel wave
functions34), which fails badly. Perturbation theory is inadequate for
the TM model, giving results which are much too small. The S-channel
wave function approximation is also inadequate in general, as noted by

Hajduk and Sauer22'32),

because the pion-exchange vertices inducc large
couplings to small wave function components not adequately represented
in the 5-channel approximation; 34 channels are required for complete
convergence35). The latter calculations found approximately 1.5 MeV
additional binding from both the TM and BR forces, in combination with
two different two-body force models. Calculations of pch(O) were not
completed.

Although these results indicate a substantial effect, caution is
required. Hajduk and Sauer find a small (-.3 MeV) three-body force
effect. Their approach is very different from the TM and 3R groups,

and the punysical reasons for the discrepancy are not known. Moreover,

the ""long-range" two-pion-exchange force is unfortunately quite sen-



sitive to its short-range behavior, and it is possible to substantially
lower the binding by making plausible modifications of this behavior.

This field is in its infancy and much more work needs to be performed.

7. SUMMARY AND CONCLUSIONS
7.1. Scaling of Observables

Although a wide variety of bound state calculations have been
performed during the previous two decades for a variety of potential
models, many produced only binding energies and no wave functions, and
others required approximations whose reliability was difficult to
assess. The recent studies of the Los Alamos-Iowa group33) have
produced a large number of numerically accurate triton wavefunctions
for four different two-body potential models ip combination with
several different three-body foice modeis, each calculated for various
numbers of channels. Although there is no guarantee that these model
combinations accurately describe nature, the solutions at least
incorporate the correct quantum mechanical constraints. Moreover, the
binding energies for the set of models extend from below to above the
physical binding energy of the triton. This provides us for the first
time with the opportunity to investigate how a variety of important
ground state observables depend on the binding energy, and whether
there is any model dependence as well. We saw a very important illus-
tration of this in the Phillips line, which appears to systematize the
behavior of the doublet scattering length results.

What are the important ground state properties, besides the
binding energy? A list of the most commonly calculated ones would
include the (point) charge radii, <r2>5He 5H,

of the various wave function components (which are not measurable), the

and <r?> the probabilities
Coulomb energv of 3He, E_, the magnetic moments of 3He and 3H, the .r
asymptotic norms (sizes of asymptotic wave function components), and
the B-decay matrix element of 3H. The magnetic moments depend on
meson-exchange currents and on the S'- and D-state probabilities, PS'
and PD’ as does the P-decay matrix element; we will not discuss them
further. The asymptotic norms depend on binding, but this has not been

assessed in detail yet. The radii and Coulomb energy depend sensitively
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cn the binding energy, and calculations of these observables which use
models that underbind will produce inadequate predictions. We assess
the status of these important physical quantities below, together with
simple qualitative arguments that account for our conclusions.

For pedagogical purposes, the difference of the 3He and 3H charge
radii can be understood in terms of the oversimplified pictures in fig.

9. The sketch at the top depicts a schematic 3He when the nucleon-

Figure 9. Scbematic trinuclenns with identical forces between protons
(shaded) and neutrons in (a) aid with different forces for
3He in (b) and 3H in (c).

nucleon forces between all pairs are identical. This is represented by
an equilateral triangle configuration, witlh shading depicting the

protons. The charge or proton radius, R,, measures the integrated

P
probability of finding a proton at a distance r from the center-of-

mass. In this simple example, the proton, neutron, and mass radii are
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all the same. When the forces between pairs are different, the appro-
priate pictures for 3He and 3H are those of fig. (9b) and fig. (9c).
The np forces are stronger than the nn or pp ones (only the np system
has a two-body bound state) and this allows the protcns in 3He and the
neutrons in 3H to lie further from the center-of-mass than their
counterparts (i.e., 6>60°). The resulting isosceles configuration is
reflected in the appearance of an S'-state, which directly measures the
isosceles~-equilateral difference, and in the fact that RP ‘or 3He
increases, while that of 3H decreasses, and hence <r2>l"}le > <r2>aH,
irrespective of any pp Coulomb force in 3He.

These arguments can be made quantitative by decomposing the mean-
square-radius in impulse approximation into isospin components3€): the
isoscalar part <rz>s mirrors fig. (9a) and is determined by sums of
squares of wave function components. The isovector compoment contains
one part proportional 'to the isoscalar component and snother part
largely determined by'fhe overlap of the S- and S'-states, which we
denote <r?> (v does not mean isovector), and determines the difference
between 3He and 3H. One finds for 3He (Z=2) and 3H(Z=1), with upper and

lower signs, respectively,
Z<r?> = Z<r?> % <r?> . (16)
] v

These quantities bave very different behaviors. Radii in general are
sensitive to the asymptotic parts of the wavefunction. If one assumes
that the entire wavefunction is represented by the bound-state analogue

of eqn. (12), one finds that

<r2>: = 5% ~ Eia . a7)

Figure 10 shows the results of calculating <rz>:, and <rz>t, together

with the experimental data®) corrected for the nucleons' finite size.
-.5
B ’
indicating that our simple argument was essentially correct. The

difference radiur is fit by .14E;'9, and this different behavioy

reflects different physics. Clearly , the amount of S'-state plays a

The fit to the scalar poiuts is accurately represented by .8E

significant role. The peicentage of S'-state is plotted versus binding
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Figure 10. Calculated trinucleon (point nucleon) rms charge radii
decomposed into isoscalar (s) and difference (v) contribu-
tions in impulse approximation, together with data, plotted
versus corresponding binding energy. The SHe calculations
contained no Couvlomb force.

energy in fig. 11, and the fit varies as Egz'] This decrease is

expected, because as binding increases only rhe average force is
important, and the nv-nn difference is less important. In a simple
harmonic oscillator description, the S'-state is given in terms of
excit~d state configurations, which decrease ~E;2 as the oscillator
spacing iacreases with binding. Finally, the 3He and 3H results are
shown in fig. 12. If the small discrepancies betwe=n theory and
experiment are real, they probably reflect a small breakdown of the
impulse appro:imation.

The Coulomb force Vc(x) between protons in 3He is quite weak and
can be accurately treated in perturbation theory. The second-order
Coulomb effect37) is estimated to be ~-4 keV, compared to a 3He-2H
binding energy difference of 764 keV. Since VC ~ 1/R, schematically,

h. A better

and since R ~ E;k, we nxpect Ec to scale roughly as EB
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Figure 11. Calculated trinucleon S -state percentages plotted versus
corresponding binding energy.
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description is available, however, if we utilize fig. (9a). In this

schematic 3He the distance x between protons is given by y3r, and thus

Ec = <Vc(x)> = u<1/r>/J§, where a is the fine structure constant.
Consequently38139)
aJ.d3r H
E_= NE] —;—[ps(r) tp,()]le(r) =E_ (18)

where we have added the effect of nucleon finite size, g(r), snd
written the matrix element in terms of the scalar arl difference

charge densities. The accuracy of this hyperspherical approximation is
demonstrated in fig. 13. Although a priori a very implausible

approximation, EE overestimates Ec by only 1 percent. This is an

important result, because the charge densities are experimentally

measurable. Using these data38) one finds Ec = 638 £ 10 keV. This is
significantly less than the binding energy difference and reflects the
existence of nonnegligible charge-symmetry-breaking forces other than

the Coulomb interaction.
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Figure 13. S3He Coulomb energy, E ., plotted versus the corvesponding
hyperspherical approximation, EC.

REPRODUCED FROM
BEST AVAILABLE COPY



-30-

7.2 Conclusions

Rapid and significant advances have been made in the few-nucleon
problem recently. Many aspects of the bound states, including the
Coulomb energy and charge radii, are now fairly well understood. The
Phillips line connection between the doublet scattering length and the
triton binding energy has been demonstrated with three-body fonrces.
Many long-standing problems moy be capable of resolution in the near
future.

Although we have concentrated on the trinucleon bound states, the
continuum is also important. Photonuclear reactioas neceesarily break
up the triton and 3He, and this is an important area of study. The
continuum problem above breakup threshold is much more complicated than
the bound-state problem, because the boundary conditions are difficult
to implement in a tractable way. Nevertheless, the future of three-
body physics lies in this regime.

Figure 14 shows a possible scheme‘o) for determining the size of
three-body forces by exploiting its angular dependence in the
continuum. The initial pd configuration can be broken up into a p+p+n
final state, which is measured in an equilateral configuration (b) and
in a collinear one (c). This very difficult experiment might shed
light on such forces, by looking for the expected additional attraction

.0 the former configuration and repulsion in the latter.

- =—0 @O~ |=02=0 o~

(a) (b) (c)

Figure 14. Scenario for probing three-nucleon forces with pd initial
state (a) hecoming equilateral (b) and collinear (c) three-
body breakup configurations.
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