LA-UR -85-3582 (ONE -$5/0144 - _5

Los Alamos National ! aboratory s opersted by the University of California for the United States Denartment of Energy under contract W-7405-ENG-36

LA-UR--85-3582
DE86 002397

TTLE PROTON STORAGE RING - THE MAN/MACHINE INTERFACE

AUTHOR(S): Robert F. Lander and Peter N. Clout

SUBMITTED TO. 2nd International Workshop on Accelerator Control Systems
Los Alamos, New Mexico, October 7-10, 1985

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Govern .2nt nor any agency thereof, nor any of their
employees, makes any warranty, express or impliwd, or assumes any legal liability ot responsi-
bility for the accuracy, completenuss, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or uny agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

By scceptance of this sriicie the publisher recognizes that \ne U S Government rataing g nonexclutive. royalty-tree icense to publish ot raproduce
the published form of this contnbution, ot to aliow Others 10 0o so. for US Government purposes

The LOs Alamos Nationa! Laboratory requests that the publisher identily this srticle 88 work performed unde' the suspices of the U 8 Dapsrimaent of Energy

Los Al2mNOS Leshmes NatioralLaborsory

P ot et e IMENT 1S IR NN (’\7

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

PROTON STORAGE RING—THE MAN/MACHINE INTERFACE*

ROBERT F. LANDER and PETER N. CLOUT, MS H808
Loc Alamos National Laboratory, Los Alamos, NM 87545

The human interface of the Proton Storage Ring Control System at Los
Alamos 1s described in some detail, together with the software anvironment in
which operator iateraction programs are written. Some 2xamples of operator
interaction programs are given.

1. Introduction

In implementing the Control System for the Proton Storage Ring (PSR) a
balance was struck between investigating and using state-of-the-art techniques
in real-time computing and minimizing the technical risk and the cost of the
control system. Thus new techniques were used only where a clear advantage
was seen. The resultant man/machine interface has been highly successful.
Presented here is a brief description of the PSR control system, with emphasis
on the graph s interface, the ease with which new programs can be added, and
some experience (after six months of operation) of the human interface. The
overall control system has been described elsewhere (1,2,3].

2. Graphics hardware

At the start of the PSR controls project, observations at existing conirol
systems indicated that, although keyboards are widely used for computer
{nteraction, at an accelerator control system they are clumsy to use and take
a large amount of valuable corsole space. A deci:sion was thus made early in
the design of the PSR [4] not to have keyboards in use in the control room.

It was also decided to use high resolution color-graphics devices to present
{nformation to the operator. This left the decision on what operator input
device to use. The options vere to use a mouse, lightoen, touchscreen or
trackball. Lightpens and trackballs were eliminated because they were

*Work supported by the US Dept. of Energy.

judged to be harder to use, and lightpens have a wire attached. We alsc noted
that trackballs and mice use either specialized hardware or CPU cycles to keep
the operator informed as to where the current position is between hits.
Touchscreens and lightpens do not suffer from this overhead. We finally chose
touchscreens, with optional use of the mouse where it was necessary to
indicate individual pixe.s. For the graphics devices we chose two Lexidata
3100 systems with six 19 in. 50 MHz noninterlaced color monitors. These gave
a high quality, flicker-free display. This system gave us 512 by 640
resolution, fast drawing characteristics, a choice of 2563 colors, and 4
planes of memory. In front of each CRT we placed an Elographics touchscreen.

The memory of each of the Lexidata controllers is configured as four
arrays (640 x 512 bits) for each of the thi2e CRTs attached to it; that is,
each CRT has four memory-planes to make up ics pixel memory. (See fig. 1,
Position A.) Each of these planes contains 1 bit for each pixel on that
screen. Thus one has a range of 16 possible "color indexes" available to
describe any given pixel. This color index serves as a pointer into each of
the three Color LookUp Tables (CLUTs) for that CRT and yields an 8-bit
"intensity level" from each, one for each of the three primary colors (red,
green, and blue), (fig. 1, Position B). Each of these three intensity levels
{s sent to the DAC for the appropriate color-gun, producing the color of the
particular pixel involved, (fig. 1, Position C.) Pixels should not be
confused with the individual phosphor dots on the face of the moniftor screen.
Depending on the resolution of the image processor, a siagle pixel might
encompass inany phosnhor dots on the display. Although one indexes into the
CLUT with a 4-bit number (using 4 planes of memory per CRT, giving 16
immediately available colors), the CLUT actually can be indexed with up to 10
bits, ylelding over 1000 colors "on tap" at any one tiime 1f 10 mer .y planes
are vsed. Although 1t is possible to choose from a pallet of 24 million
colors, our experience is that small changes in intensity level are not
noticeable, and a more realistic figure would be around 700 easily
distinguished colors.

As an example of CLUT use, i1f the fifth value in the red section of the
CLUT 1s 255, and the fifth value in each of the other 2 sections of the CLUT
is 0, and 1f a pixel {is to be {1luminated with the color (or z-value) of 5,

that pixel would be displayed as red. Another example has the third value of
each section of the CLUT as 255. A pixel with a z-value of three would be
displayed as white. By convention, the first value in the three sections of
each CLUT 1s the background color, normally three zeros, or black, for each
CRT.

Although a Color LookUp Table gives the programmer a wide choice of
colors, 1t also introduces other possibilities because 1t gives cne the
ability to interpret any one of the 16 colors being sent by a program as any
color at all. It is therefore possible to create the 11lusion of movement on
the screen while not rewriting the screen at all, but merely rewriting the
CLUT. If, for example, one draws a series of dots in the color-pattern 12,
13, 14, 12, 13, 14, etc, and then sends, at quarter-second intervals, a CLUT
with the interpretations 12:blue, 13:hlack, 14:black; 12:black, 13:blue,
14:black; 12:black, 13:black, 14:blue, and then repeats, blue dots will be
seen to move across a black screen.

Another possibility for using the CLUT allows a program other than the one
that wrote the screen to draw an icon on the screen at any point and move 1t
around the screen without erasing the background display. This is done by
setting the bottom eight colors in the CLUT in the normal way and setting the
top etght colors to be white. Now, by simply setting the most significant bit
(MSB) ~f the color of any pixel on the screen to 1, that pixel will appear as
white. By setting the MSB back to O, the fermer color will reappear. This
technique is used to draw and move the mouse curser on the screen in response
to the movement of the mouse in the pad.

The Elographics touchpanel placed tn front of each graphics screen is a
high-resolution pressure-sensitive resistive screen. Each of these
touchscreens has an entry in our database, just 1ike any other equipment In
the Storage Ring. The touchscreen produces rharacter-st-ing input, which is
interpreted in all cases by the command module (3], and the coordinates stored
in the database for that screen. Because the touch screen is a separate
device from the display screen, each set of raw touch coordinates has to be
converted to graphics coordinates (pixel ‘tocations). To provide the necessary
conversions, we have written a calibration program, which is one of the very
few programs in the system that Is not started by touching the screen. The
need for this exception Is clear: recalibration is needed at those times when
the touchpanel is not returning the correct coordinates. A button under each

-3-

of the six CRTs will start the calibration program on that screen. The
program presents a pattern of 20 dots. The operator touches each dot, in
whatever order he chooses. A least-squares algorithm is used to determine
which dot the operator is toucihing, and the values returned by the touch panel
are translated into this location. A1l of these translations are, fina.ly,
placed in the database under the entry for that screen. From then on, until
the characteristics of the touchscreen change, touches will be correctly
transiated into coordinate positions.

3. Graphics software

One of our primary goals was to create a library of routines that would
make it simple to add new process modules to our system. A process module fis
a program running on the VAX, through which an operitor can interact with some
equipment. We wanted it to be easy, for example, for physicists to query our
database and to display information in whatever format they desired, without
ever knowing the intricacies of the system. (A1l interaction is through the
database, discussed below.)

Table 1 shows a short FORTRAN program fragment that does the following:

e Performs necessary initializaiion (including starting the mouse program
for this screen)

e Places itseif on the "wake-up list" for a change to a particular
datapoint

e Puts two buttons on the screen

e Reacts properly to a button-touch or a change to the selected
datapoint

One of the buttons will cause the "keypad" to be displayed on the screen (see
fig. 2). This keypad will then accept a value from the operator anu plare
this value in the database entry for the analog control of a particular
equipment.

The first call is made to pminit (process module inittalization): This
fnitializes the new subprocess's task id and other parameters required by
service subroutines. Next is tpinit (touch panel initialization): This
routine initializes the touch panel on the CRT owned or shared by this
process, sc that a touch to that panel will wake up the process.

G-

Then the integer variable "crtid" is initialized, so that the program
knows which CRT it is running on, after which (optionally) a call is made to
the mouse subroutine, which starts the mouse program on ti.is CRT so that all
future interaction with this program -an be done either through the mouse or
through touches to the screen itself.

After that, a call is made to subroutine addwake, on a particular
equipment and channei. The result of this call is that after the program
"goes to sleep” (see below), any change to this datapoint will "wake it up".
(The program will also be awakened by a touch to the screen, since tpinit has
been called.) The next line verifies that the addwake call has succeeded.

After initialization is completed, two buffers are defined using
gradefinebuf so that "deferred-mode" commands can be sent to the screen.

(Most commands are sent in deferied mode, miking it possible to paint the
entire screen at once, with one call to the DMA routine grasendbuf.}) Buffers
can be saved and reused, speeding up the redrawving of the screen. The third
and forth parameters to gradefinebuf deal with the "touch" facility. They can
be set to zero, if nu touch areas are to be defined.

The next group of subroutine calls define the picture to be drawn on the
graphics screens and the touch-sensitive areas. The first one (graclr) clears
the screen. Next, the call to buttonpar sets up button parameters. This
command will remain in effect until another call to buttonpar is made. The
parameters to this call define the size, button color and text color of
buttons written. A logical variable defines whether or not a new touch area
fs required for the buttons. Note that the picture of the button and the
touch area are quite !‘ndependent, buttons are often redrawn to change the
color or text, with o need to redefine its touch area.

Now we are ready to define any buttons that may be required. A string
varfable {s inftialized with the label to be displayed in the first button and
the call to writebut made. The first parameter to writebut is the desired
location of the button on the screen. The actual position depends on the size
defined in the buttonpar call. Three sizes are defined. Size 2 buttons,
which we are using in this examj le, are 90 by 60 pixels, ylelding a screen
full of 8 rows of 7 buttons each, or 56 possible button locations. In this
example, Location 11 is the third button in the second row. Size 2 buttons
can have up to 40 characters of text in them (4 rows of 10 characters).

After ancther butten is defined, the buffer is sent to the Lexidata
controller (grasendbuf). The next call (to grawaitio) prevents the program
from overwriting the buffers until the output to the Lexidata controller is
complete.

The call to sys$hiber, a VMS system service routine, suspends this
process. A touch to any part of the screen will restart the process, as will
a chinge to any datapoint (database value) that it happens to be watching. It
is therefore necessary, when the process is awakened, that the process
distinguish between the varicus possibilities and, if the program has indeed
been awakened by a touch, determine its validity (on a button or not) and, if
it is a button, which one.

The routines we have developed for this purpose make the solution quite
simple. The first 1ine after the call to sys$hiber (the first line to be
executed upon awakening), is a call to function test_mdt (test modified
data-tag) for a particular equipment/channezl--the one referred to in the
addwake call (see above). If this call returns the logical value "true," the
process will make a call to the get subioutine for the channel in question,
which gets the value from the database and places it in the third parameter
(y). The next few lines (through "end if") will write this new value on the
screen, In red Size 3 letters (very large), starting at pixel location
(60,60). Location (0,0) is the upper-left corner.

The call to touchcheck will return "true" if the screen has been touched.
Then a cal) to readtou (readtouch) yields the "number" of tha touch. A zcvo
returned in "touchnum" indicates that the touch was not witain the bounds of a
currently defined button; whereas any other number indicatzs the number of the
button touched. For this the buttons are numbered 'n the sequence in which
they were declared.

Once the program knows which button has been pressed, it takes the
following actions: The first button was the "exit" butten, so the program
acts accordingly. The second button indicates the desire on the operator's
part to enter an analog value, so he is presented with the keypad (see
fig. 2). The various parameters to the keypad select 1ts colors, location,
and 1imits of the acceptable input values. The fnput value is returned in the
last parameter, rval. This value §s then placed 'n the database by the call
to put, (see below), and the program returns to the hibernating state.

Touch areas can be defined independently <f buttons, making it easy to
draw various icons, etc., that are to be touched when particular responses are
desired. If the program is not hibernating when a touch is received, the
touch is saved and the program will be awakened immediately upon its next call
to sys$hiber.

We now discuss the process for adding a mouse to our system. We chose to
use an optical mouse from Mouse Systems Inc., in Santa Clara, California. The
only unfortunate feature of this mouse is that it requires a small optically
cross-hatched panel to run around on. This panel is not popular with our
staff because it takes up vaiuable space in the console area, and ‘s often to
be found in a drawer when the mouse is not in use.

A1l movement of the mouse is relative to its previous iocation, and our
sof tware keeps track of the present locaticn, maintaining a cursor on the
screen in that position. The three buttcns on the mouse can be set by the
sof tware to inricate whatever command is desired. One button, of course, must
be usable to indicate a "touch" at the present location. The software simply
places the present location in the database for that touchscreen when the
"touch" button is pressed, and the rest proceeds in the normal way. ‘hat is,
the hibernating program awakens, notes the touch, and proceeds accordingly.
The second button is used to toggle coarse/fine movement of the cursor, and
the thiru is used by different programs for various other purposes.

The touchscreen is most popular for general use, and the mouse is only
used when a particularly fine (specific pixei) touch is required. Thus the
mouse is used to define waveforms on the screen to control the 2.8-Mhz buncher
or the orbit-bump magnets. Using the mouse, precise waveforms can be drawn
simply and quickly. These waveforms can then be written to the CAMAC waveform
generator to control this equipment. Naturally, this software is a 1ittle
different from that described above for the use of buttons. In this case the
program reads the X- and Y-coordinates directly from the database.

So far we have discussed analcg input only with respect to the keypad. A
more interesting alternative, avallabie for all equipment, is the use of
knobs. As distinguished from the old style conirol room, where there would be
a knob dedicated to each analog control point, we have what we call "soft
knobs." For each pair of ;~reens there are four knobs. Each of these knobs

can be assigned to control any desired datapoint simply by touching the
"assign-to-knob" button on the screen that has to do with the desired
equipment. The name of the equipment and channel to be controlled, and its
presenc control and read-back values will appear on the 40-character 1-line
display next to the knob that has been assigned. Each knob is, of course,
simply coi:nected to a shaft encoder, which is connected to the VAX through a
CAMAC module designed in-house. The assignments to a knob can be "stacked,"
up to 15 deep, and thz various equipment "scrolled" into view, yielding much
greater flexibility than is possible with many other systems. These units are
described in more detail elsewhere [3].

4. The Database

As has been mentioned above, all communication between the process modules
and the equipment takes place through the database. This design has many
advantages, among which are portability, ease of programming, and generalized
error checking and reporting. The run-time database includes, among other
things, the present values for all channels, their CAMAC addresses, and any
1imits and convert codes that may be in effect. The control scheme is that
the process modules (running on the VAX) place values in the database for a
control channel on some equipment. This part of the database is migrated to
the appropriate Instrumentation Subsystem (ISS) [1,2,3] together with the
modified data-tags (mdt). The fact that the mdt is set causes the appropriate
task running on that ISS to be awakened (much like a screen touch awakens a
hibernating process on the VAX). This task then reads the present value for
that channel and acts accordingly. The same scheme is used for input channels
but the data is migrated in the reverse direction. The important part of all
this is that all writing to and reading from the database is done through the
use of the two routines mentioned above: get and put. The author of a new
module is required to know nothing about the details of what he is doing other
than the name of the equipment and the channel sequence numbers. Furthermore,
all configuration changes are made within the database; therefore, it is not
necessary to modify codes when this changes.

A1l values pass through the database on their way from equipment to
display screen; thus, it is a simple matter to check each value to see if it
is outside the safe range. Those seen to be beyond their Warning or Alarm
limits are posted on the Alarm Screen. We plan to write an event logger,
which will record the time and details of each such event.

5. The resulting system

Using the facilities described, some very useful and descriptive
diagnostics displays, as well as many control screens, have been written.
Some of these will be described in broad terms here.

Figure 3 shows & diagram of the Ring, with the activation protection
monitors (APs) represented by dots. These radtation detectors monitor the
spi1l in any location, and the resulting signal is represented on this screen
by a bar graph, which changes from green to yellow to red as the spill
tncreases. As the tuning of the PSR progresses it is often necessary to move
the monitors in the tunnel. This display allows the location of the monitors
on this screen to be easiiy changed together with the spill bar graph and the
label. This is a case where the precision of the mouse is required. For each
move, the upper left button on the screen must first be touched. Then,
touching the element to be moved will cause it to be erased and then rewritten
at the point of the next touch. These edits are temporary until the
upper-right button is touched, when they are saved on disk.

Another favaluable diagnostic tool is the beam position monitor system
(BPM). This system consists of 61 monitors at various positions in the beam
pipe and a common multiplexer and signal-processing electronics. Figure 4
shows the display of the current data from the system. Another screen is used
to select the monitors to be used and the order in which to display them. Up
to 20 monitors may be selected at a time. This screen is also used to set up
the operating parameters for the system. T[he horizontal and vertical
nositions of the centrold of the beam, relative to the pipe center, ac
measured at selected BPMs, are shown in fig. 4 in centimeters. Shown here is
the histogram plot, with the newest reading displayed on the right for each
monitor. The beam intensity (at each monitor) is displayed on the third
graph. For the

convenience of the operators, the readings of all 65 APs are also displayed
near the bottom of the screen as a histogram. This display has an example of
a touch area without a button being shown. To change the vertical scale of
each of the centroid graphs, the lower scale values of each graph should be
touched (-0.05 in the case of the upper graph).

Another diagnostic that measures the beam is the wire scanner systein. The
current on a wire is measured as it passes through the beam. The graph of
horizontal- and vertical-wire current as a function of position provides
integrated profile information about the beam as well as the position of the
centroid. Figure 5 shows the display of the results of a scan by LDWS04. It
will be seen that the position of the centroid and the width of the beam for
both sections has been calculated and displayed on the graph. This software
will display the results of scans by up to six wire scanners and will also
display previously obtained data. The harp system provides similar data but
obtains it by placing an array of wires, 32 in each direction, in the beam. A
fast multiplexer and ADC then digitize the stored charge on each wire after
sufficient beam has passed. A data display screen similar to the one shown in
fig. 5 is provided for the harp system.

A number of subsidary systems are monitored by the control system and the
current status is displayed to the operator on demand. One of these systems
is the deionized water cooling system. Figure 6 shows the status display in
its current form. The program genevating this display determinas tnrough
which pipes the water is flowing by reading the status of the pumps and valves
from the database. These water pipes are then drawn so that water is seen to
actually flow. This is done by rewriting the Color LookUp Table as described
above. With this program running, the CPU usage for the water flow is less
than d4%. Similar programs have been written for the ventilation system, the
target cooling system, and the vacuum system. In some of these programs, more
detail on particular srbsystems can be obtained by itouching that system on the
top display.

At the injector to LAMPF, the linear accelerator that provides beam for
the PSR, a chopper prepares the beam so that it has the correct waveform for
successful inlection and storage in the PSR. This chopping involves
nanosecond and subnanosecond edges and waveforms. (To observe these

-10-

waveforms on an oscilloscope in the PSR control room, over a kilometer away,
the oscilloscope must be close to the chopper.) A TV camera looks at the
oscilloscope screen so that the PSR operator can observe the waveforms, but it
is also necessary that the operator has full control over the oscilloscope and
the multiplexer that selects the input signals. The oscilloscope used, a
Tektronix 2465, has a GPIB interface and this is connected to a CAMAC GPIB
controller on the PSR CAMAC crate adjacent to the chopper. The multiplexer is
directly controlled by CAMAC. Figure 7 shows the display that controls this
oscilloscope, and in use it 1s found to be only slightly less convenient than
using the oscilloscope directly. In many of the buttons, the current value is
displayed and touching the button will highlight it for a moment and toggle
the value to the next one. HWhere there are more than a few values possible,
touching the button will cause 1t and the two buttons labeled up and Jdown to
be highlighted. The up and down buttons can then be used to adjust the value
to the one required and then touching the original button will remove the
highlights.

Figure 8 shows the waveform-editor screen that enables the operators to
create precise waveforms with the mouse. Fligure 8 shows a rather simple
waveform where the mouse has been used to add a third point to the waveform.
Touching the detach button at the bottom of the display will make the modified
waveform the new waveform that then can be further edited. At present, the
use of straight lines to join the points is quite adequate and the waveform is
smoothed by the electronics. Other buttons on the screen allow the operator
to expand the display as required and to edit the waveform with greater
precision. The horizontal axis shows start of injection (SOI) and end of
injection (EQOI) when it 1s on-scale. The numbers on the horcizontal axis are
microseconds from SOI.

Figure 9 shows the status screen, a V7220, that displays a brief summary
of the current operating mode of the PSR, some key operating parameters, and
messages from the operating staff. The terminal that generates this display
fs part of the PSR control console. Slave displays make this information
avallable at a number of points on-site, and a copy of the display can be
brought up at any terminal logged on to the PSR control VAX.

-11-

Lastly, for thase w m, &t Cp ot@], traot coxaters, TV mmitor:
costant], view a warwet, of phoachor crroe and f21° riripgart from oMY
the perzior coa deterw'm If e 13 mer at 3w 13cat'cn, whmee *z 11 "2
the e, 'O 11w, &d 't shape. There arw 380 Soveral oali™ ke
I the ccriral room etmr them te Opmar Lo rertioeed Bl -8, whicH o
te apernioe] 3 competer-iviper-iest e Cf the'r viriswt.

. Sthlias

Tre Fvmn irerfecs - tim PO Coword 3,000 s B s S oMYt
I perrion’ e, ™ wm =of O 10w Mo mt'sfiad oo tee -1, 'EiSS
of the 130, oeu the Inck of bapbcarsy = bty tikle corfoa =¥ T C270 'S
réw Mcaptal. PFor the feu oCchaiow wore & smll seourt Cf 2lphasw—i:
amtr, 15 e, a baytoard '] gramd ¢~ U figgla,. oy rex'.tior pruarewr
than that artaisut"s wit" t'm o= of 2 “rgp- 1] e, te FOe P MOT T
rapd. pc.arvtl 0t e iete-face et T B Gemlderga wy b
ol boaring.

s Bylay few tv <.% oith a F-'ca” <um, > o8 coriMe
roltar "X o') OXI-Mrrie Zo"028 that tve ortical wowce of'1°
rEim.

» Iplste e e LT £ 2 WM - HE red st 1, TN that s
e d'""Me. "rii xEte #lll ‘wpree the gmlit, ¥ e 'Rl

o E=zar3 tre wam F #ifTerest 1 W full, &plzit v gapt'sy
e — g B

Thars oy i Syt -] OF the "~ "o Wrhey? “NP o8 FYy
Loy juti”, 'a tre 1igx of eetp—e" s

&Lx riu | gt

A comtre! 140 s 41 the e SIicad ' R ot oF meLm
mrale. Bor, 0 these are A ECn"071 By “0 "¢fyeaces, et O Tt A1

13-

acknowledge those who designed and constructed the console and 1ts components.
In particular, Gary Carlson designed and built the knob unit CAMAC interface
as well as the knob units themselves. George Vaughn and Terry Weisgerber did
much of the rest of the assembly work on the console.

References

[1] P. Clout, S. Bair, A. Conley, R. Ford, M. Fuka and N. Greene, "The P1oton
Storage Ring Control System," IEEE Trans. Nucl. Sci. 30 (4), 2305 (1983).

[2] P. Clout, "Proton Storage Ring Dragnostics and Control System,” Proc. VII
Meeting of the Int. Collaboration on Advanced Neutron Sources, Chalk
River Nuclear Laboratory report AECL-8488, 128 (1983).

[3]1 Peter Clout, Andrew Conley, Samuel Bair, Mary Fuka, Elsie Sandford,
Robert Lander, and David Wells., "The PSR Control System," these
proceedings.

[4] P. Clout, "PSR Control Console Conceptual Design Document," Los Alamos

National Laboratory, Accelerator Technology Division PSR Technical Note
88, (1981).

-13-

Table 1
Demonstration Program Fragment

program demol
implicit none

real*4 y
character*7 msg
integer*2 grabuflen, touchbuflen, crtid, mycrt, touchnum
parameter (grabuflen = 2500)
parameter (touchbuflen = 2)
integer*2 grabuf(O:grabuflen), touchbuf(5, 0:touchbuflen)
integer*4 stat, addwake, touchcheck, test_mdt
character*40 txt
o
call pminit
c
call tpinit
o
crtid = mycrt()
c
call mouseme(crtid)
c
stat = addwake(srtm02, 2)
o
\f (.not.stat) type *,'demol: Addwake failure. stat = ', stat
c
call graopen(crtid)
o
call gralut(crtid, colorib)
c
c
call gradefinebuf(grahuf, grabuflen, touchbuf, touchbuflen)
c
call graclr
c
call buttonpar(2, g_red, g_blue, g_touch)
c
txt = 'EXIT' ! Text to be placed on a button
c
call writebut(3, %ref(txt))
¢
c 1234567890123456789012345678901234567890
txt « ' ENTER VALUE FOR SRTMO2
o
call writebut(4, %ref(txt)) ! Define a button in position #4
o (Ymmediately to the right of #3)

call grasendbuf(crtid, grabut’)

-14-

call grawaitio

¢
20 call sys$hiber()
c
if (test_mdt(srtm02, 2)) then
¢
call get(srtm02, 2, y)
¢
write(msg, 100)y
¢
100 format(f7.2)
C
call gradefinebuf(grabuf, grabuflen, 0,0)
call grarao(g_red, 60, 60,)
¢ Grarao erases the
¢ previous contents ¢ the specified location, while
c grasao simply over-writes.
¢
¢
call gratxt(7, %ref(msg))
c This routine will write the contents of "msg"
c on your crt, according to the parameters specified
¢ in grarao (or grasao). The first parameter (of gratxt)
¢ fs the length (in characters) of the message to
c be written.
c
c
call grasendbuf(crtid, grabuf)
¢all grawaitio
end If
¢
if (touchcheck(crtid)) then
c
call readtou(touchbuf, touchnum)
¢
{f (touchnum ... 1) stop
¢

{f (touchnum .eq. 2) then
stat = .false.
do while (.not. stat)
stat « keypad(crtid, 250, 250, g_blue, g_red,

| g_yellow, 0., 6., rval)
end do
call put(srtm02, 2, rval)
end if
end if
goto 20
end

Figure Captions:

Fig. 1. A schematic diagram of the use of a Color LookUp Table to give a wide
choice of colors from only four planes of video memory.

Fig. 2. The keypad as drawn on the graphics display to allow the operator to
enter a particular number.

Fig. 3. The console display of the positions and current readings of the
activation protection (AP) system monitors. Because it is quite normal to
move the monitors in the ring tunnel as tuning progresses, the program driving
this display allows the operator, with the touch screen or mouse, to move the
dots showing the positions of the APs and the corresponding histogram and
alphanumeric information.

Fig. 4. The Beam Position Monitor (BPM) data display. This shows position
and intensity information from the selected monitors as well as a histogram
display of the current readings from the 65 APs.

Fig. 5. The data display from a wirascanner.

Fig. 6. The deionized water system facility display. The current status of
pumps and valves determines which pipes show water flowing.

Fig. 7. The oscilloscope control display which allows the operator to conrtrol
a remote oscilloscope through CAMAC and a GPlb.

Fig. 8. The waveform editing s.reen which allows the operator to create and
edit control wavefcrms that are applied to some of the PSR equipment.

Waveforms can be up to 4096 points long and can be updated at rates of up to
2 MHz.

rig. 9. The PSR status display. This is generated cn a normal terminal and
monitors around the facility repeat this information.

-16-

EPEODUCED Friom
BEST AVAILABLE cOPY

FIGURE 1
2]
4 PLANES OF A
PIXEL MEMORY |
¥ ety m
CURRENT VALUE FOR THIS PIXEL
(COLOR=7:8!TS 0111)
RED GREEN
cLuT cLuT Eﬁ%
o ¢
L- 7mr- I- B
s
pac oac oac| (C
‘ ANALOG
ANAL OG / ANALOG
RED GIEEN 8LUE

(A, é’m////% v

13-SEP-1965 11:13:15.50

3s. 4
789T-
alslelE
1lalsle

N
o .7

CLEAR

RING APs

ROO1
24% |

WOLd GIuiniuddadd

a
m
N
F,
z
F
e
O
C
v
<

0.59
u e e e e e — — e “.."%) e
I . 1 L
3 i | e SO | RS
-8.380 -
-l-“
S T T
'Rl § 4
H ° Ty - A " —
ik 3 H | @
q s
R — W T T T T - N - — — —) 1
B g o3
Yy o
S S S S S S $ S S S S S S S s 5 s ;,5
R R R ? R R K P R P R PR R R R R P >0
@ ® 1 1 2 2 3 3 4 4 5 S 6 6 7 8 9 ~ O
1 2 1 2 1 2 1 2 1 21 2 1 2 1 1 1 [
G2
GO
3=

CCMT INUOUSY
MODE-

TOUCH
S TO HOLD

' 123456(, 1234 .*. 2 sge;z' , ;;i
lLENUH tun;ur fFSEtS Ral DRTR§ T TOUCH
RECﬂLL VALUES ENABLET FllE FOR
snvz TEXTPLOT

LDuUSe4
c=-2.0
v= 3.0

_

13-SEP-1965 19:29:22.14

PSR DEINHIZED HATER SYSTEM

Head LW
ITLE |
23 C

HEnT ELCHWIOLF
AWAAAASAASA

19°c

Laddd'b BOuRLY
Tl 1IN

tised LU
HuTIK

k-t -t

UF -(F -6

ANV
HEn T CuHulintle

AN

(VW

-
-

e’c

fa.ry
i s
it R

Ul

538

L

I Uw AN

AdCo

]

WO

13-SEP-198S 10:33:08.99

E suTEEEKP o1 CONTROQL
H MODE A B VERTICAL

= (o [e B
(B | e | |[CIEEICE
5] *
L=l (CEOCET] | ol
| i I |31
[T]

.

"]
CEICE] |EICFES]
Dm‘nmm

e —— Cen e -]

YAY 1939

AdOO Ty
V\’OU" [Y W O

K|

13-SEP-190S 10:30:49.20

| : 1seee CRYITY VOLTAGE
g €
A
A 031-L0C:
e
. nno# -2,
D e
' Y :
i
e
‘ -] ‘m g JJ
- ! O’J m
, -~
" Z 3
>
- — =
L 2000 > O
/ “+ 25
M
2
¢2
2=
1600
slote 9?29 vu' 429
9.00 (on Cav Volt Nave)

Ssaple Location is ~200 I¢ts YOLUE I

775 2.7 - //// A S SR

\

(7

REPRODUSED Froy

enllE Copy

PSR/WNR STATUS 13-SEP-1985 10:48

BEAM RATE LENGTH PSR CHOPPING PATTERN
SRBC: OFF 4 200 us Patiern Width: 200 ns
LEBC: OFF 0 790 ue Countdown: 10
LDBG: OFF 0 200 us LBOG Width: 100 usg

RUN PERMIT LINE-D MODE: PSR-TUAE
PSR MODE: TUMEUP 23S

LDCMO4 0.05 us RICMO1 0.03 ua
LDCMO2 -0.05 ua RICMO2Z 0.00 ua
LDCMO4 0.03 ua RICMO3 0.01 ua
LDCHMOS) 0.03 ua RICMO4 0.02 ua

S

PSR TUNING RESUMES AT 0700 THURSDAY
LINE E OPCRATION 2000-0700 NICHTLY UNTIL THE WEEKEND
Schedule uncertain for rest of week due o target installation

SEESErap SRty

QD B Senee

