LA-UR-86-2662

AUG

(TR Receiva b pory
WE%\ 0 5 nap
QONF-ST0IO% - - |

Los Al
amos Nat:onal Laborsiory @ opersted by the Unveraity of Califormin for the United States Depariment of Energy under contract W-7405.ENG-38

LA-UR--86-2662
DEB6 013818

: IMPLEMENTATT
TITLE: THE ON AND OPTIMIZATION OF PORTABLE LISP FOR THE CRAY

AUTHOR(S): J. Wayne Anderson, C-10
Robert R. Kessler, University of Utah
William F. Galway, University of Utah

suemiTTED T0: The 20th Annual Hawa
Horolulu, Hanedd 11 International Conference on System Sciences

Jaruary 6-9, 1987

DISCLAIMER

This report was prepared s an account of work sponsored by an agency of the United States
Government. Nelther the United States (Government nor any agoncy thereof, nor any of their
empicyees, mukes any warranty, cxpress or implied, or assumes any legal liability or responsi-
hillty for the accuracy, completeness, or usefulneas of any information, apparatus, product, or
process disclused, or represents that ita use would not infringe privately owned rights. Refer-
ence herein o uny specific commercial product, procoss, or scrvice by trade name, trademark,
manufscturer, or uiherwise docs not neceasarily constitute or imply its endorsement, recom-
mendation, or favoring hy the United States Giovernmont or any agency thereof. The views
and opinlons of authors expressed herein do not n-cessarily state or reflect those of the

United States Government or sny agency therenf

By accepiance of thus grucie the publiah
o 18C0gNIes (hat the U S Government relting a non
the pudiished form of this contributign. of 10 allow oihers to 0o 80, for U S ow.'nmo.ﬂ:l::::l::..:ovl'“-""IIGOHI. 10 puBian orreproduce

The Los mlamos Nai
§ Nationsl Laboratory requesis that the publisher 1denlity Ivis aricle a8 work periormaed under Ihg auspices of the U 3 Department of €
eni of Energy

L0S Al2MNOS igsAamos NatonalLavorstory

OISTRILU 1iuN OF THIS DOCUMENT 1S UNUMITED

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

T'he Implementation and Optimization
of Portable Standard LISP for the Cray

J. Wayne Anderson
C-10, Computer User Services
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Robert R. Kessler and William F. Galway
Utah Portable Artificial Intelligence Support Systems Project
Computer Science Department
University of Utah
Salt Lake City, Utah 84112

ABSTRACT

Portable Standard LISP (PSL), a dialect of LISP developed at the University of Utah, has
been implemented on the CRAY-1s and CRAY X-MPs at the Los Alamos National Labora-
tory and at the National Magnetic Fusion Energy Computer Center at Lawrence Livermore
Naticnal Laboratory. This implementation was developed using a highly portable model
and then tuned for the Cray architecture. The speed of the resulting system is quite
impressive, and the environment is very good for symbolic processing.

Work supported in part by theI -oughs Corporation, the Hewlett Packard Corporation, the International
Business Machines Corporation, the National Science Foundation under grant numbers MCS81-21750 and
MCS82-04247, the Defense Advanced Research Projects Agency under contract number DAAK11-84-KK-0017,
and the U. S. Department of Energy under contract number W-7405-Eng.30.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

P |

Optimizing PSL for the Cray 1

1. Introduction

Research at the University of Utah toward developing a portable LISP system received
impetus in 1979(1] when a model for a standard LISP subset was developed to make
the REDUCE |[2] symbolic algebra package more portable. This research effort has since
produced progressively larger and more portable subsets of LISP (3], the most recent of
which is Portable Standard LISP (PSL).

The goals of the designers of PSL were to provide a uniform LISP programming en-
vironment across a spectrum of machines, to produce a portable system comparable in
execution speed to other non-portable LISP systems, and to effectively support REDUCE
on different machines. PSL has met these goals and iz currently being distributed for
DECSystem-20s, VAXs running both UNIX and VMS, HP9836s, Apollos, Suns, IBM 370
class machines with CMS, Goulds, and a small version for the Macintosh. PSL is ready
for distribution to Crays running the CTSS and COS operating systems. This wide range
of machines demonstrates the ease with which PSL is ported.

There are several reasons for wanting LISP on Cray supercomputers. One is the interest
in having symbolic programming environments on one of the most powerful machines
available. This would provide the capability of solving symbolic problems that would not
be feasible to solve on less powerful systems. There is also interest in the possibility of
combining symbolic methods with some of the large numeric programs typical of large
supercomputers.

In this paper we continue with a discussion of the porting process used to implement
PSL on the Cray, followed by a discussion of the tuning that was performed. We then
discuss some of the timing results, and conclude with proposals for future work.

2. Porting of PSL

PSL is actually implemented in PSL itself. Most of the code is written as plain PSL
functions, while some parts are actually written in SYSLISP (2|, an enhanced vercion of
PSL that permits the allocation and access to untagged data structures, construction of
explicit pointers, etc. Since the system is written in terms of itself, it is ported to a new
processor through the use of the PSL compiler (originally knowa as the Portable LISP
Compiler [3]). A running PSL compiler is modified into a cross-compiler, so that instead
of generating code for the current machine, it generates code for the target machine. The
code defining the PSL system is then sent through the cross-compiler to create a PSL
system that runs on the target machine. The compiler itself is then sent through the
cross-comgiler and added to the system on the target machine. Once that ia accomplished,
the PSL on the target machine is capable of self-building and can be used for further
optimizations and enbancements.

Although conceptually simple, tlie porting process gencrally takes about six man-
months to complete for each new iarget machine. The early phases of the process are
involved with creating the cross-compiler [4). Much of the compiler is system independent;
however, parts must be customised for each target machine. The initial part of the PSL
compiler translates PSL code into instructions for the Abstract LISP Machine (ALM). The
ALM is characterized as follows:

1. Fifteen general-purpose registers, which are used for local computations and
the passing of arguments to functions. The first register is used to return

Optimizing PSL for the Cray

5.

the value from the function.

Stack frames that are used for saving return addresses, temporary calcula-
tions, and temporary values between function calls.

Caller save model, in which each function saves any values to the stack frame
that are needed after the call to another function.

A sat of about 50 instructions that defines the various operations of the
ALM. Many are standard data movement, arithmetic operations, and func-
tion calls, while others are LISP-specific (like lambda binding for bindiug
lambda variables).

A set of addressing modes that vary in complexity from simple immediate
operands to car and cdr.

The process of translating from the ALM to the target machine (TM) is performed
through macro expansion. PSL uses the LISP Assembly Program (LAP) format for both
the ALM and TM iastructions, wkich consists of an operator followed by one or more
operands. Typical LAP format instructions are (ALM instructions are indicated with a
leading asterisk (*) on the operator symbol):

(MOVE (INDIRECT (REG 1)) (REG 2)) %X TN - move indirect register

% 1 into register 2.

(*WPLUS2 (REG 1) (CDR (REG 2))) % ALN - Add the Cdr of register

% 2 to register 1.

Once the TM instructions have been generated, the compiler has three final phases:

1

Assemble the TM instructions into binary code and save the code in memory
for execution. This is used when compiling PSL code for immediate use.

Assemble the TM instructions into binary code and save the code in a FASL
(fast load) binary file for execution in some future PSL system.

Directly translate the TM instructions into assembly language. The assembly
language can then be assembled by the target machine and linked and loaded
into the run-time system.

The last phase is used when transporting the PSL kernel to the target machine.
a cross-compiler is generated when the following steps are taken:

L

Determine a mapping from the structure of the ALM into the TM (e.g., are
the fifteen general-purpose registers represented, does the stack grow up or
down, etc.).

2. Write the macros that translate from the ALM instructions into a sequence

of TM instructions.

3. Translate from the TM LAP instructions into TM assembly instructions.

This includes the generation of the preamble and postamble code that raust
be included with each assembly language file.

Thus,

Optimizing PSL for the Cray 0

3. The Test Series

Before the Cray implementation, one of the problems with the transportation of PSL
was that once the cross-compiler was built, the entire PSL kernel had to be compiled
into target machine assembly code and assembled on the target machine. PSL without
the compiler is approximately 10,000 lines of code, which expands into about 125K of
assembled code space. This large amount of code makes implementing a PSL for a new
machine tedious and time consuming. To solve this problem, we desigeed the test series
as a step-by-step 2 . .ach to generating a PSL kernel. The test series slowly builds the
various parts of the £SL kernel, incrementally testing each part. This permits small files
to be sent to the target machine where they are assembled and tested. When tests don’t
work, generally the cross-compiler needs to be repaired, and the tests need to be performed
again. The first test attempts to verify that simple input/output (I/O) is working correctly,
which can then be used in later tests tc indicate the status of each test. The test series
has been designed so that once each test has been completed, the next test uses the code
from all of the previous teats, along with new code, to devele; the next part of the system.

There are two test series, one with nine zimple tests and the second with eleven testr,
that eventually result in a full PSL kernel and compiler. The first test series has just enough
parts of the PSL kernel to verify the code generation routines, the assembly language
constructs, and the interface to the target machine operating system (like character I/0,
file I/0O, terminating the task, signaling an error, etc.). These tests are small enough
that transportation of their code to the target machine and testing is relatively easy.
On completion of the ninth test, a simple PSL kernel has been built, including file 1/0,
garbage collector, and EVAL. At this point we can be fairly confident that cross-compiler
is generating good code and can move on to the second test series.

The second test series ia more extensive in that it brings in the various parts of the
PSL kernel in complete detail. When the tenth test is reached, a complete PSL kernel
has been constructed. The eleventh test is then used to build the PSL compiler. This
requires more customigation for the target machine, because it must be able to assemble
the TM LAP code into directly exectuable binary code. It must also be able to perform
binary I/O and save generated binary code into loadable modules. Once accomplished, the
compiler itself can be translated into a loadable module. At the end of the eleventh test,
the compiler was included as a part of the PSL kernel. This results in the kernel being
larger than necessary as we now have the compiler in a stand-alone form. We, therefore,
restore the kernel to the way it was at ths end of the tenth test.

]
4. The Cray Port :

Our Cray implemeniation began in June 1982 when a meeting was held at the Uni-
versity of Utah to outline the effort. By July 1984 the PSL interpreter and compiler were
available for use on all CRAY-1s and CRAY X-MPs at the Los Alamos National Labo-
ratory. Soon thereafter, PSL was also available on the Crays at the National Magnetic
Fusion Energy Computer Center of Lawrence Livermore National Laboratory. REDUCE
was subsequently implemented at both sites. This process took much longer than the typ-
ical six man-months required for most implementations of PSL. This is primarily because
it was accomplished using part-time efforte, equivalent to approximately 12 man-months.
Many of the early problems were related to getting reliable network access to machincs and

Optimizing PSL for the Cray 0

to delays caused by the transfer of many large files between the development machines and
the target Cray. The effort required to implement PSL on the Crays, while non-trivial,
was much less than that required to implement a non-pc-table dialect.

One of the first decisions in generating Cray PSL was deciding which machine should
be used as the cross machine. The original host was a DECSystem-20 at the University
of Utah. Early development efforts included the generation of the Cray assembly code on
the DecSystem-20 and shipping it across four machines until it finally reached a Cray at
the National Magnetic Fusion Energy Computer Center in California. Going through so
many machines and networks was a laborious process. Later, we moved the development
effert to a host VAX 11/780 running BSD UNIX at Los Alamoa National Laboratory.
This facilitated the effort as the VAX essentially was connected airectly to a Cray at Los
Alamos, thus virtually eliminating the time required to ship files.

The next step was determining the mapping of the architecture of the ALM into the
~ Cray. If the vector register capabilities of the Cray are ignored, the Cray is very RISC-like.
There are few addressing modes and few computational registers (ones in which arithmetic
operations can be performed), but a large number of cache-like extra registers (sixty-four
64-bit registers and sixty-four 24-bit registers). The Cray word sise is 64 bits, so0 we decided
to represent a LISP item (tag and information part) in a single word. There was quite
a debate (and there still is), about whether we should pack two LISP items into a single
word or just use one word per item. We decided that it was better to go for speed of
accass (its cheaper to just retrieve a single word than retrieve a word and then mask off
the appropriate part) than sise of the hsap. Another factor was that there was no other
implementation where more than one LISP item could fit in a word; thus the code would
have to be checked to make sure that it was written properly and would not be confused
with this new representation.

The large number of registers made mapping the ALM registers into the Cray registers
easy. Five of the eight S-registers (64-bit computational registers) were chosen to repre-
sent the first five ALM registers. The first S-register (S0) is special and miainly used for
comparison operations; thus it was left alone. The remaining two registers were designated
as temporaries and used by the macros that mapped from the ALM instruction into TM
instructions. The remaining 10 ALM; registers were allocated to the bank of T registers
(the sixty-four 64-bit cache registers). These registers may not be directly involved in a
computation, but may be raoved to the S registers in one clock cycle. Another T register
was permanently assigned the value of NIL because it is used in so many comparisons.
The eight A registers (24-bit address registers) were allocated for temporary addressing
calculations, and one was allocated as the stack pointer. All of the vector registers and
their instructions were ignored because no direct relationship hetween them and the ALM
instructions could be found.

One major problem with the Cray port was the significant difference between the Cray’s
assembly language (CAL) and the standard LAP format. Nearly all other computers use
an operator followed by operand format for their assembler, but the Cray is significantly
different. CAL uses a semi-infix notation for its instructions, where the destination operand
is the first element and the source operands are next enumerated with infix operators. For
example, the CAL instructio.

S1 52+83

Optimizing PSL for the Cray 0

adds the contents of register S2 to that of register S3 and stores the result in register S1.
Thus the format of CAL instructions is aloag the lines of the following:

destination operand opcode operand

which is quite different from LAP format and from the assembly format used by other
machines on which PSL was implemented.

To deal with this problem, we introduced one extra step in the translation process.
The target machine instructions were written out as CAL macros that more closely match
LAP format. These were then expanded by the CAL assembler into standard CAL format.
This trick permitted a more natural debugging environment because we were able to look
at the macros that were generated and did not have to worry about the nonstandard CAL
syntax.

The previous example of CAL code introduces another interesting characteristic of
the Cray. It uses three-addresr instructions. The ALM instructions are all two-address
instructions; since all two-address instructions are subsets of three-address instructions,
they did not present any initial problems. However, th:: was indeed a restriction because
more efficient code could be generated for a three-address machine than for a two-address
machine. We are currently exploring ways to take advantage of the three-address code.!

One final note that characterizes the Cray version of PSL from tue previous versions
is the use of recursive ALM to TM macros. In the past, most of these macro tables
were written independently, where each ALM instruction carefully determined the various
operand locations and generated the appropriate code to perform the requested operation.
Thus, a *wplus2 macro (which performs addition) would test to see if the arguments are in
registers or in memory. In either case, appropriate but different code would be generated.
If the arguments were not in registers, before generating the code to perform the addition,
code may be generated to move the arguments into registers. The solution for the Cray was
to carefully code the *move ALM macro so that it could move any possible operand to any
possible location. Once this was accomplished, the other ALM macros could recursively
invoke the *move ALM macro to place the operands in the appropriate locations, perform
the operation, and move the result to the appropriate destination. This made writing each
ALM macro much simpler. For example, using the old technique, the ALM macro for
*wplus2 might appear as: :

% Defines the ALN macro expansion table for addition.
(defcmacro *wplus2
% First part tests thes type of the operands, and the second
% is the list of instructions. ARGONE :-:fers to the firat
% ALN operand, ARGTWO is the second, etc.
((SRegP SRegP) (add ARGONE ARGTWO))
((SRegP ARegP) (move ARGETWO (reg §6))
(add ARGUNE (reg 56)))

I Researchers at the I niversity of Utah are currently developing a new compiler, EPIC,
which generates better code than the current PSL compiler and takes advantage of three-
address instruction sets.

Optimizing PSL for the Cray 0

((ARegP SRegP) (move ARGONE (reg S6))
(add (reg 56) ARGTWO)
(move (reg S6) ARGONE))
((SReP SmalllnumP) (move ARGTWO (reg S8))
(add ARGONE (reg 56)))

. THERE APE NANY NCRE POSSIBLE OPERANDS

The example demonstrates that this is a tedious process. Using the recursive technique,
this could be written as followe (notice that there is only one actual generation of the add
CAL instruction, which makes the code easier to modify):

% Define the *wplus2 ALN macro using recursive expansion.
% Addition instructions must operate in the S registers.
(defcmacro *wplus2
((SRegP SRegP) (add ARGONE ARGTWO))
% AnyP will match any possible operand.
((SRegP AnyP) (*move ARGTWO (reg s6))
(*add ARGONE (reg S6)))
((AnyP SRegP) (*move ARGONE (reg §6))
(*add (reg S6) ARGTWO)
(*move (reg S6) ARGONE))
% No predicate is the otherwise clause.
((*move ARGONE (reg S6))
(*move ARGTWO (reg S7))
(*add (reg S6) (reg S7))
(*move (reg S6) ARGONE))

Once the cross-compiler was successfully built, the next step was to try the various
parts of the test series. Before we could perform the first test, some additional support
code had to be written on the Cray to interface the cross-compiled code to Cray system
functions, for example, I/O routines. Since Fortran is the high-level language of choice
on the Cray, it was used to implement all of the operating system interface code. The
only difficult part of this process was determining the appropriate calling mechanism so
that the generated CAL code could call Fortran code and coercing of data types between
the two languages. The Fortran provided on the Cray is fairly rich in its capabilities and
made manipulation of the various data structures quite reasonable. The main goal of the
first test was to verify that the Fortran code and the techniques for its interface were
working (without working output capabilities, it is difficult to verify that various parts of
the system are working).

The bootstrap process then continued through each of the tests until eventually a full
PSL kernel was completed. Progress slowed at that point until the resident assembler

Optimizing PSL for the Cray 0

could be defined and an interface to binary files could be implemented. Cnce those were
accomplished, the initial version of Cray PSL was released and we turned out attention to
further optimizations.

5. Tuning the Implementation

Once PSL was successfully implemented, we ran a set of LISP timing benchmarks
developed by Gabriel (5]. The benchmarks were executed on the Cray, and the results
were compared to their execution in PSL on other machines. As expected, the benchmarks
ran more quickly on the Cray. However, all the power of the Cray was not realized. For
instance, translating from an ALM with 15 general-purpose registers to the Cray with its
many special-purpose registers was a complicated task, one that the initial implementation
did not do well. Few of the T registers were used, the S register usage was not scheduled,
and no vector registers were used.

At this point an optimization effort was undertaken at Los Alamos and the University
of Utah. Several ideas were proposed, some of which were implemented, some rejected
and, at this point, some are still being considered. These optimizations ara detailed below.

A major feature of the Cray architecture when determining optimizations is the large
ratio between memory and register access time. On the Cray the ratio is about 14 to 1,
while on more conventional architectures the ratio is around 4 to 1. Since most of LISP’s
interaal activity is accessing memory, as much information as possible must be maintained
in registers. The Cray provides block move instructions that permit mcvement of multiple
words to or from memory at a cost of only one extra clock for each additional werd.
Therefore, optimizations that combine accesses into block movement are advisable for the
Cray. Using this concept, we found a number of potential optimizations that attempt to
use the registers versus memory locations.

The first optimization involved moving the stack into registers. One thought was to
move the entire stack into all of the vector registers (8 vectors, each with 64 elements,
each 64 bits wide), which would provide a much faster stack. However, there are no
instructions for accessing a variable vector register nor a variable register index; thus we
could not implement a movable top-of-stack pointer. An idea along similar lines was to
move the stack into the T registers (64 registers, 64 bits wide), but they also do not permit
variable access to a register. The final solution was to allocate the current stack frame to
a gset of the T registers. Since all accesses to frame locations are performed using compile
time constants, registers could be used effectively. For example, access to the first frame
location could map into T20 and the second frame location would be T21. Using the T
registers, access to each frame location is performed in 1 clock cycle, instead of the 14
before. Offsetting this advantage is that upon function entry and exit, the stack frame
must be rolled to and from memory. However, this could be accomplished using fast block
transfer. Another disadvantage is that the number of available T registers puts a limit on
the size of a frame. This limit could be increased by using vector registers instead of T
registers, but we have not found this necessary.

A similar ontimization was to keep heap pointers and other heavily used global variables
in T registers instead of memory locations. These two sets of optimizations resulted in an
improvement of approximately 25% iu speec Because of the extra code required to move
the staci: frames to and from memory, the size of the code increased by about 10%.

An important optimization in the garbage collector takes advantage of the Cray's large

Optimizing PSL for the Cray 0

word size. PSL on the Cray uses a mark-and-sweep compacting collector. One feature
of this scheme is that the collector must compute the distance that each word must be
relocated, and then store that distance. Generally a separate relocation ‘able is used to
store this relocation distance for each segment witkin memory. On the Cray, a 64-bit word
represents each LISP item (a LISP cons cell requires two 64-bit words). PSL’s tagging
scheme allocates 8 tag bits and 24 poiater bits per item, leaving 32 bits left over. Since
the maximum relocation distance can never exceed the addressing size, 24 of the 32 bits
are used to store the relocation distance for each word. Eliminating the relocation table,
and the extra memory references to it, doubled the garbage collection speed.

An optimization that we have considered, but Lave not yet implemented, is to use
the vector registers while performing garbage collection. During the marking and pointer
adjustment phases, each of the primary data structures are scanned to find active data.
The stack and symbol table are scanned in sequential order, sn we could block move them
into a vector register (64 words at a time) and then scan from the vector registers instead
of memory. Since a random memory access requires 14 clocks, while a block move to vector
registers requires 2 clocks per access, we could reduce the access time for these structures
by a factor of 7.

Sonie operations on {be Cray, such as integer division, are fairly difficult to implement
directly in assembly language, and so were first implemented as calls to Fortran library
routines. Some of these: are now implementec as in-line code.

Generally, other implementations of PSL hand code critical parts of the system to
improve speed. The original Cray implementation was the most portable implementation
to date (which meant that less hand crafting was required to get the iritiai version func-
tioning). The Gabriel benchmarks helped reveal areas that required tuning. Generally the
timing ratios between the Cray and other PSL implementations should be fairly consistent.
Ratios indicating poor Cray perforraance revealed areas that could be improved through
hand coding. For example, it appears that one candidate is the lambda and fluid binding
mechanism as illustrated by tbhe relative performance of ST:k. This optimization hasn’t
been accomplished yet, but should result in significant speed improvements in programs
like REDUCE that make fairly heavy use of fluid binding. On the Cray, hand-coded
routines should attempt to use register scheduling, as we!l as to minimize references to
memory. i

Optimizing PSL for the Cray 0

Table 1 shows the improvements in the Gabriel benchmarks resulting from those op-
timigations that wa have currently implemented. The benchmark programs are briefly
described below.

BOYER - a “theorem prover” emphasizging the use of *iypical® LISP structure manipula-
tions;

BROWSE - an “expert system™ emphasising the use of pattern matching and of frames
for knowledge storage;

DESTRUCT - a program emphasizing the use of destructive list operations such as rpiaca
and rplacd;

ST:zk - a program that times function calls using fluid (special) binding;
PUZZLE - a game implemented using many vector references; and
TRIANG - a board game benchmark.

Table 1.
Real Time in Milliseconds
PSL
Benchmark Old New New/Old
BOYER 34 24 0.71
BROWSE 84 6.0 0.71
DESTRUCT 04 03 0.75
STak 1.1 0.9 0.81
PUZZLE 1.0 0S8 0.80
TRIANG 144 127 0.88

6. Timings

Tables 2 2nd 3 illustrate the execution speed of PSL relative to that of other dialects of
LISP on the VAX 11/780. For the sake of brevity, results are given for just a few of
Gabriel’s benchmarks. These results, however, are typical. An entry of “-® means that a
benchmark was not able to execute in that dialect of LISP at the time these figures were
collected. These results seem to show that PSL is a very fast LISP on “conventional®
architectures.

Table 2.
Reul Time in Milliseconds
iVAX 11/780
INTERLISP - VAX COMMONLISP FRANZLISP PSL
BOYER 53.3 87.7 71.6 413
BROWSE 111.5 205.0 170.3 50.3
DESTRUCT 5.4 6.4 13.7 3.9
STak 9.7 4.1 6.3 5.4
PUZZLE 110.3 47.5 - 163

TRIANG 1076.5 360.9 - 222

Optimizing PSL for the Cray)

Table 3.
Normalized Execution Times
(shortest execution time = 1.0)
VAX 11/780

INTERLISP VAX COMMONLISP FRANZLISP PSL
BOYER 1.3 21 .7 10
BROWSE 2.2 4.0 34 10
DESTRUCT 1.4 1.6 35 1.0
STak 24 1.0 1.5 13
PUZZLE 6.8 29 - 10
TRIANG 5.1 1.7 - 1.0

Once PSL was successfully implemented on the Cray, Gabriel’s benchmarks were executed
and the results were compared to their execution on other machines. Tabies 4 and 5
summarize these results.

’I‘aBle 4.

Real Time in Milliseconds
PSL

Cray VAX 11/780 DEC-20 ICM 3081
BOYER 2.4 41.3 23.6 4.6
BROWSE 6.0 50.3 28.7 6.3
DESTRUCT 0.3 3.9 24 -
STak 0.9 5.4 2.7 1.7
PUZZLE 0.8 16.3 15.9 1.5
TRIANG 12.7 212.2 86.9 25.4

Table 5.
Normalized Execution Times
(chortest execution time = 1.0)
PSL

Cray VAX 11/780 DEC-20 IBM 3081
BOYER 1.0 17.2 9.8 1.9
BROWSE 1.0 8.4 4.8 1.1
DESTRUCT 1.0 13.0 8.0 -
STak 1.0 6.C 3.0 1.9
PUZZLE 1.0 20.4 19.9 1.9
TRIANG 1.0 16.7 6.8 2.0

Optimizing PSL for the Cray 0

The REDUCE distribution includes a standard timing benchmark. Table 6 presents the
time required for its execution on several different machines. All but the S-810 implernen-
tation are based upon PSL.

Table 6.
REDUCE Timings in Seconds

S-810 2.8
Cray 3.0
DEC-20 25.0
HP9836U 55.0
VAX 11/780 60.0
APOLLO 80.0
VAX 11/750 90.0

7. Summary and Areas for Future Work

PSL has been successfully implemented under CTSS on the Cray. The use of the test
series proved to be valuable and permitted an incremental approach to the development
of the PSL kernel. It has helpcd to make PSL even more portable. Sites currently running
Cray PSL include Los Alamos National Laboratory, the National Magnetic Fusion Erergy
Computer Center at Lawrence Livermore National Laboratory, Kirtland Air Force Base,
and the Center for Supercomputer Applications at the University of lllinois. Performance
studies indicate that this implementation provides one of the fastest LISP environments
currently available. However, all the power of the Cray has not been realised. In mapping
from an ALM with 15 general-purpose registers, it was extremely difficult to inake efficient
use of the m~ny special-purpose registers and vector processing capabilities of the Cray.
This resulted in an implementation with many possible areas of optimisation. Some areas
under consideration now include scheduling of registers and using the vector registers
during garbage collection.

8. Acknowledgments

We acknowledge the contributions made to the implementation effort by Bruce Curtiss
of the National Magnetic Fusion Energy Computer Center and Dana Dawson of Cray
Research, Inc. We also thank other members of the Utah Portable Al Support Systems
Project for their discussions on potential optimisations and Dr. Martin Griss, referred to
by many as the father of PSL. Wa also thank Richard Gabriel for the many benchmarks
and results he supplied and allowed us to cite in this paper.

9. REFERENCES

(1] J. B. Marti, A. C. Hearn, M. L. Griss, and C. Gries "Standard LISP Report,”
SIGPLAN Notices 14,10 (October 1979).

(2] A.C. Hearn, REDUCE 2 Users Manual, Utah Symbolic Computation Group
Report UCP-19, Computer Science Department, Univensity of Jtah, Salt
Lake City, 1973.

Optimizing PSL for the Cray

(3] M. L. Griss, E. Benson, and G. Q. Maguire, Jr., “PSL, A Portable LISP
System,” The Proceedings of the 1982 ACM Symposium on LISP and Func-

tional Programming, Carnegie-Mellon University, Pittsburgh, August 1982,
pp. 88-96.

[4] M. L. Griss, E. Benson, R. Kessler, S. Lowder, G. Q. Maguire, Jr., and J. W.
Peterson, PSL Implementation Guide, Utah Symbolic Computation Group,
Computer Science Department, University of Utah, Salt Lake City, 1983.

(5] R. P. Gabriel, Evaluation and Performance of LISP Systems, MIT Press,
1985.

