
LA_uR-86-2662

.
LA-uR--86-2662

DE86 013818

TITLE’ m ~ ~ ANDOFMMIZATIONOF POKMBLELISP FOR THE CRAY

AUIWOR@): J. Wayne h&ram, C-10
Robert R. Kessler, University of Utah
William F. Galway, university of Uteh

SUBMITTEDTO,The 20th Annual Hwaii Intemtiml Cmference m Systm Scimces
Hmolulu, Haw3ii
Janwm+ 6-9, 1987

This rqxrrt wnsprepcd m nn uccoonl or work spontwwdby ●n ngoncy of the UnltaJ SImee
(kwernmcnt. Nchher the United SiaIe~ Oowrnment nor mry ●pcy Ihord, nor ●y of Iholr
cmp~cycce,mukcc mry wnrrmrty, cxprcea or implied, or ncsumceany IwI llnbillty or Wpnml”

hillly for Ihc ●ccuracy, wmplclcrr-, or tmefulncaeof wry Informclkw warnluh Prorfud,or
prrrixns didrccd, or rcpr~ntn Ihnl IIS um wwld no4 Infrinp Prlvmtely owrrul rlghtn. Refor-
ance hcrcln [o wry mpeclricctrmmcrolal product, procma, or wvlcc hy trade rmma, tr~dcmark,
mmruftctumr, or oiherwhe doa not nocanarlly comtlluto or Imply Itn endorsement, rccom.
mendatkm, or favtrrlng hy the Unlmd St-t= Oovernmonl or ●ry ●rncy thereof,The vlewt
d ophrlom of mrlhofc cap-d homln do not n~~~y It~t@ w Mfl~ Ih* Of lhc
lhrllcd Staloc tirnment or mry ngoncy them+

LOSNl~DililOSL..AlamosNewMexico87545
Los Alamos National Laboratory

*
~om w on M
9? NO tcn w

l)Isl IIIUU I IUII (Ji Itll:; IJWUMLN’I’ IS lJNUMITEQ

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

The Implementation and Optimization
of Portable Standard LISP for the Cray

J. Wayne Andemon
C-10, Computer User Servicee

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Robert R. Keasler and William F. Galway
Utah Portable Artificial Intelligence Support Systems Project

Computer Science Department
Univeraitv of Utah

Salt Lake City, Utah 84112

ABSTR ACT

Portable Standard LISP (PSL), a dialect of LISP developed at the University of Utah, has
been implemented on the CRAY- la and CRAY X-A4PSat the Los Alamos National Labora-
tory and at the National Magnetic Fhsion Energy Computer Center at Lawrence Livermore
Nati~nal Laboratory, This implementation waa developed using a highly portable model
and then tuned for the Cray architecture. The speed of the resulting system is quite
impressive, and the environment is very good for symbolic proceeding.

TYork supported in part by the I wughs Corporation, the Hewlett Packard Corporation, the International

I)uslness Lhkhines Cmporation, the National Science Foundation under grant uumbem MCS81-21760 and

MCS82-04247, the Drfcnse Advanced Renemrr Projects Agency under contract number DAAK1l-84X-0017,
‘1

nnd the U, S. Department of Energy under c@ract number W-740& Eng,3&

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITU
//”/1

Optimizing PSL for the Cray 1

1. Introduction

Research at the Univemity of Utah toward developing a portable LISP system received
impetus in 1979[1] when a model for a standard LISP subset was developed to make
the REDUCE [2] symbolic algebra package more portable. This research effort has since
produced prqressively larger and more portable subsets of LISP [3], the most r=ent of
which is Portable Standard LISP (PSL).

The goals of the designem of PSL were to provide a uniform LISP programming en-
vironment across a spectrum of machines, to produce a portable system comparable in
execution speed to other non-portable LISP systems, and to effectively support REDUCE
on different machines, PSL has met these goals and ia currently being distributed for
DECSystem-20s, VAXS running both UNIX and VMS, HP9836s, Apollos, Suns, IBM 370
clasa machines with CMS, Goulds, and a small version for the Macintoah. PSL is ready
for distribution to Craya running the CTSS and COS operating systems. This wide range
of machines demonstrates the ease with which PSL is ported.

There are several reasons for wanting LISP on Cray supercomputera. One is the interest
in having symbolic programming environments on one of tho most powerful machinea
available. This would provide the capability of solving symbolic problems that would not
be feasible to solve on less powerful systemn. There is alao interest in tha possibility of
combining symbolic methods with some of the large numeric programs typical of large
supercomputers.

In this paper we continue with a discussion of the porting process used to implement
PSL on the Cray, followed by a discussion of the tuning that waa performed. We then
discuss some of the timing results, and conclude with pmposah for future work.

2. Porting of PSL

PSL is actually implemented in PSL itself. Most of the code is written aa plain PSL
functions, while some parts are actually written in SYSLISP [2], an enhanced verrion of
PSL that permits the allocation and access to untagged data structures, construction of
explicit pointers, etc. Since the system is written in terms of itself, it is ported to a new
processor through the use of the PSL compiler (originally knowu as the Portable LISP
Compiler [3]). A running PSL compiler is modified into a cress-compiler, so that instead
of generating code for the current macldne, it generates code for the target machine. The
code defining the PSL system is then sent through the cross-compiler to create a PSL
system that runs on the target machin~. The compiler itself is then sent through the
cross-compiler and added to the system on the target machine. Once that ia accomplished,
the PSL on the target machine is capable of self=building and can be used for further
optimization and enhancements.

Although conceptually simple, tde porting Froceas generally takes about six man-
months to complete for each new target machine. Ths early phases of the process are
involved with creating the cmse-compiler [4], Much of the compiler is syotcm independent;
however, parts must be customised for each target machine. The initial part of the PSL
compiler tranalatea PSL code into instructions for the Abstract LISP Machine (ALM) The
ALM io characterized aa follows:

I. Fifteen general-purpose registers, which are used for local computations and
the paaaing of arguments to functions. The first register is used to return

Optimizing PSL for the Cray

2,

3.

4.

5.

the value from the function.

Stack frames that are used for saving return addresses, temporary calcula-
tions, and temporary values between function calls.

Caller save model, in which ea~ function saves any values to the stack frame
that are needed after the call to another function.

A set of about 50 instructions that defines the various operations of the
ALM. Many are standard data movement, arithmetic operations, and func-
tion calls, while othere are LISP-specific (like lambda binding for bindiug
lambda variables).

A set of addressing modes that vary in complexity from simple immediate
operands to car and cdr.

The process of translating from the ALM to the target machine (’I’M) is performed
through macro expansion. PSL uses the LISP Assembly Progmm (LAP) format for both
the ALM and TM instructions, which consists of an operator followed by one or more
operands. Typical LAP format instructions are (ALM instructions are indicated with a
leading asterisk (*) on the operator symbol):

(NOVE (INDIRECT(REG 1)) (REG 2)) % TN - movo indirect register
% 1 Into regletor 2.

(*WPLUS2(REG 1) (CDR (REC 2))) % ALN - Add the Cdr of register
% 2 to register 1.

Once the TM instructions have been genemted, the compiler hae three final phases:

1.

2.

3.

Assemble the TM instmctions into binary code and save the code in memory
for execution. This is used when compiling PSL code for immediate use.

Assemble the TM instructions into binary code and save the code in a FASL
(fast load) binary file for execution in some future PSL system.

Directly translate the TM instructions into assembly language. The assembly
language can then be aseembled by the target mac~ne and finked and loaded
into the run-time system.

The last pham is used when transporting the PSL kernel to the target machine. Thus,
a cross-compiler ig generated when the following deps are taken:

1.

2,

3,

Determine a mapping from the stmcture of the ALM into the TM (e.g., are
the fifteen general-purpose reghtera represented, does the stack grow up or
down, etc.).

{
Write the macros that translate from the ALM instructions into a sequence
of TM instructions,

~anslate from the TM LAP instructions into TM aeeembly instructions.
This includee the generation of the preamble and postamble code that must
be included with each assembly language filet

Optimizing PSL for the Cray o

- S. The Test Series

Before the Cray implementation, one of the problems with the transportation of PSL
waa that once the croee-compiler W= built, the entire PSL kenel had to be compiled
into target machine aseembly code and aaaembled on the target machine. PSL without
the compiler ie approximately 1O$MOlinee of code, which expands into about 125K of
aeaembled code space. This large amount of code makea implementing a PSL for a new
machine tedious and time consuming. To solve this problem, we designed the teat eeriea
as a atepby-step aI , .Iachto gcnemting a PSL kernel. The ted series slowly builds the
various parts of the x+L kernel, incrementally teeting each part. This permits small files
to be sent to the target machine where they are aeuembled and tested. When teds don’t
work, generally the croee-compiler needs to be repaired, and the tests need to be performed
again. The firstteatattemp~sto verify that timple input/output (1/0) is working correctly,
which can then be used in later tests tc indicate the status of each test. The teet series
ha been designed eo that once each teet haa bem completed, the next test uees the code
from all of the previoue teets, along with new code, to develep the next part of the system.

There are two teat eeriest one with nine simple teets and the eecond with eleven teet~,
that eventually reeult in a full PSL kernel and compiler. The first teet serieu haajuet enough
parts of the PSL kernel to verify the code gener~tion routinee, the aweznbly language
constructs, and the interface to the target machine operating system (like chmtcter 1/0,
file 1/0, terminating the taak, signaling an emor, etc.). These teats are small enough
that transportation of their code to the target machine and teeting is relatively easy.
On completion of the ninth ted, a simple PSL kernel has been built, including file 1/0,
garbage collector, and EVAL. At this point we can be fairly confident that cross-compiler
is generating good code and can move on to the second t-t seriee.

The second test eeriea in more extensive in that it bnnga in the various parts of the
PSL kernel in complete detail. When the tenth teat is reached, a complete PSL kernel
hae been constructed. The eleventh teat ie then ueed to build the PSL compiler. This
requires more customisation for the target machine, because it must be able to aasemble
the TM LAP code into directly exectuable binary code. It must aloo be able to perform
binary 1/0 and save generated binary code into Ioadable mmlulern.Once accomplished, the
compiler itself can be translated into a Ioadable module. At the end of the eleventh test,
tho compiler was included ao a part of the PSL kernel. This results in the kernel being
larger than neceaeary u we now have the compiler in a stand-alone form. We, therefore,
reetore the kernel to the way it wm at tha end of the tenth test.

4. The Cray Port

Our Cray implementation began in Juno 1982 when a meeting wae held at the Uni-
vmuity of Utah to outline the effort. By July 1984 the ?SL interpreter and compiler were
available for uee on all CRAY- 1s and CRAY X-MPS at the Loe Alamos National Labo-
rato~. Soon thereafter, PSL w~ also available on the Crays at the National Magnetic
Fusion Energy Computer Center of Lawrence Livemnore National Laboratory, REDUCE
waa subsequently implemented at both sites. This procem took much longer than the typ-
ical nix man-months rquired for most implementations of PSL. This is primarily becauee
it wu accomplished using part-time efforte, equivalent to approximatdy 12 man-months.
Many of the early problems were related to getting reliable network accem to machines and

Optimizing PSL for the Cray o

to delays caused by the tmnsfer of many large filee between the development machines and
the target Cray. The effort required to implement PSL on the Crays, while non-trivial,
waa much leas than that required to implement a non-pctiable dialect.

One of the first decisions Lugenemting Cray PSL wae deciding which hine should
be used aa the crow machine. The original host waa a DECSystem-20 at the University
of Utah. Early development efiorts included the generation of the Cray asaembly code on
the DecSystem-20 and shipping it acrosa four machines until it finally wwhed a Cray at
the National Magnetic Fhsion Energy Computer Center in California Going through so
many machinea and networka was a laborious process. Later, we moved the development
effort to a heat VAX 11/780 nmning BSD UNIX at Los Alamoa National Laboratory.
This facilitated the effort aa the VAX eoeentially w= connected airectly to a Cray at Los
Alanxm, thus virtually eliminating the time required to ship files.

The next step wae determining the mapping of ~he architecture of the ALM into the
Cray. If the vector register capabilities of the Cmy are ignored, the Cmy is very RISC-like.
There are few addressing modes and few computational regietem (once in which arithmetic
operations can be performed), but a large number of cache-like extm regiatem (sixty-four
64-bit registem and sixty-four 24-bit regietem). The Cmy word sise ia 64 bite, ao we decided
to repmaent a LISP item (tag and information part) in a single word. There was quite
a debate (and there still is), about whether we should pack two LISP items into a aing!e
word or just use one word per item. We decided that it ma better to go for speed of
accesa (its cheaper to just retrieve a tingle word than retrieve a word and then mask off
the appropriate part) than sise of the hsap. Another factor was that there was no other
implementation where more than one LISP item could !it in a word: thus the code would
have to be ckked to make sure that it waa written properly and would not be confused
with this new representation.

The large number of registem made mapping the ALM registem into the Cray registem
easy. Five of the eight S-regintem (64-bit computational registers) were chosen to repre-
sent the tlmt five ALM regiatera. The timt S=register (SO) is special and mainly uwd for
comparison operations; thus it w left aloae. The remaining two regietem weru designated
as temporaries and uaecl by the macros that mapped from the ALM instnction into TM
instructions. The remaining 10 ALM registem were allocated to the bank of T registemI(the sixty-fcur 64-bit cache registem). These registem may not be directly involved in a
computation, but may be rmved to ttie S registem in one clock cycle. Another T register
was permanently aseigned the value of NIL becaum it is used in so many comparisons.
The eight A regiatem (24-bit address registem) were allocated for temporary addressing
calculations, and one was allocated aa the stack pointer. All of the vector registers and
their instnactiona were ignored because no direct relationship between them and the ALM
ifistructions could be found.

One major problem with the Cray port was the significant difference between the Cray’s
aasembly language (CAL) and the standard LAP format. Nearly all other computers use
an operator followed by operand fomnat for their aasembler, but the Cmy is si~illcant Iy
different. CAL uaeaa semi-infix notation for itsinstructions, where the destination operand
ia the firstelement and the source operands w next enumerated with infix operators. For
example, the CAL instructioti

SI sa+s3

Optimizing PSL for the Cray (]

adds the contents of register S2 to that Of register S3 and stores the result in register S1.
Thus the format of CAL instructions is along the lines of the following:

destination operand opcode operand

which is quite different from LAP format and from the assembly format used by other
machines on which PSL was implemented.

To deal with this problem, we introduced one extra step in the translation process.
The target machine instructions were written out as CAL macros that more closely match
LAP format. These were then expanded by the CAL assembler into standard CAL format.
This trick permitted a more natural debugging environment because we were able to look
at the macros that were generated and did not have to worry about the nonstandard CAL
syntax.

The previous example of CAL code introduces another interesting characteristic of
the Cray. It uses t hree-wldrem instructions. The ALM instruct~ons are all two-address
instructions; since all two-address instructions are subsets of three-address instructions,
they did not present any initial problems. However, th: I was indeed a restriction because
more efficient code could be generated for a three-address machine than for a two-address
machine. We are currently exploring ways to take advantage of the thre-address code.1

One final note that characterizes the Cray version of PSL from tue previous versions
is the use of recursive ALM to ‘I’M macroa. In the past, most of these macro tables
were written independently, where each ALM instruction carefully determined the various
operand locations and generated the appropriate code to perform the requested operation.
Thus, a *wplus2 macro (which performs addition) would test to see if the arguments are in
registers or in memory. In either case, appropriate but different code would be generated.
If the arguments were not in registers, before generating the code to perform the addition,
code may be generated to move the arguments into registem. The solutio~ for the Cray was
to carefully code the *move ALM macro so that it could move my poseible operand to any
possible location. Once this waa accomplished, the other ALM macros could recursively
invoke the *move ALM macro to place the operands in the appropriate locations, perform
the operation, and move the result to the appropriate destination. This made writing each
ALM macro much simpler. For exa~ple, using the old technique, the ALM macro for
*wplua2 might appear as: .

% Defines the ALMmacro expanalon table for addition.
(d~fcrnacro *wpluo~

% First part test- the type of the operands, and the second

% IS the list of Instructions. ARCONE:*sfers to the tirot

%MJ4 operand, ARGTWOIs the sucond, etc.

((SRegP SRegp) (add ARGONEARGTUO))

((SRegP ARegp) (move ARGETWO(reg S6))

(add ARGONE(reg S6)))

1 Researchers at the University of Utah are cumently developing o new compiler, EPIC,
which generates better code than the current PSL compiler and takea advantage of th rea-
ddress instruction sets.

Optimizing PSL for the Cray o

((ARegP SRegP) (move ARGONE(reg S6))

(add (reg S6) ARCTWO)

(move (reg S6) ARGONE))

((SReP SmallInumP) (move ARGTWO(reg S6))

(add ARGONE(reg S6)))

. . . TliERE AM NANY 140REPOSSIBLE OPERANDS

The example demonstrates that this is a tedious process. Using the recursive technique,
this could be written as follows (notice that there is only one actual generation of the add
CAL instruction, which makes the code easier to modify):

% Define the *wplus2 AIM macro using recureive expanalon.

% Addition instrnctiono must operate in the S registers.

(defcmacro *wplus2

((SRegP SRegP) (add ARGONEARGWO))

% Anyp wiU match any possible operand.
((SRegP AnyP) (*rime ARGTWO(reg s6))

(*add ARGONE(reg S6)))

((AxIyp SRegp) (mm MGONE h? W]
(*add (reg S6) ARGTUO)

(*move beg S6) ARGONE))
% No predicate Is the otherwise clause.

((*move ARGONE(reg S6))

(*move ARGTWO(reg S7))

(*add (reg S6) (reg S7))

(*move (reg S6) ARGONE))

Once the cross-compiler wasmccessfully built, the next step was to try the various
parts of the test series. Before wecohld perform the first test, some additional support
code had to be written on the Cray lo interface the cross-compiled code to Cray system
functions, for example, 1/0 routines. Since I?ortran is the high-level language of choice
on the Cray, it was used to implement all of the operating system interface code. The
only difficult part of this process was detemaining the appropriate calling mechanism so
that the generated CAL code could call Fortran code and coercingofdata typea between
the twolanguagee. The Fortran provided onthe Cray is fairly nchinits capabilities and
made manipulation of the various data structures quite reasonable. The main goal of the
first test wasto verify that the Fortran code and the techniques for its interface were
working (without working output capabilities, it is di!llcul ttoverif ythatvarious partsof
the system are working).

The bootstrap process then continued through each of the tests until eventually a full
PSL kernel was completed. Progress slowed at that point until the resident assembler

Optimizing PSL for the Cray o

could be defined and an interface to binary files could be hnplernented. Once those were
accomplished, the initial version of Cray PSL was released and we turned out attention to
further optixnizations.

5. Tuning the Implementation
Once PSL was successfully implemented, we ran a set of LISP timing benchmarks

developed by Gabriel [5]. The benchmarks were executed on the Cray, and the results
were compared to their execution in PSL on other machines. As expected, the benchmarks
ran more quickly on the Cray. However, all the power of the Cray was not realized. For
instance, translating from an ALM with 15 general-purpose registers to the Cray with its
many special-purpose registers was a comphcated task, one that the initial implementation
did not do well. Few of the T registem were used, the S register usage was not scheduled,
and no vector registers were used.

At this point an optimization effort was undertaken at Los Alamoe and the University
of Utah. Several ideas wene proposed, some of which were implemented, some rejected
and, at this point, some are still being considered. These optirnizations are detailed below.

A major feature of the Cray architecture when determining optimization is the large
raiio between memory and register access time. on the Cray the ratio is about 14 to 1,
wbile on more conventional architectures the ratio is around 4 to 1. Since most of LISP’s
internal act ivity is accessing memory, as much information as possible must be maintained
in registers. The Cray provides block move instructions that permit mcvement of multiple
words to or from memory at a cost of only one extra clock for each additional word.
Therefore, optimization that combine accesses into block movement are advisable for the
Cray, Using this concept, we found a number of potential optimization that attempt to
use the registers versus memory locations.

The first optimization involved moving the stack into registers. One thought was to
move the entire stack into all of the vector registers (8 vectors, each with 64 e!ements,
each 64 bits wide), which would provide a much faster stack. However, there are no
instructions fm accessing a variable vector register nor a variable register index; thus we
could not im~lement a movable top-~ stack pointer. An idea along similar line? was to
move the stack into the T registers (64 registers, 64 bits wide), but they also do not permit
variable access to a register. The final solution was to allocate the current atack frame to
a set of the T registers. Since all accesses to frame locations are performed using compile
time constants, registers could be used effectively. For example, access to the first frame
location could map into T20 and the second frame location would be Tz1. Using the T
registers, access to each frame location is performed in 1 clock cycle, instead of the 14
before. Offsetting this advantage is that upon function entry and exit, the stack frame
must be rolled to and from memory. However, this could be accomplished using fast block
transfer. Another disadvantage is that the number of available T registers puts a limit on
the size of a frame. This limit could be increased by using vector registem instead of T
registers, but we have not found this necessary.

A similar optimization was to keep heap pointers and other heavily used global variables
in T regiqters instead of memoxy locations. These two sets of optimization resulted iii an
improvement of approximately 25% iu speed Because of the extra code required to move
the stack fiamea to and from memory, the size of the code increased by about IQ%.

An important optimization in the garbage collector takes advantage of the Cray’s large

Optimizing PSL for the Gay o

word size. PSL on the Cray uses a mark-and-sweep compacting collector. One feature
of this scheme is that the coflector must compute the distance that each word must be
relocated, and then store that dist ante. ~enerally a separate relocation table is used to
store this relocation distance for each segment within m~mory. On the Cray, a 64-bit word
represents each LISP item (a LISP cons cell requires two 64-bit words). PSL’S tagging
scheme allocates 8 tag bits and 24 poiater bits per item, leaving 32 bits left over. Since
the maximum relocation distance can never exceed the addressing size, 24 of the 32 bits
are used to store the relocation distance for each word. Eliminating the relocation table,
and the extra memory references to it, doubled the garbage collection speed.

An optimization that we have considered, but have not yet implemented, is to use
the vector registers while performing garbage collection. During the marking and pointer
adjust ment phases, each of the primary data stmctures are scanned to find active data.
The stack and symbol table are scanned in sequential order, so we could block move them
into a vector register (64 words at a time) and then scan from the vector registers instead
of memory. Since a random memory access requires 14 clocks, while a block move to vector
registers requires 2 clocks per access, we could reduce the access time for these structures
by a factor of 7.

Some operations on the Cray, such as integer division, are fairly difficult to implement
directly in assembly language, and so were first implemented as calls to Fortran library
routines. Some of theec are now implemented as in-line code.

Generally, other implementations of PSL hand code critical parts of the system to
improve speed. The original Cray implementation was the most portable implemental ion
to date (which meant that less hand crafting was rquired to get the initiai version func-
tioning). The Gabriel benchmarks helped reveal areas that required tuning. Generally the
timing ratios between the Cray and other PSL implementations should be fairly consistent.
Ratios indicating poor Cray performance revealed areas that could be impmved through
hand coding. For example, it appears that one candidate is the lambda and fluid binding
mechanism as illustrated by tbe relative performance of ST:dt. This optimization hasn’t
been accomplished yet, but should result in significant spead improvements in programs
like REDUCE that make fairly heavy use of fluid binding. On the Cray, hand-coded
routines should attempt to use regist,er scheduling, as well as to minimize references to
memmy. :t

.

Optimizing PSL for the Cray o

Table 1 shows the improvements in the Gabriel benchmarks resulting from those op-
tinizations that we have currently implemented. The benchmark programs are briefly
described below.

BOYER - a “theorem proved emphasi~ing the use of “typical” LISP structure manipula-
tions;

BROWSE - an “expeti system” emphasizing the uea of pattern matchmg and of fmme
for knowledge stonge;

DESTRUCT - a program emphasizing the uee of deatructiw lid opemtiona such aa rplaca
and rplacd;

ST& - a program that tire= function calls using fluid (epecialj bindin~

PUZZLE - a game implemented using many vector references; ad

TRIANG - a board game benchmark.

‘I%ble1.
Real Time in Milliseconds

PSL
Benchmark Old New New/Old

BOYER 3.4 2.4 0.71
BROWSE 8.4 6.0 0.71
DESTRUCT 0.4 0.3 0.75
sTak 1.1 0.9 0.81
PUZZLE 1.0 0.8 0.80
TRIANG 14.4 12.7 0.88

6. Timings

~blee 2 and 3 illustrate the ex-ution epeed of PSL relative to that of other dialects of
LISP on the VAX 11/780. For the de of bruvity, rasulta are given for just a few of
Gabriel’s benchmark. Thee results, however, are typical. An entq of “-” means that a
benchmark waa not able to execute in that dialect of LISP at the time theee flguree wem
collect ed. These reeults seem to show that PSL ia a very faat LISP on ‘convent ionals
architecture.

BOYER
BROWSE
DESTRUCT
STak
PUZZLE
TRIANG

‘I%ble2.
Real Time in Milliseconds

;VAX 11/780

INTERLISP - VAX COMMONLISP FRANZLISP PSL

53.3 87.7 71.s 41.3
111.5 20s.0 170.3 Sooi#

6.4 6.4 13.7 3.9
9.7 4.1 6.3 5.4

110.3 47,5 . 16.3
1076.S 360.9 . ?12.2

Optimizing PSL for the Cray
..

Table 3.
Normalized Execution Times

(shortest execution time = 1.0)

VAX 11/780

IFJTERLISP VAX COMMONLISP FRANZLISP PSL

BOYER 1.3 2.1 1.7 1.0
BROWSE 2.2 4.0 3.4 !.0
DESTRUCT 1.4 1.6 3.5 1.0
STak 2.4 1.0 1.5 1.3
PUZZLE 6.8 2.9 . 1.0
TRIANG 5.1 1.7 . 1.0

Once PSL was successfully implemented on the Cray, Gabriel’s benchmarks were executed
and the results were compared to their execution on other machines. ~bies 4 and 5
summarize these results. -

BOYER
BROWSE
~ESTRU~

STak
PUZZLE
TRIANG

Table 4.
Real Time in Milliseconds

PSL

Cray VAX 11/780 DEC-20

2.4 41.3 23.6
6.0 50.3 28.7
0.3 3.9 2.4
0.9 6.4 2.7
0.8 16.3 15.9

12.7 212.2 86*9

‘l?able 5.
Normalized Execution Times

(ohortest execution time= 1.0)
PSL

Cray VAX 11/780 DEC-2O

BOYER 1.0 17.2 9.8
BROWSE 1.0 8.4 4.8
DESTRUCT 1.0 13.0 8.0
STak 1.0 6.0 3.0
PUZZLE 1.0 20.4 19*9
TRIANG 1.0 16.7 6.8

IEM 3081

4.6
6.3

.
1.7
1,5

25,4

IBM 3081

1.9
1.1

.
1.9
1.9
2.0

Optimizing PSL for the Cray o

The REDUCE distribution includes a standad timing benchmvk. Table 6 presents the
time required for its execution on several different machines. All but the S-810 implemen-
tation are based upon PSL.

‘Ihble 6.
REDUCE Thnkga in Seconds

S-81O 2.8
Cray 3.0
DEG20 25.0
HP9836U 55.0
VAX 11/780 60.0
APOLLO 80.0
VAX 11/7S0 90.0

7. Summary and Areas fo? lhture Work

PSL has been aucceaefully implemented under CTSS on the Cray. The use of the teat
series proved to be valuable and pemnitt ecl an incremental approach to the development
of the PSL kernel. It has helped to make PSL even more portable. Sites cumently mnning
Cray PSL include Loe Alamoe National Laboratory, the National Magnetic Ibion Energy
Computer Center at Lawrence Livmnore National Laboratory, Kirtland Air Rmce Base,
and the Center for Supercomputer Applications at the University of Illinois. Perfonmnce
atudi= indicate that this implementation provid~ one of the fruteat LISP environments
currently available. However, all the power of the Cray has not been realised. IrImapping
from an ALM with 15 genemd-purpose registem, It was extremely difficult to make ef6cient
uee of the mmy special-purpoee registem and vector procening capab$litiea of the Cmy.
This resulted in an implementation with many pc+Able areae of optimisation. Some areaa
under consideration now include scheduling of registere and using the vector registem
during garbage collection.

8. Acknowledgments

We acknowledge the contributions made to the implementation effort by Bmce Curtiee
of the National Magnetic FMon Energy Computer Center and Dana Dawoon of Cray
Research, Inc. We also thank other membere of the Utah Portable AI Support Systems
Project for their discuadons on potential optindsatlon- and Dr. M,artin Griss, refereed to
by many as the father of PSL. We also thank Richard Gabriel for the many benchmark
and results he supplled and allowed us to cite in this paper.

9. REFEltENCES

II] J. B. Marti, A. C. Hearn, M. L. Grlse, and C. Grim “Standard LISP Report,”
SKi?PLAN Notices 14,10 (October 1070),

[2] A. C. Hearn, REDUCE 2 Users Manual, Utah Symbolic Computation Group
Report UCP- 19, Computer Science Department, Univerdty of Utah, Salt
Lake City, 1973.

Optimizing PSL for the Cray o

[3] M. L. Griss, E. Benson, and G. Q. Maguire, Jr., “PSL, A Portable I,ISP
System$” The Proceedings of the 1982 ACM Symposium on LISP and F~nc-
tional Programming, Carnegie-Mellon University, Pittsburgh, Aug.lst 1982,
pp. 88-96.

[4] M. L. Grisa, E. Benson, R. Kessler, S. Lewder, G. Q. Maguire, Jr., and J. W.
Peterson, PSL Implementation Guide, Utah Symbolic Computation Group,
Computer Science Department, University of Utah, Salt Lake City, 1983.

[5] R. P. Gabriel, Evahiation aud Performance of LISP Systems, MIT Press,
1985.

