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INTERACTIVE CALCULATIONS OF ELECTRIC FIELDS*

D. L. Weiss and T. A. Oliphant
Applied Theoretical Division

Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, New Mexico 87545 USA

ABSTRACT

In many ‘experimental design situations it is valuable to know what the time-
dependent electric and magnetic fields are likely to be so that such things as elec-
tric breakdown and ohmic heating as a result of magnetic field penetration can be
estimated. Because of the advent of extensions in the speed and memory of large
electronic computers it has become easier to extend the scope of these calculations.
Even so, it is necessary to use advanced sparse matrix techniques and to take as
much advantage as possible of vectorization of code loops. In: developing these codes
extensive use has been made of the 2-D counterparts to test various aspects of the
algorithms and of the code architecture. In addition, attempis have been mude to
make the user interface to these codes as simple and easy as possible. This paper

addresses the problem of implementing this system for the 2-D calculation of electric
fields.

I. INTRODUCTION AND GOALS

In the past few years, much of the engineering drafting has been moved from
the drafting table to the computer. Digital CAD/CAM systems running on Digital
Equipment VAX's and workstations are rapidly becoming the standard technique for
engineering design. With the size and speed of our present computing machines, it
would seem that an easy connection between the drafting CAD programs and the
“physics” calculational programs is necessary and appropriate. A major complication
to this objective is that all of the CAD programs 1un on small machines while the
physics cods all run on supercomputers. Thus, for this kind of a system to be viable,
a CAD-like code that runs on the supercomputer had to be constructed.

II. THE CAD PROGRAM

The CAD-like code that has been written is presently about 12,000 lines of FOR-
TRAN and has been constructed to take advantage of both the CRAY architecture
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and the rich vector drawing/manipulation capability of the Tektronix 4100 series

graphic workstations. In its present state of completion it contains the following
modules:

Control module

Tektronix 4100 driver module

Data base handler module

Line/curve construction/modification module
Automatic mesh generator module

Link modules to “Physics” cocies

Graphics module to display results

Ll o e

The contro! module handles initialization, the general bookkeeping of memory
management and the interrelationship of the other modules.

The Tektronix driver controls the encryption of the various escape codes neces-
sary to communicate batween the CRAYS and the workstation. Associated with this
drive is another 10,000 line library containing the specific 4100 series instructions.

The data base handler links between the other CAD code outputs (to serve as
input for this code) and sets up its own random access file structure on the CRAY
for its own use. This separate data base structure was set up for reasons of efficiency.

The heart of our CAD system lies in the Line/curve construction/modification
module. This module does the actual line drawing or modification. Straight lines,
arcs, circles, conic sections, sines and cosines can be entered via either a thumb-
vheel or mouse and then modified, moved, erased, rotated or copied. Color is used
extensively to indicate differing parts of the drawing.

The automatic mesh generator allows the user to interactively pick any element
or sets of elements of the drawing and link these elements together to form the bound-
aries of the calculational mesh. Once a complete boundary is formed, an approximate
grid spacing is entered. The code then automatically sones up the boundaries. At
this point the user can manually modify this soning if desired. Once the houndaries
have been zoned the interior region can be gridded. Several different methods exist
for this function two of which include the Amsden Hirt! method and the Thomsen
Thames and Mastin method. It should be noted that the mesh produced is in general
non-rectangular and non-orthogonal. This allows us to generate close fitting bound-
ary fitted coordinate systems that maintain excellent detail of the particular problem
being analysed.

Upon completion of a calculational mesh, the link module is activated where
various boundary conditions are interactively set. The link module will then set up
a link file and proceed to execute the particular physics code selected. At present
there is only one link module. This connects with the 2-D, R-Z electrostatic solver
code d2scribed in the next section.

The final module, the graphics output module, will then read a differeat link file
produced by the physics code and produce desired output such as contour plots, or
vector fleld plots.

It should be noted that tl. entire code has been written to be a multi- window
mouse driven program in which the user never has to enter a standard 80 column
computer card image. An example of these CAD capabilities is shown in Fig. 1.
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Fig. 1. CAD generated power flow diode.

IIl. ELECTROSTATIC SOLVER

The electrostatic equation in SI units is

v.E=2L
€o

With the definition of the electrostatic potential

E=-vv
Eq. (1) becomes

viy=-2
€o

In Z,R coordinates Eq. (3) can be written as

8205V + =(ROxV) = §

-6.0

(2)

(3)



with the source S given by

s§=- 2% (5)
€o

In order to get Eq. (4) into a form suitable for symmetric differencing, the whole
equation is multiplied by R and this R in the first term is moved inside the first of
the Z derivatives. Thus,

9z(RAzV) + dr(RARV) = RS (6)
A general grid in Z,R space is shown in Fig. 2. The corresponding logical grid is
shown in Fig. 3. Physical space is related to the logical space in the functional
relationships,

Z =2Z(z,z) R=R(z,z2) (7)

The logical variables are defined in terms of integral indices by

z=k-1 z=1-1 (8)

with 1 < k < kmaz and 1 < § < $mas.

Carrying out the metric algebra one obtains

DRS = 8,(hysdsV) + 8,(hazd:V)

(9)
+ 02(h2x03V) + 0z(hee0:V)
where
Rew = _________.(R: + 'E;l
l ] Eiae D
hes = hye = "R(RIR" + le') (10)
D
,_ R(RI+Z))
zz = D
with
D = Z.Rg - Z;R. (11)

These equations are then written in simple difference forimn. Because of the way
the logical mesh iz defined we have the important simplification that Az = Az =
1. These equations are then solved by either and ADI or Multi-grid, Achi-Brandt
technique.®
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IV. RESULTS AND CONCLUSIONS

The system presently has set-up, calculated, and displayed the results for arbi-
trary 2-D meshes. An example of this is shown in Fig. 4. The boundary conditions
for this figure and a constant voltage of 100 volts on the top and bottom boundary
(R) and a zero potential on the sides (Z). Equipotential contours are plotted at in-
crements of 5 volts. The calculational mesh for this example was neither rectangular
nor orthogonal, in some spots there were even a few bow-tie zones. The solution set
for this figure was arrived at via the ADI method. In general, we have developed the
first step in a fast convenient and flexable system for setting up and running codes
of the electrostatic potential type. The next step is to link into the time-dependent
magnetic field solver (which already exists) and then to go to a fully 3-D system (for
which some “physics” codes also presently exist).
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Fig. 4 Sample electrostatic calculation.
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