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ABSTRACT

We have expressed the multiplicity distribution in terms of
supercluster production in hadronic processes at high energy. This
process creates unstable clusters at intermediate stages and hadrons
in final stage. It includes Poisson-transform distributions (with the
partially coherent distribution as a special case) and is very
flexible for phenomenological analyses. The associted Koba, Nielson,
and Olesen limit and the behavior of cumulant moments are analyzed in
detail for finite and/or infinite cluster size and particle size per
cluster. We demonstrate that in general a supercluster distribution
doe: not need to be equivalent to a negative binomi." distribution to
fit experimental data well. Furthermore, the requirement of such
equivalerce leads to many solutions, in which the average size of the
cluster is not logarithmic: e.g., it may show a power behavior
instead.

We define superclustering as a two-or multi-stage process
underlying observed global multiplicity distributions.1'4) At the
first stage of the production process, individual clusters are
produced according to a given statistical law. For example, the
clustering distribution may be described by partially coherent (or
even sub-Poissnnian) distribution models.5'7) At the second stage,
the clusters are considered as the sources of particle production.
The corresponding distribution may then be as general as the
clustering distribution just mentioned.



We shall first define the probability of having ¢ clusters as Pcr

with Epc = 1. This enables wus to calculate the associated
moment-generating function

- C
g(A) = E)\ Pc . (1)

We shall further assume that once a cluster is created, its subsequent
evolution into the experimentally-observed particles is independent of

the other clusters. The probability of creating n. particle in the j;‘h
cluster is then defined to be f (n ) with ﬁfj(nj)3= 1. With the j cluster,
J

we may also calculate its associated moment-generating function
"
. = f.(n. .
FIORE TERRFILD (2)

However, neither Pe hor fj("j) are observed directly in total
multiplicity measurements. What can be measured is the sum total of
all the particles produced by all the clusters. It is necessary to
relabel the particles in terms of an overall index N, and to
re-evaluate the corresponding probability distributions PN' With the
PN properly normalized, we get

PN = & Pe 0Py, n, f1(ng) o Flng) 8(ny +ny + .+ . - N).

and the associated moment-generating function

G(A) = ZANPN . (4)

Clearly, the overall distributisn PN is compietely determined by
the distribution Pe and fn' For the most general cases, analytical
caiculations are, however, rather tedious. There is no obvious
analytic method for further investigation. In Ref. 1), fj("j) are now
identical distributions. However, this procedure may tend to lose
information on semi-global correlations. Alternatively, we may
consider using an identical distribution f(nj) for all fj(nj)'s as a



first order approximation. This would ignore, for example, possible
differences in multiplicity distributions between the fragmentation
and central'region. The semi~global correlations are then somewhat
better preserved. For simplicity, we shall from now on assume that
the same distribution governs the evolution of each cluster, i.e.,

fy(ny) = f(ny), =1, ...¢c , (5)

50 that for all the clusters the generating functions simplify as

fj(A) = f(A), i=1, ... ¢c . (6)

The relationships between fn’ Pc and PN can now be expressed directly as

G(A) = g(p), H=~f(A) . (7)
In terms of G(A), the various factorial moments gL can then be evaluated as
L
3 G
E =— 1,29 - (8)
L a}\L A=1

For example, the Poisson X Poisson distribution (composition of the Poisson
distributions) is given by

G(A) = exp {<c> [exp (<n> (A-1))-11} (9)
Here the Poisson distributions are characterized by the average number

of cluster <c> and the average number of particles per cluster <n>;
the Ny x NB distribution is given by

6(A) = {1+ X2 [1-(1 + SR (- Many K (10)
C n

with the negative binomial distribution NB for the clusters
characterized by <c¢>, and a cell number kc; the NB distribution for
perticles within one cluster, characterized by <n> and a different
cell number kn.

Even for these relatively simple generating functions, their
associated probability functions PN are rather complicated In order
to get a better feeling of the structures of the superclustering



distributions, we shall work out explicitly several normalized
cumulant moments. We get

«N>> = N = <e><n> . (11)
i g 2 Y,(n)

rz = <<(N-N)">>/N = YZ(C) + <o (12)
_ S 33 3v,(c) 1

My = <<(N-N)">/N7 = yy(c) + —S— v,(n) + o2 ¥3(n) (13)
] SA w2 2 /ib o ¥3(c)

Ty = [<<(N-N)">> =3 << (N-N)© >>“J/N" = Y4(c) + 6 < yz(n) (14)
3 ——ZYZ(C) (v, ()% + 4 ——QYZ(C) (n) + —L5 y,(n) 15)

+ n + n+—3 n

<> Yz <c> Y3 <c> 74 (

Higher moments can be calculated in a straightforward way, and are not
presented here.

In the situation with infinite number of clusters many
simplifications occur, whether or not <n> approach ». Notice that
<c> = o allow us to ignore the contribution of yj(n) to rj completely.

Thus the rj is equal to yj(c)

Fj = yj(c), <C> = ® (16)
This is a reflection of the central limit theorem in statistics; the
scaling 1imit is completely dictated by the scattering 1imit of the
clusters. However, for large but finite <c>, both the yj(c) and yj(n)
contribute to the scaling violation of PN‘

Recently negative binomials have been used extensively to analyze
experimental data. The success of these analyses encouraged renewed
interests in the origin of negative binom1a1s.8'9) Since both the
superclustering distribution and the negative bincmial distribution
are important types of distributions, we shall now analyze their
relationship.



In order to get a negative binomial for PN, we may set the G(A)
of Eq. 7 to the form associated with negative binomial distributions.
This requirement alone does not uniquely deturmine the probability
distribution of fn' We shall first examine the special examplel) of
Giovannini and Van Hove where Pe is further assumed to be a Poissonian
distribution. The form of fn is then uniquely determined. We get

1+ <2 - = expeo> (F0-1) (17
leading to
f) =1- s 1n @+ 2 a-n) (18)

The explicity expression for fn is now

_ 4. K <<N>>
fo=l s In =) .
_ K <<N>> n 1
fo= o Kacess) 7@ "?0 (19)

Here the value of fn’ n>0 are up to a constant factor the same as
those derived by Giovannini and Van Hove in Ref. 1). However, the fo
is different. The requirement that fO =0, is in fact a rather
restrictive requirement. Notice that from the definition of Pn’ P is

0
bounded below by Pc=0' The requirement P° = Pc=0 leads te
G(0)=g(f(0)), i.e.,

(1 + 55§33)'K = exp(-<c>) i.e.,

> <N> >>
<> = K In(1 + iigl_) <n> = <<§>> N n<<N:<N>> (20)

This condition f0 = 0, in Ref.1) is a simplification for the purpose
of obtaining solutions with the least number of parameters. Consider
for example the situation where the clusters described by P May emit
neutral particles. There is then a nonzero probability that any



individual cluster may decay completely into neutrals without charged
secondaries (fn=0 #0). A more desirable restriction is for
PN=0 > Pe=g We then get Eq. 19 with <c> essentially a free parameter
as long as fo > 0.

We may construct a large number of superclustering distributions
that are equivalent to the negative binomial. This can be recognized
in Eq. 7 with choices of Pe different from a Poissonian distribution.
For instance, we may let Pe itself be a negative binomial. This leads
to

<<N>> k

[+ 52 ()1 K 1 2 era) ©
C

K
) =1+ 5 (1- 1+ <2 a1 9 (21)

As far as the cluster distribution fn is concerned, the above example
is not very different from the previous example with

k_ /K
4. K KN>> et T
fo=1- 2 [+ - ) 1] ,
(22)
-1 kc <<N>> ke/K , <<N>> \n . kc) +1 - kc
fn T (1 + - ) (<< >3+ )y Q X ... (n+l _R)' 0

In the language of Gicvannini and Van Hove, both examples are partial
stimulated emissions. However, they possess very different
distribtuion in Pe If we require fn to be zero

K/k

. K/k
) c -1] < = <KNo> | << <<N>>

< " Tk (A == ©-1]
(23)

_ <<N>>
<> = kC [(1 + -

In fact, we may construct a large class of superclustering
distributions, all equivalent to the negative binomial. In
particular, if Pe is a partially coherent distribution we need to
solve f(A) through



My = ¢PO, w = 1) (24)

If we take the form-invariant partially coherent distributions
fn = pnpc)(no, ko, m) as a generalization to replace the Poisson

distributicn, Eq. V.1 can then be replaced by
Py = & ax FPOp (PO (x w7 xk,m) (25)

where the PN(PC) (N) is the partially coherent distribution with
average N, K = cg kp-  The KNO Timit is

<N>P ~ const [ dX FPOx) % oPOarx, X, my, 2= N/<N>  (26)

where w(PC)(Z’ K, m) 1is the asymptotic KNO 1limit of the PC
distribution characterized by K and m.

The above examples show explicitly that negative binomial
distributions for the total multiplicity distribution can be
constructed in many ways. The simple example investigated by
Giovannini and Van Hove may be somewhat too restrictive. Its
dependence on the logarithmic behavior of the cluster size should
therefore be reexamined. For example, solutions for Eq. 19 and Eq. 22
are all negative binomial solutions without the logarithmatic behavior
in <n>. An additional requirement, that the probability of no charged
particle per cluster be zero, forces the solution to Eq. 19 to become
the Giovannini and Van Hove solution, Eq. 20, with the logrithmatic
behavior in <n>. However, the same requirement leads to Eq. 22 to
Eq. 23 with a power law behavior in <n> instead. After all, the whole
requirement of the equivalence between the superclustering
distribution and negative binomial distribution may not be necessary.
with a fixed hadronic multiplicity <<N>>, the requirement of an
increase in the size of <n> always corresponds to a slower increase in
the size of <c». The broadening of the KNO function in <<N>> can be
achieved without a real reed for the logrithmatic behavior <n>.



Fluctuations in the hadronic multiplicity distribution may be
naturally described by quantum stochastic processes with mixed
coherent and  incoherent conponents.s) Since superclustering
representations can be very flexible in representing experimental
data, totai multiplicity data may easily leave a number of free
parameters undetermined. This is very natural: glebal properties
should be insensiZive to a large amount of detailed information.
Recent measurements on conditional multiplicities can, however, be
very useful in eliminating many of the ambiguities just mentioned. We
also strongly urge the measureinent of correlations between conditional
probability distributions. Information on global correlations may
ultimately provide the best method of understanding the supercluster
structure of multi-particle production processes.

This research was supported in part by the U. S. Department of
Energy and the U. S. National Science Foundation.

References

1. A. Giovannini and L. Van Hove, Z. Phys. C30 (1986) 391, and
preprint in the proceeding of the XVII International Symposium on
Multiparticle Dynamics, Seewinkel, Austria (1986) (World
Scientific).

2. V. Simik and M. Sumbera preprint, Institute of Physics of CSAV,
Prague, and Nucl. Phys. Institute of CSAV, Prague, (1985). F.
Hayot and G. Sterman, Phys. Lett. (2) B (1983) 419.

W. Fiakowski, K, Phys. Letters. 1698 (1986) 436.

4, A. Biaas and A. Szczerba, reprint, Jagellonian University, Krakow
(1986).

5. P. Carruthers and C. C. Shih, Phys. Lett. 1278, (1983) 242 ibid.
Phys. Lett. 137B, (1984) 425, P. Carruthers and C. C. Shih,
preprint, to be submitted to Phys. Review (1986).

P. C. Carruthers and C. C. Shih, J. Modern Phys. A to be

published (1986).

6. C. C. Shih, Phys. Rev. D33 (1986) 3391; Univ. of Tenn. preprint,
to appear in Proceeding of the 2nd International Workshop on
local Equilibrium in Sirong Interaction Physics; Santa Fe, N.M.
April 1986 (World Scientific).



7. G. N. Fowler and E. M. Friedlander, R. M. Weiner and G. Wilk,
Ptys. Rev. Lett. 56, 14 (1986).

8. G. J. Alper, et. al. (UA5 Collaboration) Phys. Lett. 1€0B, {1985)
199.



