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MICROSCOPIC THEORY OF MULTIPLE SC.TTERING
FOR OPEN SHELL NUCLEI

Mikkel B. Johnson and M. K. Singham*
Los Alamos National Laboratory
Los Alamos, New Mexico 87545, U.S.A.

Abstract

We consider the scattering of a distinguishable projectile from a nucleus as-
suming that the underlying interaction Hamiltonian is a sum of two-body poten-
tials. We show that the effective interaction of the projectile witn the nucleus in
a truncated nuclear model space can be calculated as a linked cluster expansion.
The shell-model interaction is required to be an energy-independent, hermitian
potential; its expression in terms of the underlying two-body potential is given by
folded diagrams. The terms in the expansion of the effective projectile-nucleus
interaction must also contain folded diagrams but, unlike the shell-model poten-
tial, these are energy dependent in order to describe the singularities associated
with the crossing of the scattcring thresholds as the projectile energy is varied.
Once the effective interaction is known, elastic and inelastic scattering may be
evaluated numerically by solving a finite-dimensional coupled-channel equation.

I. Introduction

I want to tell you about some work that I have been doing with Mano Singham on
multiple scattering theory and the shell model. We have in mind eventual applications to
pion scattering, where experiinents have established the sensitivities of the pion to nuclear
structure (especially neutron/proton components of nuclear wave functions) in elastic and
inelastic scattering, and established the unique possibilities provided by single and double
charge exchange for calibrating the reaction theory. In order to capitalize on these suc-
cesses, we want a theoretical framework in which nuclear structure and reaction theory
can be brought together in a systematic fashion. Although frameworks exist that connect
structure and reactions in an approximate (see, e.g., the DWIA! and coupled channel?
approaches) and in a formally exact® fashion, we have found none that is compatible with
the microscopic techniques that have become hoth the language of the shell model*® and

* Current address: Department of Physics and Astronomy, University of Rochester,
Rochester, New York 14627,



the Green's function®

approach to scattering. The theory that I will discuss here is a
first step in the desired direction. The work described here is more fully explained with
examples in Ref. 4b.

The talk is organized as follows. In Section II we formally state the problem we wish
to solve. In Section III we: review limiting cases that have been developed previously in
the literature and that we wish our theory to encompass: the optical model for closed
shell nuclei plus projectile and the microscopic shell mcdel for open shell nuclei with no
projectile. In Section IV we obtain the main results of this paper, deriving the linked
cluster expansion for the projectile-nucleus interaction for cpen-shell nuclei. Finally, in
Section V we make a few concluding remarks.

II. Formal Statement of the Problem

We shall assume that we are given the Hamiltonian H that provides an exact descrip-
tion of the nucleus in its ground and excited states and that also descriles the scattering
of a spinless, neutral elementary projectile. Thus,

H=Kn+VNn+Kp+Vpn (11.1)

where K is the kinetic energy of the uucleons, Vyn is the sum of the bare nucleon-nucleon
interactions, Kp is the kinetic energy of the projectile, and Vpy is the sum of the bare
projectile-nucleon interactions. We assumne that the projectile is distinguishable from the
constituents of the nucleus. Technical complications arise in the case of an indistinguishable
projectile, but we believe that these can be overcome by a sufficiently careful analysis.

To complete the quantum mechanical description of the systemm we postulate the ex-
istence of a set of operators {6} whose matrix elements give the observable properties of
the nucleus. Thus, if

Hn | ) = Ey, | 1) (11.2)
where
Hy =Kn+ VN (11.3)
then
(l‘/ |e|l-‘l> (I1.4)

gives all experimentally determinable information about the nucleus. {| )} represent the
set of eigenstates of the true target Haniiltonian Hy with corresponding eigenvalues E,.

With the addition of the projectile, scattering amplitudes add to the access. ble knowl-
edge of the systein through the T-matrix elements

(ug iy | Von | 01D (11.5)



where | \Ilf+)) is an outgoing-wave solution of the Schroedinger equation
(Hv + Kp +Veon) | ¥ Y = E 19y | (11.6)

evoiving from an incident state | u;, k,;, and | p, k) is a state representing a projectile of
asymptotic momenturm k and the nucleus in state | u).

For the purpose of constructing the effective interaction, it is useful to define a basis
of states in terms of the single-particle Hamiltonian ho

where ¢ is the kinetic energy operator of a nuclecn, and ug is a one-body potential. The
set of eigenstates | a,) of ho is obtained as solutions of

ho | ) =€q, | i) . (11.8)

We classify the eigenstates | a,) into active and passive orbitals as shown in Fig. 1. The
definition of these orbitals is always with reference to the Fermi surface of the closed shell
nucleus, even in the case where there are valence nucleons. We refer to the closed shell
nucleus as the core. In keeping with the notation of Hef. 4a, a; becomes a lower case
Roman letter for states above the Fermi sea and an upper case Roman letter for states in
the Fermi sea in Fig. 1.
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Figure 1. Classification of eigenstates of hgy into passive and active orbitals.
The number of active orbitals is assumed to be large but finite.



We now define Hy and H; as

Hy = Kn +Up (I11.9)

M=V —-Up | (II]O}
where

Uo = uoli) (11.11)

and the eigenstates and eigenvalues of Hy are defined by

Ho | ¢:) = (Bea,) | &0) (11.12)

where {| ¢,)} (1 =0,...,N — 1) represents all the possible states that can be constructed
with n valence particles in active orbitals {a;}; outside a completely filled core,

16)=A]] la,) , (11.13)
{a; }s

where A is the antisymmetrization operator. We define the valence model space M of
dimension /N to be the space spanned by the | ¢;).

We can now state formally the object of the paper as follows. We want to find a subset
of the observable properties of the true system by solving a quantum mechanical problem
in the combined Hilbert space of the projectile and the truncated N-dimensional valence
model space M. We will show how to construct an effective Hamiltonian 7/ and a set of
effective operators {8} defined in this space, where

H=Ho+H,+Kp+ZI(E'+AT(E) . (11.14)

Here L(X) is the one-body piece of the effective projectile-core interaction, which is closely
related .0 the optical potential® of the nucleus with no active nucleons. We define Hn
such that its discrete eigensolutions | &) and E,,,

Hy|a)=E, |B) , (11.15)

where
Hy=Ho+ H, (11.16)

bear a one-to-o.ie relationship with a subset of the eigenstates of Hy = Ho + H, such that
for corresponding soluticns

E, =E, (11.17)



and

@, 1815, =, 161y . (IL18)

It was shown in Ref. 4a how to construct an H n having these properties. As in Ref. 4a,
we establish a one-to-one correspondence between | 1) and | i) by assuming that they are
both related to the sanie state | d.>“) in the limit of weak perturbations, where | ¢.>,,) s a
linear combination of model space eigenstates | ¢,).

. , . = (+ -
Furthermore, we require that the continuum eigenstates | ¥, )) of H,

= () =(+)

HIV ) =E19,") | (I1.19)

where E is the total asymptotic energy of the projectile plus nucleus, bear the following

relationship to the corresponding eigenstates | \Il:*)) of H

=(+).

(g ky | Ve [ ®Y) = (3, k, | S(E)+ AT(E) 1 9,) (11.20)

i.e., that the scattering amplitudes of transitinns between nuclear eigenstates described by
Hp are equal in the true and model problemns.

111 Limiting Cases

The main object of this paper, to be attacked directly in the next section, is to
develop a systematic piocedure for obtaining AT(E) in Eq. (11.14). In order to know how
to accomplish this, it is necessary first to clearly state how T(E) and H, are constructed.
Different definitions of tliese effective interactions can be found in the literature, and
AZ(E) depends on the choice. Gf special importance to us is keeping to a minimum the
nunmber of variables on which € and H, depend: we will choose those definitions that are
compatible with the physics and that lead to tlie greatest convenience for the theorist who
must do the calcuiations.

The important issue here is whether or not T and H, are energy-dependent, i.=.,
depend on an energy variable (or variables) to be specified independently of the three
momenta of the particles. Cousides first H,. In some theoretical frameworks an energy-
dependence arises,® but it is weak. The reason is that the shell model seeks to describe
excitations over only a limited range of tota) energy, with the model space defined so that
there is no possibiiity of the nucleus undergoing a transition between a state described
by H, to one not described by it in this energy range. Thus, all transitions to states
outside the modc| space are virtual and occur over a limited time interval. It is therefore
understandable why, in the phenomenological shell model,’ H, can be taken as energy
independent or instantaneous. The theoretical formulation that we choose and discuss
briefly below gives rise to an energy-independent H,.



In contrast tc the case of H, there is a physical reason to give £ an energy dependence.
As the asymptotic energy of the projectile is raised, energy is made available to excite the
nucleus. The changes in the physics as new thresholds are crossed give rise to singularities
in the scattering amnplitude or, equivalently, interactions with long time delays. It has been
shown that in principle one can define energy-independent optical potentials.® However, in
practice, the energy-independent construction was shown to Lave serious shortcomings.”
For this reason and because phenomenological optical potentials’® generally have some
energy dependence, the theoretical formulation that we choose and discuss briefly below
is based on an energy-dependent (E).

A. Theory of the Optical Potential I(E)

The optical potential £(E) describes the elastic scattering from the target core. In
the case of no valence nucleons (n = 0), £(E’) may be obtained as the proper self energy
of the projectile Green function Gy (t' —t),

Cult' —t) =110 T(aw(t')ag(t)) |0, , (I1L.1)

where | 0) is the exact target core ground state of energy Ey (a solution of Eq. (11.2)) and
a; (t) is a creation operator in the Heisenberg representation,

af(t) = eHigl e~tH (111.2)

where a, creates a projectile particle in momentum state k, and where T in Eq. (I11.1) is
the time-ordering operator. By applying standard many-hody techniques one may obtain
Guw as a sum of linked diagrams,!! illustrated in Fig. 2. Time runs upward in our diagrams.
The wiggly line refers to the projectile, and in the Feynman-Goldstone diagraimns that we
use here the projectile line extending from t to t' is represented by the individual propagator

projectile: @8(t' - t)e""'"'“l"’ (111.3)

where wy = k?/2m is the projectile kinetic energy. The solid circle is the sum of all
irreducible, proper self-energy insertions and it constitutes the optical potential T(¢',¢).
The times (t,t') at which the projectile lines attach to the circle need not be the same,
which means that retardation is retained in the definition of E(E) as an explicit energy
dependence: in this case E is the Fourier transform variable related to (t,t') as

+20 .
E(t'.t):i/ %E(E)c"ﬂ"'” , (111.4)
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Figure 2. Diagrams of Gik(t' — t). The solid circle is irreducible (it will not
break into \wo pieces when a projectile line is cut) and is identified with the
optical potential T(E).

T(E) can be shown*® to depend on n. For the case n = 0 we will denote (E) by
Lo(E — Ep), and the wave-function ¥y for the projectile with asymptotic momentum k to
scatter elastically from the core may be found by solving Schroedinger’s equation

I vi
S— + Lo(E — Eo)| Wi = (E - Eo)¥i . (I11.5)

2m

The phase shifts (the observables) are related to ¥y in the usual manner.

B. Theory of the Shell Model Effective Interaction H,

In this case we have no projectile but n valence nucleons. As we have stated, the effec-
tive interaction H, is strictly energy-independent, unlike the optical potential £. Such an
H, is given by the theory of folded Feynman diagrams, which is a diagrammatic formulation
of degenerate Rayleigh-Schroedinger!? perturbation theory applicable to the many-body
problem. The early development of folded diagrams is traced back to the work of Morita!?
and Brandow.!* In this subsection we vrish to briefly review the folded diagram approach to
H, as developed in Ref. 4a, because some of the ideas will be applied to AT in Section IV.

The idea of folded diagrams is to map a portion of the full space in which H, is defined
onto the model space in which H, is defined. This map is provided by the time evolu-
tion operators T(t',t) and T(t',t) with tiine-dependent interactions. The time evolution
operator T'(t',t) is defined as the solution to the equation

iditT(t',t) = H(t)T(t',t) . (I11.6)
If H is time-independent, T(t',t) has the explicit form

T(t't) = e*HI'-0 (111.7)



The time evolution operator for the true problem T(t',t) is obtained with H,(t) —=
Hye~™"tl while that in the model space T(t',t) is obtained with H,(t) = H,e ", The
precise form of the time dependence is not important, but the turning ofl of the interaction
should be sufficiently slow 80 as not to cause transitions between instantaneous eigenstates
that evolve from states in the model space at ¢t = oo and those that do not. We then
define corresponding states | ¥;(t)) and | ¥,(t)) as those that evolve from the same model
space state | ¢;(t)) = e*Hot | ;)

| $i(t)) = T(t, —00) | $i(—o0)) (LIL8)
| #:(t)) = T(t, —00) | $i(—00)) . (111.9)

The states | d-’,,) introduced below Eq. (I1.18) would evolve into definite eigenstates | 1)
and | zZ); these states were not defined in Ref. 4a but will be useful in our discussion of

scattering in Section IV. This mapping then permits one to prove the correspondence in
Eqgs. (11.17) and (11.18) provided that

(De(t) 18 19,(1)) = (¥elt) | 0] 95(t)) (111.10)

where the states in Eq. (II1.10) are those defined in Eqs. (1I1.8) and (I11.9). The proof is
very simple*® and obtained by expanding | ¥) and | ¥) of Eq. (II1.10) in eigenstates of Hy
and Hy. That | ¥(t)) is a linear superposition of only N eigenstates of H follows from
the conditions stated below Eq. (I11.7).

Also shown in Ref. 4a is how to define H; and 8 such that Eq. (I11.10) holds. We refer
the interested reader to that paper for the complete discussion but we mention here a few
of the important points. The first is that Eq. (I11.10) holds if the following two conditions
are met:

T(+00, ~00) = T(+00, —00) (I11.11)

and
T(+00,t)8 T(t, —00) = T(+00,t)8T(t, —00) (111.12)

in the model space. These may be guaranteed by construction, i.e., H, and 8 are defined
perturbatively to satisfy these equalities.

We will next briefly review the diagrammatic procedure by which the equalities in
Eqs. (I11.11) and (I11.12) are accomplished. We wish to stress that in applications there
are two steps involved in implementing the theory. The first is to obtain H; and 8 as
outlined below, and the second is to diagonalize Hy and obtain E,, and (71 | 014,).

Consider first Eq. (II1.11). We use diagrammatic techniques for assuring this equality.
Of course one reeds to recognize that vertices of T are expressed in terms of matrix
elements of H; and those of T in terms of matrix elements of H;. Diagrams shall be



considered different not only if they have a differznt topology (i.e., lines and vertices are
connected differently), but also if they have the same topology but the sequence of times
is different and/or the states that label the lines differ. So, in the end when one sums
over all diagrams, one must sum over all topologies, all state labels, and all tirhes with the

i [a

Because we consider active nucleons to be in particle states only in this paper, we will
y

integration
(111.13)

be working with matrix elements of the form (def | T(t',t) | abc), where the initial and
final states refer to active particles. A typical diagram is shown in Fig. 3.

Diagrams for T(t',t) appear as in Fig. 4. The rules are the same as for T(t',t) except
now instead of matrix elements of H, connecting the lines we have time-extended hoxes.
In order to be abl~ to associate diagrams of T with those of T, the definition of a box is
very precise and is the following: a box is a connected set of passive lines, together with
the vertices they join, plus any active particle lines drawn between two vertices already
belonging to the box. With a box defined in this way, all diagrains of T'(t',t) between
model space configurations can always be drawn as boxes connected by active particle
lines only, and a one-to-one association made with diagrams of T(t',t). Examplss of boxes
are given in Fig. 5. Figures 5(a) and 5(d) are examples of two-body boxes, 5(b) and 5(c)
three body-bores, and 5(e) a zero-body box.

Figure 3. A Feynman-Goldstone diagram
contributing to the matrix element (def |
T(t',t) | abc). The open circles are matrix

—_—

elements of H,.

Figure 4. A Feynman-Goldstone diagram
contributing to the matrix element (def |
T(t',t) | abe).
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(a) (b) (c) {d) (e)

Figure 5. Examples of hoxes. The crossed hatched lines are propagators corre-
sponding to passive orbitals.

The diagrams of Fig. 3 and Fig. 4 are now to be made equal. This can be accomplished
by equating the circles to the corresponding boxes. One such equality is shown in Fig. 6.
To solve for the circle, each side of the equality in Fig. 6 is multiplied by the inverse of the
propagators of the particle lines** that appear on the right-hand side of the equation. The
time ordering t} > t, is iraplicit in the figure so, for example, the inverse of the propagator
for the particle line labeled d is e~**4(*o=*1) We represent this by a line with its arrow
pointing backward from its normal direction. It is easy to see, with this notation, that the
solutjon to the equation in Fig. 6 is expressed diagrammatically as in Fig. 7.

Figure 6. Establishing an equality be- Figure 7. Solution to the equation in
tween a box and its corresponding circle. Fig. 6.

The capital letter R designates the con-

tents of the box.



H, is thus a sum over contributions such as that shown in Fig. 7. The one-box
contribution to (dg | H; | ab) is the sum over all one-box folded diagrams. This snm
includes an integration over all times, subject to the constraint that the time ¢y at which
H, acts (called the time base) is fixed in some way relative to t}, t}, t2, and. t;. Internal
labels on the lines are also sumined over. The way to choose to is discussed in detail
in Ref. 4a; suffice it to say here that there is a great deal of fl=axibility in how to do
this. One may exploit this flexibility to preserve symmetry between past and future, i.e.,
make H; hermitian, which is a desirable featvre for practical calculations. Hopefully,
one can arrange perturbation theory such that the expansion converges rapidly in some
appropriately chosen small parameter.

In order to ensure a complete equality between diagrams of T(+o0,—oc) and
T(+00, —00) one also must introduce zero-body, one-body, three-body, ..., n-body contri-
butions to Hy, where n is the number of valence particles. Examples are given in Ref. 4a
and Fig. 5. One hopes of course that the three- and higher-body forces will not be needed
in practice.

Also, there will be multibox diagrams contributing to H;. These need to be intro-
duced in higher order because the boxes are extended in {ime and therefore cannot come
arbitrarily close to one another whereas the circles are instantancous and can.4* When two
boxes cannot be replaced by their corresponding circles without an active line runiing in
an illegal direction this situation requires introducing a true-correcting diagram. If circles
cannot be replaced by their corresponding boxes without making an active line run in
an illegal direction, a model-correcting diagram is required. By “legal” and “illegal” we
are referring of course to the tinie-direction established for particles and holes: particles
must propagate forward in time and holes backward. Multibox diagrams are made into
circles by repeating the construction illustrated in Figs. 6 and 7 for single-box diagrams.
Examples of true- and model-correcting diagrams are given in Ref. 4a.

So, by fc!lowing a rather straightforward algorithm one may define H; to assure the
equality in Eq. (II1.J1). The equality in Eq. (1I11.12) may be satisfied by again comparing
diagrams of the left- and right-hand sides of this equation. Recognizing that the boxes and
H| have been defined already, the only remaining task is to define 8. One introduces new
boxes for this purpose, wherein one vertex is the operator 6; otherwise the box is defined
as hefore. The final operator 6 contains zero-body, ..., n-body contributions. The only
point that is a little different is that the time-base must be fixed to be the tinie at which
the operator 8 acts in its box. This restriction does not lead to a non-hermitian 6 as long
as 6 and H, are hermitian.

Note that by coustruction we arrive at a linked cluster expansion for H,. We are
aided in arriving at the linked expansion by virtue of the individual particle propagator



formalism!® that we are using. This enables us to look at pieces of diagrams without
baving to consider whatever else is happening at the same time.

IV. Construction of the Transitios Interaction AT(E)

We are ready to come to the new part of the problem, namely constructlon of the
interaction between the projectile and the nucleus. So, we imagine that we have & projectile
scattering from a nucleus with n valence particles in active orbitals.

In physical terms, the problein that we now solve is the following. We wish to evalu-
ate the scattering amplitude of an energetic, spinless, distinguishable projectile from the
ground state of the nuclear target to one of its low lying states. We do not know the exact
eigenfunctions of the nucleus, but we do know the eigenstates | zz) of the model Hamiltonian
Hpn. Can we construct AT(E) perturbatively in terms of these states | 7Z) and the matrix
elements of Vyn and Vpn of Eq. (I1.1)7 We again insist on a linked cluster expansion,
but we expect that, unlike H, it will be necessary to introduce an energy dependence into
AT(E) to describe the opening of inelastic channels that we do not describe explicitly by
our choice of model space.

The choice of model space for the combin~d problem is, of course, dlctated by the
decisions we already made in selecting £(E) and H ,; namely, we have a finite dimensional
space (N) describing the nucleus and a complete set of plane wave states describing the
projectile. The direct product of these two spaces forms the basis for the scattering prob-
lem. Again the implementation of the theory occurs in two steps. The first is to obtain
AZ(E) (thus completely defining the effective Hamiltonian in Eq. (11.14)) and the second
is to diagonalize H by solving the appropriate coupled channel equations. We consider the
former problem in this section.

A. Theory of AT(E)

The optical potential £(E) and effective interaction H, have already been defined and
we do not want to change these, We will define AT(E) so that the S-matrix elements are
the same whether calculated with H or H. We again consider the interaction switched off
at large times, so that the S-matrix element for the projectile to induce a transition from
pi to py is

St = (bu,(+00), kg | T(+00,~00) | $u,(—00),ks) . (IV.1)

The states | 5,,(~oo)) are specific linear combinations of the states in Eq. (I1.13). The
linear combinaticns are constructed so that | d?,,(—oo)) will evolve into the exact state
| u) a8 interaction H, is slowly switched on in T. Similarly, (¢,(+00) | is the state that
(i | evolves into as H, is turned off slowly in T. We want the interaction H, essentially
fully turned on before the projectile begins to interact with the nucleus. This may be
accomplished by turning Vpn on more slowly than H, or, even more simply, by arranging



for the projectile wave packet not to arrive at the target nucleus until | $,) has evolved
into | st). The corresponding S-matrix element in the model space is

St = (du,(+00) kg | T(+00,~00) | ¢y, (~0), ki) . : (IV.2)

It follows from Eq. (65) of Ref. 4a that | ¢,) is the same combination of | ¢;) in both
Eqs. (IV.1) and (IV.2). This meaus that Sy; can be made equal to §,; by equating
the matrix elements of T(+00, —c0) and T(+o0, —oc) for any choice of initial and final
configurations belonging to the model space. We define AZ(E) to establish this equality.
We use the diagrams to define AT(E,. but in practice we obtain the S-matrix elements
from the phase shifts in the scattered wave solutions of Schroedinger’s equation.

An example of a diagram contributing to Sy, is shown in Fig. 8. As usual, we collect
all passive lines into boxes, so that diagrams of Sy, appear as boxes connected by projectile
and active nucleon lines. The boxes connecting the active lines alone are the same as for
H,. The new element of the theory at this level is the projectile-valence boxes that connect
the projectile and the active nucleon lires. Examples of these boxes are given in Fig. 9.
These are pieces of the two- and three-hody boxes. The cne-body box (no external valence
lines) belongs to the optical potential T(E).

(a) (b)

Figure 8. Example of a diagram con- Figure 9. Examples of projectile-valence
tributing to Sy,. boxes.

Just as in Sect. II1.B, we want to establish a one-to-one cnrrespondence hetween
diagrams of Sy, and ._S:,.-. But what do we mean by diagrams of §/. now that H in
Eq. (I1.14) is energy dependent? To answer this, we must first unrderstand the meaning



of E in Eq. (I1.19) and its relationship tc £(E) and AL(E) in Eq. {11.14). Clearly E is
to be identified with the total energy of the system. Such an identification can be shown
to be preserved in £(E) and AZ(E) if the diagraminatic units corresponding to them are
defined globally, i.e., that they include everything that happens over th~ time interval t' — ¢
(AZ(E) is the Fourier transform of AT(t' — t)). This means that we have to specify a
procedure for constructing L(E) and AT(E) out of the basic boxes and whatever else is
happening over the interval t' —t. (One advantage of representing effective interactions
by instantaneous potentials, as in the case of H,, is that this complication is avoided.)
We believe that it is easiest to do this directly in the diagrams that we draw for §,..
It is important to do this carefully if we are to avoid a nasty difficulty that can arise
when dealing with global propagators in perturbation theory, namely the appearance of
disconnected diagrams. How our particular methods avoid this difficulty will be shown
later.

We will represent the diagrams of S,
as in Fig. 10, which shows valence particle
propagators connected by circles (matrix
elements of H,) and projectile propaga-
tors connecting projectile-valence rectan-
gles, which are closely related to, but not
identical with, AT. As discussed earlier,
the interaction of the projectile with the
nucleus develops over the full time interval
t' —t, and the rectangle is drawn extended
in time for this reason. However, we want

to take the nuclear transition induced by
the projectile to occur instantaneously at Q b ¢
time to, which is a reference time to be
fixed relutive to, t' and t. Thus, the rect-

angles ure also characterized by a single

Figure 10. Example of diagrams con-
tributing to Sy,.

time ¢, at which the valence nucleon lines attach. All time orderings of the circles relative
to to are to be allowed, as long as particles and holes propagate in a legal direction. Note
that the time base {5 of the projectile-valence box is not an independent time variable,
Otherwise, the considerations that go into the choice of o here are identical to those that
determine the time-base of interactions in H,.

In what follows we will first show how to determine the folded diagram expansion
for the rectangles. Then we will describe the procedure for combining the rectangles with
whatever else can occur over t' — t, to obtain AT(t' —¢),



Now that we know what diagrams of Sy, look like we can define the rectangles in

order to establish an equality between the diagrams of Sy, and the corresponding ones

of Syi. Compare, for example, the diagrams in Figs. 8 and 10. As before, we begin by

equating the corresponding box to circle. The circle are then defined just as they were in

Sect. III.B. The rectangle is related to its corresponding box by writing down an equation

similar to that in Fig. 6 and then solving it for the rectangle. This is accomplished as

before by removing the valence lines that are not a part of the definition of the rectangle.

The result is shown in Fig. 11. The com-
plete one-box contribution to the rect-
angle will entail a sum over all boxes,
which will include an integration over all
internal times (i.e., t', ¢, and to remain
fixed). Projectile-valence contributions to
it will contain 2,...,n body pieces. We
can again achieve a one-to-one correspon-
dence between all diagrains of 5/, and ?,.
by carefully and systematically introduc-
ing model-correcting and true-correcting
projectile-valence diagrams.4®

As we indicated earlier, our use of
time-ordered projectile-valence diagrams
slhiould cause us to worry about un-
linked diagraimns. Consider, for example,
Fig. 12. By virtue of retaining the time-
dependence in AT(t' - t), we are forced
to consider all other processes that occur
withiu the interval t' -t as being part ot
AZL. Since there is another interaction oc-
curring during this time in Fig. 12 this
constitutes a disconnected piece of the
kernel AT(t' - t). Fortunately the math-
ematical difficulties of the disconnected
kernel can be overcome by the following

':/ t/
t 7 .,h h
/]
7 A\ N
40 e
t < &
k k

Figure 11. Definition of the projectile-
valence rectangle contribution to AY(T)
appropriate to Fig. 10.

?‘ . '
X b ¢
Figure 12, An unlinked contribution to
AL

rearrangenment. Note that e='H~(t'=8 ig the sum of all possible diagrams involving prop-

agating anc interacting valence nucleons over the interval t' — t. Thus, we can take into

account all possible actions of H, by the following simple procedure. First eliminate all

diagrams of the time-evolution operator T containing explicit matrix elements of #,. The



resulting set of “skeletal” terms consists of iterated projectile and projectile-valence rectan-
gles. They are connected by lines representing the unperturbed propagator of the nrojectile
and by lines representing the unperturbed propagator of n valence nucleons. The latter
consists of a series of propagators of the formn

e~ tHoaT. - Z | ay...an)e rattan)8T ) L ay, | (IV.3)

Qy...0pn

where AT, = to(i + 1) -- to(1) is the tiine interval between the time-base of successive
rectangles. The interaction AT induces transitions from one unperturbed state | a; ... an)

to another | ajaj ... a) at time to(i). Second, make the replacement

e—i(t¢‘+...+¢.")AT. =

—(a}...al | e HNOT o) ay) (IV.4)

in Eq. (IV.3); these operators reintroduce the matrix elemeats of H, in a compact and
easily managed form. We riow observe that the disconnected pieces illustrated in Fig. 12
disappear if we introduce the exact eigenvalues and the shell model states. The net result
is that

T ST T T leelalal |0

h ar..anaj

Byl ar..can)ay...an | (IV.5)

The conclusion is that the S-matrix achieves a simple and relatively compact form if we
calculate T and AY in the shell-mcdel basis

(A | B+ AT |H) =~ Y, 3 }: (Ba lay...an)(@). .o [(E+AD)mar [ @1 . am)

m oy o..a‘

<a, o an | B e Bunlt) e Bl (1 )

where the phase facior e~'Bu(t'=t0) jg that portion of e='EvdT: jj) Eq. (V1.5) that extends
from the time baae to to the end of the box at time t. Note that only m single particle statea
undergo a transition in Eq. (IV.6) when the m + 1-body piece of the effective interaction
(£ 4+ AL)m+1 acts. The phase factors iay be regarded as a contribution to the sum over
all boxes that accounts for the valence-valence interactions occurring during the interval
t' — ¢ over which the boxes T and AT last. These phases give rise to a simple modification
of the energy denominatois of AS(E). The final expression for T and AL will thus be
given in a hybrid form involving matrix elements of H, in the basis of Ho, the unperturbed



eigenvalues of Hy as well as the exact energies E, and the shell model wave functions | ).
How this looks in practice is examined by looking at examples in the next section.

We have now completed our demonstration of the existence of a linked cluster expan-
sion of AT(E). Actual evaluation of AT(E) in practice requires care in order to choose
the diagrams that represent the appropriate miy of nuclear structure and reaction dynam-
ics. What we have demonstrated here is that AT(E) does in fact depend on both these
elements and therefore that in practical calculations to learn about either requires that
AT(E) will have to be chosen with some care.

B. Diuscussion
The theory that we have constructed leads to a set of coupled equations. If we project
Eq. (I1.19) onto a complete set of states | iz;) we find, using Eqgs. (II.14),

-V? = ) —
2[—V—+EO(E E.))b; + (&, | AX(E) |5)] (| T = (B - E,,)@, 1T

(IV.7)
where we have used the relationship*® that (u; | £(E) | pi) = Zo(E — E,.,). Once the wave
fur.ction | ¥) is found, the scattering amplitude f,,,, for scattering from the initial state
| po) to the final state | uy) is obtained from the boundary condition

|'\$\+)(r)> ~ |& elkr +§:

re—00

lk,!‘

B furue (IV.8)

Thus, for applications of the theory one proceeds in two steps. The first is the construction
of H,, T, and AT using the mapping techniques discussed in Sections 111 and IV ot this
paper. The scattering information is then obtained as the solution of Eqs. (IV.7) and
(IV.8).

The result in (IV.7) is a set of coupled equations for the wave function | ¥). In most
cases the scattering to low lying nuclear states is a small part of the total cross section
and one probably does not need the coupled channels as a practical matter. Coupled
channels will be needed whenever (1) the leading order of the reaction requires several
scatterings (e.g., pion double charge exchange); (2) a single step transition to a final state
is possible but is strongly suppressed; or (3) the multistep processes are strongly enhanced
by collectivity. These cases are exceptional and (2) and (3) can often be anticipated. In
any case the coupled channel result is a convenient one because it collects into one place,
and treats consistently, all the information that is available from the shell model and from
studies of reaction dynamics. As a consequence, a comprehensive set of prediccions of the
model may be readily obtained.



Generally the most important channels are those of the continuum, e.g., quasielastic
scattering. Since these channels are not included explicitly in Eq. (IV.7), one must incor-
porate them as a renormalization of the bare projectile-nucleon and nucleon-nucleon inter-
action. To see how this goes, consider Figs. 5 and 9, where the dots represent projectile-
nucleon and nucleon-nucleon bare interactions. One may sum infinite classes of diagrams,
the ladders to get the projectile-nucleon G-matrix and the nucleon-nucleon G-matrix. By
insisting that at least one internal line of the box at each intermediate step be passive,
the G-matrix becomes a box in its own right, and multiple-box diagrams can be built up
in terms of these quantities. The necessity of using the G-matrices instead of the bare
interactions is familiar in both nuclear matter!® and multiple scattering theory.!” Note
that the projectile-nucleon GG-matrix is different from the free space scettering amplitudes
(T-matrix) because of the Pauli blocking of the intermediate states.

Based on developments!® that occurred during the late 1960’s, it is not clear that a
microscopic theory based on a perturbative treatment in a restricted space can be made
to work, at least for the simple choice of Hy used in most calculations. The problem is
that intruder states, such as the low lying deformed 4p-4h 0% states in '*O spoil the con-
vergence of such expansions. The fact that in spite of this, relatively simple perturbative
microscopic descriptions®! of nuclear spectra exist gives us some confidence that successful
treatments of AT may be developed along similar lines. The results are suggestive that
the expansions with whicli we are dealing are asymptotic expansions, for which evaluation
of a few of the lowest orders in perturbation theory may suffice. Alternatively, one might
explore different forms of Hy that take the deformation into account.

Finally, let us mention the connection of our work to that of Feshbach,® Mahaux and
Weidenmiiller,?? and Kuo. Osterfeld, and Lee®

The Feshbach theory provides, just as ours, a partition of the scattering into two parts:
the caleniation of the optical potential and the subsequent calculation of the T-matrix. The
strneture of this theory as well as other formal approaches to multiple scattering?? is simple
becanse the eract nuelear eigenstates | o of Iy are chosen as the basis for the formulation,
However, this siune featnee niakes the theory ditficult to apply in practice, because one
never knows | o exactlye lnowledge of the formal structure provides little insight into the
nature of the corvections that hecome necessary onee aspecific approximation to | ) s
tiaede,

Onue e el pace M0 by contrasa s hnde ol a finite set of eigenstates of iy (see

Fog o0y, The woatterme anphitade Cave calondated from Y and AN which, in contrast to

the Frelibaeho thears, e vven i terme ot an expanston in the known quantities | e oy,
aned tatoey element o U the bae ool thee o tates, The seattering solutions are thue
expresced e el o et ety ternatie nnprovement. Pl corrections sanonnt

tothe folded die e et other oo ations v the feee projectle nueleon Tnatns



as discussed in Sect. [V. Because our theory aims at calculating nuclear structure as well
as scattering observables, it is more ambitious and appears more complicated than that of
Feshbach.

Mahaux and Weidenmiiller?? have developed a powerful calculational framework for
evaluating the scattering of a nucleon from a nucleus in a model space. Their techniques
enable them to include large numbers of basis states, but nc more than one nucleon is
allowed to be in the continuum. The residual interaction among the nucleons is taken to
be the free nucleon-nucleon interaction or a simple phenomenological parameterization of
it.

The work of Mahaux and Weidenmiller, as ours, is an attempt to fill in the gap
between the formal multiple scattering theories and the traditional DWIA /coupled-channel
prescriptions fc - calculating scattering with simplified nuclear wave functions. The main
difference lies it ow the residual interaction is chosen. The entire focus of our work is on
constructing AL consistent with the choice of T and H,, while Mahaux and Weidenmiiller
require a AT in order to apoly their method. Thus, the two approaches are complementary.
One might expect intuitively that as the dimensionality of the tnodel space is increased, the
importance of the renormalizations of the bare interaction leading to H;, T, and AT would
decrease. Thus, for the large spaces within which Mahaux and Weidenmiiller work, the
appropriate renormalizations of £ and AT might be expected to be more easily calculated
than in the more highly truncate  model spaces sppropriate tr the phenomenological shell
model.

Kuo, Osterfeid, and Lee® have proposed a thecry of an energy-independent optical
potential to describe scattering. They have in mind eliminating the energy-dependence
using the same technique of folded diagrams that has been used to remove the energy-
dependence from the shell-model potential. Although they make a formal argument that
an energy-iidependent optical potentiail could be defined in such a way as tc describe elastic
scattering, subsequent studies® cast some doubt on the practicality of their proposal.

We stress that, in contrast to Kuo, Osterfeld, and Lee, our theory does not seek
to eliminate the cnergy-dependence of T and AT. The reason is that the scattering to
real inelastic intermediate states that lie outside the model space corresponds to boxes
that last over long time intervals. This means that multiple-box folded diagrams, whose
3ize is a measure of the time extent of the boxes involved, would hecome correspondingly
niore important. Thus, the folded diagram expansion replacing £ and AT by instantaneous
interactions would probably not converge. Instead, we use the theory of folded diagrams to
assure the compatibility of an ene1gy-independent shell-imodel potential with the scattering
operators T and AT, which remain energy-dependent. Our main interest is in obtaining
the lowest-order perturbative corrections that arise from working in a model space in order
to improve the reliability of the theory.



V. Concluding Remarks
We have shown how to bring together the shell model and multiple scattering theory
in a consistent calculational framework. Beginning with an underlying true Hamiltonian
H, which includes a description of the nucleus as well as the scattering of a distinguishable
projectile (e.g., K%, e, i, v) with the nucleus, we arrive at an effective interaction H in a
model space
H=Hy +Kp + Z(E)+ AT(E)

This is equivalent to H in the sense that (1) the discrete eigenstates of Hn of energy E,
correspond to a set of the discrete eigensolutions of Hy with the same eigenvalue, and that
(2) the S-matrix elements for scattering bet ween eigenstates of H is the same as between
corresponding eigenstates of Hy. Our effective interaction Hy is energy independent
and Hermitian, just like the familiar shell model potential. However, ¥ and AT, which
constitute respectively the one- and many-body pieces of the effective projectile-nucleus
interaction, are energy dependent.

Implementation of the theory consists of two steps: (1) calculating the pieces Hy, I,
and AT. These are given by linked cluster expansions obtained by comparing diagrammatic
expansions of the time-evolution operator in the true and model speces; (2) solving for the
scattering amplitude by evaluating the set of coupled channel equations in Eqs. (IV.7) and
(IV.8).

As it now stands our theory does not apply to the scattering of all light hadrons,
especially 7, N, and N. The reason is that our theory is applicable only to projectiles that
are distinguishable from their counterparts in the nuclear wave function. A similar theo-
retical framework should exist to describe the scattering of these projectiles. Eventually,
one would also like to relax our assumption that all particles interact through potentials,
e.g., to permit an underlying field theoretical description. One might begin with one of
the currently popular Bonn?® or quantum hadronamic?4 meson-theoretical Hamiltonians.

We are hopeful that this approach will lend a firmer theoretical foundation to nuclear
structure studies with light hadrons, because the familiar approximate DWIA /coupled
channels descriptions of the scattering correspond to identifiable pieces of our theory (see,
e.g., Sect. V). Thus, the corrections are easy to .solate and study, and one might be able to
place theoretical limits on the accuracy with which nuclear structure and reaction dynamics
can be deduced in any particular phenomenological study. The appropriate corrections to
the bare interaction, which compensate for the trun- stions leading to the shell model built
into the theory, have been already studied in the :ontext of the microscopic shell model.
We expect that this broad experience will be useful in the scattering problem.
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