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Abstract

Polarization potentials, the self-consistant ficlés which
describe the primary consequences of the strong atom-atom
interaction in the helium liquids, are developed for liquid 4He
and 3”&. Emphasis is placed on the common physical origin of the
cffective interactions in all helium liquids, and the hierarchy of
physical effects (very short-range atomic correlations, zero point
motion, and the Pauli principle) which determine their strength is
reviewed. An overview is then given of the application of
polarization potential theory to experiment., including the
phonon-mwon-roton spectra of 4lle and 3He-4He mixtures, the
phonon-maxon spectrum of normal and spin-polarized 3He. and the
transport properties of superfluid 4Hc and of normal and

3
spin-polarized "le.
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l. Introduction

In this talk I should like to address the fundamental
question of the physical origin and proper description of the
ceffective inderactions bewween quasiparticles in the helium
liquids, that is, in supcrfluid 4He. 3lle. dilute mixtures of 3He
in 4“0. and spin polarized 3“0. I shall then discuss how these
interactions determine the density fluctuation excitation spectra
and transport properties of these various liquids, and compare,
where possible, theory with experiment. The basic approach I
shall be using is polarization potential theory, & minimalist,
phenomcnological . post-RPA, post-Feynman, post-Landau theory in
which physical arguments, constraints from static measurements,
sum rules, and continuity arguments are combined to reduce
mairkedly (at times to zerov) the paramecters required to specify the
c¢ffective quasiparticle interaction and calculate the elementary
excitation spectra. The theory provides a unified and
quantitative account of excitations and transport in the helium
liquids (1) uvnd has been extended as well to electron liquids (2)
and, in work in progress with K, F. Quader and J. Wambach, to
nuclear natter,

Polarization potential theory is o unified theory in two
senses. First, 1t enables one to understand the common physical
origin of the collective modes In 3“0 and 4Hu in n context in

which the remarkable stmilarity tn the restoring forces
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responsible for these modes is evident, and in which the physical
effects responsible for the differences between quasiparticle
interactions in 4”0 and 3Hc at the same density can easily be
understood as arising from a combination of zero point motion and
the Pauli principle. Second, it provides a systematic basis for
calculating the scattering amplitudes for quasiparticle
excitations in both 4lle and 3He. and hence yields a natural link
between excitation spectra and transport in both systems.

In polarization poteniial thecory, the primary consequences of
the strong utom—atgm interactions found in the helium liquids are
described in terms of self-consistent fields, whose strengths,
described by non-local pscudopotentinls, determine the effective
quasiparticle interactions and the quasiparticle or quasipair
misses. It is these fields, the polarization potentials, which
provide thic wavevector and frequency dependent restoring force
responsible for the collective "zero sound” mndes which appear as
sharp peaks in the density fluctuation excitation spectrum of Loth
liquid 3“0 and 4Hc in the very low temperature limit. In both
systems there exists as well an ndditional mode of excitation, the
multiparticle or multipair branch, which is in general
comparatively featureless with an averoge energy which is large
comparced to the zero sound modes. The coupling between these
modes of excitation plays a significant role as well in

1
determintng the phonon=maxon-roton spectrum of "He and the
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phonon—-maxon spectrum of 3Hc; in polarizarion potential theory it
!s described by considering the distinct components in the
"screened response’ of the system to an external field plus the
polarization potentials.

My talk is divided into two parts. In the first, mainly
Jidactic part, I discuss at some length the polarization
potentials for the various helium liquids. In the second, I give
a brief overview of the application of the theory to specific
experimental situations, chosen to illustrate how it provides a
quantitarive account of the density fluctuation excitation spectra
and transport properties of superf{luid 4He. normal 3He.
spin-polarized 3Hc. and dilute mixtures of 3He in 4He. In so
doing. I shall describe a number of quite recent results, and
discuss the close connection between this approach and variational

calculations of the phonon-maxon-roton spectrum of liquid 4He.

2, Effective Inteructions: Pscudopotentials and Backf low
There are two key physical effects which must Ye described in
order to obtain a quantitative account of the wavevector and
frequency dependent restoring forees responsible for collection
behavior in the helim liquids.
0 Short-range correlations associated with strong particle
interaction, zero-point motion, and, for Ferml systems,

the Pauli principle
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o Backflow
In polarization potential theory, the shnrt-range correlations are
incorporated into the theory by means of a frequency-independent
configuration space pseudopotential whose Fourier transform yields
a static wavevector dependent restoring force whose strength, in
the long wavelength limit, is determined by the system
compressibility and (for Fermi systems), the quasiparticle
effective mass. Backflow is described as u frequency (and
wavevector) dependent restoring force whose strength in the long
wavelength limit 1s determined by the quasinarticle effective

mass. Let us consider these effects separately.

A Pscudopotential Description of Effective Interactions

As a particle moves in the liquid it induces density
fluctuations which act back on it, as well as on the other
particles. These fluctuations, whase mean wave-vector and
frequency dependence is described by <p(qu)>, give rise to
polarization fields which both screen external longitudinal fields
and act to provide a restoring force for collective behavior. In
polarization potential theory, as in the RPA and Landau Fermi
Hquld theory, this restoring force is derived from a scalar

polarization ficld,
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S
P01 (40) = o <p(qu)>: (1]

which couples to the density fluctuations, p;. by a coupling,
p;¢pol(qm). In the RPA, f: = Vq. the Fourier-transform of the
bare particle interaction; in Landau theory. f: is taken to be
momentum-independent. and corresponds to the € = o component of
Landau's phencmenological interaction between quasiparticles on
the Fermi surface. In polarization potential theory, f: is a
phenomenological frequency-independent, but momentum-dependent,
restoring force, which is calculated by considering the physical

behavior of its Fourier transform, a non-local configuration space

pseudopotential, fs(r).
s 3 s iqer
fq = Jd°r f7(r)e’ < ~ . [2]

At low temperatures, f:. the spatial average of fs(r). is known
from measurements of the first sound velocity (for 4He) or zero
sound velocity (for 3Hc). fs(r) describes an effective
interaction between particles in the liquid; how is {t related to
the bare He atom-atom potential?

The major physical effects which distinguish liquid helium

from gascous helium are at most three-fold:
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0 Short-range correlations which enable the helium atoms
to avoid, insofar as possible, sampling their mutual

very strong short range (< 2.7A_1) repulsive interaction

o Zero point motion
o Quantum statistical correlations (eg., the Pauli
principle for 3He atoms)

Since all three physical effects are predominantly short-range, it
follows that at long distances, where liquid correlations are not
important, fs(r) should be identical to the bare atom-atom
potential. Aldrich and Fines (3) describe the short ramnge
behavior of the pseudopotential fs(r) with the aid of a simple
physical argument, illustrated in Fig. 1, namely that the
positional correlations brought about by the strong short-range
repulsion between the atoms prevent the atoms from sampling the
full conscquences of that interaction. Hence, the almost
hard-core repulsion of range “2.68A_]. found in the bare
interaction must go over to a soft-core repulsion, of range e

which they characterize by an rB potentinl of strength a,

s 8
f7(r) = a (l—r/rc) r 5 T

For a given cholce of re @ simple fitting function is then used
to jJoin this part of the potential to the attractive long-range

part, taken to be identical to the bare interaction for r > re-
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Because fz is known, for a given choice of r.- a is uniquely
determined.

For liquid 4lle. fs(r) describes the effective interaction
between qu quasiparticles; AP took r, to be the range of the bare
atom-atom repulsive interaction. For liquid 3He. fs(r) is the
spin-symmctric average of the effective interaction between

parallel and anti-parallel spin quasiparticles,
i50r) = [T+ 1 [4]

To the extent that the effects of zero point motidn and the Pauli
principle are small compared to those of the short-range, "hard"
core, correlations in determining the 3He pseudopotentials, at a
given density the shape and range of fTT(r) le(r). and fs(r)
should be quite similar, and one would expect a close relationship
between these, and the pseudopotential, u(r), which describes the
effective interaction between 3He and 4He quasiparticles in dilute
mixtures of 3He in 4He. The differences in the pscudopotentials
can be characterized by changes in Feo and will arise as a result
of zecro point motion and the Pauli principle.

For example. the influence of the zero point motion is seen
clearly if. at the svp density of 4He (n = 0.0218 A_B). one

compares nfz = 27.3K with nu o= 35.1K. Replacing a single 4He

atom by a JHc atom gives risc to a spatially averaged 3llc-4llc
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particle interaction which is “30%Z larger than that between two
4lle atoms. Hsu and Pines (4), hereafter HP, conclude that the
major reason for this increase is an increase in the core radius,
the effective range of the repulsive interaction, which both
increases slightly the contribution made by the repulsive paft of
the pseudopotential to its spatial average and reduces
substantially the contribution coming from the attractive part.
As may be scen in Table 1, with no change in the core height of
the pseudopotential, a 2.6% increase in r. leads to a 30% increase
in f: The corresponding values of the spatial averages, core
radius. and core height, for the direct part of the effective
interactions between 3He quasiparticles in liquid 4He are likewise
given in Table 1. There one sees that for dilute solutions of 3He
in 4llc. the Pauli principle acts to increase VoTT by both
increasing rcTT over rch, and by reducing aTT compared to aTl. A
comparison of V;T with f:. u . and V;1 shows that zero point
motion plays a much more significant role than the Pauli principle
in determining the spatial averages of these pseudopotentials; the
enhancement due to zero point motion is some 57%; that due to the
Pauli principle is ~H¥%.

The corresponding parameters for pure 3lle dctermined by
Bedell. Hess, llsu. anu Pines (in preparation) are also given in

Table 1. Note that for pure 3Hc compared with 4”0 at the same

' .
density, the spatial average of fél is some 704 larger than f:.
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while the Pauli principle acts to reduce f;‘ by some 3%. Bedell
et al. find that on going .rom 4He to 3He the greater zero point
motion of ihe 3He atoms 1iot on'y leads to an enhanced core radius,
but also i1mplies that the correlation-induced screening of the
short-range repulsion interaction is somewhat less effecrive.
since a,  is increased to 53 7K. The comhined effects of the

Fauli principle and zero point motion lead to a slightly larger

. compared to

value of T.- and a very slightiy reduced value of a,
the corresponcding values [or anti-parallel spin 3He
quasiparticles. The Lkierarchy of physical effezts on the vurious
rastoring forces 1. thus cloarly establisned: short range
putential-induced correlatiorns, which are similar for the various
atom-atom interactions. dominate. followed by the influcnce of
zero point motion. with Pauli principle effects coming in a
distant third

The momenitum dependent pseudo potentials for the six
effective 1ntractions we have considered are sho-n in Fig. 2.
1

Note that the najor differences occur at wavevectors € 1A The

increase with g scen at long wavelength is quite a general
phenonenon and reflects the changed interplay between the
1tepulsise and attractive parts of the pscudo potentinls as one

[N
x0Cs tu hiher moments of + {1) Tiwus i we write-
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then

s @ 2.s

o = dn Iodr ref7(r) [5a]
;-2 4 :

fy = 5 J':dr rorS(r) . [5b]

In the r2 moment of fs(r). the short range repulsive part of the
pseudopotential wins out over the long range attractive part, but
in the r4 moment the situati,n i1s reversed. The physical
conscquence of this behavior is anomalous dispersion, a question
to which I shall return shortly.

Finually, the density dependence of the various
pscudupotentials is straiphtforward to obtain. For 4Hc there are
no free parameters: re is fixed, and only the core height varies
with density. Since f: increnses with density, the corresponding
increase in the core height means that as the density increases
the short range correlations in liquid 4Hc ar~ somewhat less
effective {n reducing the strength of the repulsive part of the
interaction.  For purc 3”0. where both the increased zero point
mot{ion ol the 3“o atoms und the Pauli principle influence both Fe
amed n, the change of these parameters with density involves some
degroec of cobitrariness;: Bedell et nl, choose the density

1t T
-r
¢

varfation of the respective a's, and of 6(s re ). to be such

3
that the pseadopotentials go over, at svp for pure “He, to thuse
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previously found by Aldrich and Pines to provide the best fit to
neutron scattering experiments, while at pressures greater than 21
atm, the results scale with those found for pure 4He at similar
densities. The resulting parameters are given in Table 2. Note
that the influence of the Pauli principle is greatest at svp, and

that it becomes wecaker as the system density increases.

Backf low

In addition to inducing density fluctuations, as a particle
moves in the liquid 1t induces current fluctuations, which act
back on it, thereby changing its effective mass. As Feynman and
Cohen first emphaszized, these buckilow effects are quite important
in ch: for o hard sphere moving in a classical liquid the induced
current, or backflow, takes a dipolar form, and acts to increase
the mass of the sphere by 50%.  In polarization potential theory

for liquid 4Hc. the induced current fluctuantions, <J(qw)>, are

desceribed by a vector field,

A l(q.m) = f: <£(qm)> [6]

~Jo

which couples to the rurrent fluctuntions, Jq. by n coupling, Jq .

Ap”l(qm). Application of particle conservation then lends to the

result that the partiele effective miss becomes momentum

!
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L \Y
= + Nf . 7
my =M q (7]

Moreover, since backflow is a purely longitudinnl phenomenon,
particle conservation links the induced current and density

fluctuation according to

q + Jqu)> = w <plqu)> (sl

The resulting ceffect of backflow is to replace wpol(qw). in Eq.

(1), by a wavevector ond frequency dependent quantity,

Yo (99) = [f: + (w29 f;] <p(qu)> . [9]
Absent the effeets of zero point motion and the Pauli
principle, we would expect the backflow coefficients, r;. to be
essentially the same in liquid 3llc and 4Ilc at the same density; to
the extent that the short-range correiations nre mainly
responsible for backflow (ns they are for f:). one can then get fz
for 4Hv From the corresponding quantity for 3”0 nt the same
density, and one would expect n rather similar fall-off of the
backflow fleld strength, f:. with increasing momentum transfoer. A
closer eximinntion of the sfruation for ”lhr shows thnt while the

ef fective quastiparticele many is piiven by
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m*=m+NfZEm[l+FT 3] [10]

where FT is the dimensionless spin-symmetic € = 1 component of
Landau's interaction between quasiparticle on the Fermi surface,
the mass defined in Eq. |[7] is the momentum-dependent average
quasipair effective mass, which characterizes the single
quasihole-quasiparticle response to an external field, and nny be
parametrized by using the Lindhard function for single pair
response, with the bare mass m replaced by m:. Only in the limit
of q = 0 does it equal the quasiparticle mass.

For 3“0. specific heat experiments tell us what Nf: is as o
function of density; AP assumed that at the same density, Nfz
would be the same for 4“0: they determined the q dependence of m:
in phenomenological fashion, from their best fit to the
phonon-maxon-roton spectrum of 4llc. and then further assumed that
the q dependerce of the quasipnir masgs in 3Hc would be similar.
Typiceal expressions for Nf: for 4He are shown in Fig. 3.

Iv §s tnstructive, and indeed necessary for spin-polarized
JHc. to separate out the spin-dependenco of the backflow terms in

JHu. To do so, une simply replaces Jq . Ap“l(qm) by the

exproession:

qer
a0 a0

y - h l(q) <.2,l(tun)> . [11]
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in which case we could writce:

ol —_ f

qu =m + NThTT(q) + Nshrl\Q) [12]

with a similar expression for mal. For an unpolarized system, one
1) v -— -

then has N1 = N, = N2, and fq = (hTT+ th)/2. on the other hand,

for a fully spin polarized system, one has NT = N, and

m,=m+ NhtT(q) [13a]
mo=m+ Nh”'(q) [13b]

o tiat by using microscopic culculations or physical models, one
can proceed to follow the spin polarization dependence of the
backflow potentinls. Note, further, that for the unpolarized
systom, hTT(”) and hT.(o) cian be determined directly from a
knowledpe of FT and the spin-antisymmetric Landau parameter, F?.
Representative results, vhich are extremely sensitive to the value
of FT. all two pressures are yiven in Table 3. There one sees tha
the backflow potential for antiparallel spin particles iy
constderably larger than that for those with parallel spin:  the
former reflects the combined influence of the short-range,
potential-induced correlations ond zero point motion, and

fnereases rapldly with density: the latter tnkes into account the
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Pauli principle as well, and is much smaller because the Pauli
principle causes particles of parallel spin to spend more time in
the attractive region of the effective particle - particle
interaction. Indeced, the weak density dependence of the latter
suggests that under pressure the particles of parallel spin
experience backflow effects which are nearly the same as those
applicable at svp; in other words, the Pauli principle prevents
particles of parallel spin from sampling the rapid rise in
backflow potential brought on by the comparatively ineffective
screening.

The influence of the Paull principle on backflow is even mure
striking in spin-polarized 3llc. For the fully polarized system at
svp, both microscopic calculations and sum rule arguments yiceld an
up-spin effective mass, m: £ 0.81m; thus, ot a fixed density the
backf low potential, hTT(q). decreasces with increasing spin
polarization, to the point that {t vanishes, and then becomes
negative in the limit of complete spin polarization, as the Pauli
principle causes the up spin quasiparticles to sample more of the
attractive interaction between quasiparticles than the repulsive

interaction.

3. Density-density Response Function
The density fluctuatfon excitation spectrum 18 specified by

the density=density tesponse function, R{q.w) defined ny the
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lincar response of the system to an external field, ¢CXL(q.w).
coupled to its density fluctuations, p:. If we consider instead
the lincar response of the system to the sum of Pext and the
polarization potential, ¢p0](q.w). specified by Eq. [9]. we obtain

K(qu) = Nsclav) [14]
l-lf: + (W2/q2) f;] R__(qv)

where xsc(qw) is the system response to an external potential plus
wpol(q.m). The poles of Rc(qm) yield the dispersion relation for

the density fluctuation excitation modes; one has therefore

L= |14 (wﬁ/q2)f: R, (8.00) [157
vhore wq is the collective mode excitation energy.

The expression, [14], provides n formul basis for a unified
theory of elementary excitations In superfluid 4llc and normal JHc.
In 1t, the role played by frequency osnd wavevector dependent
restorine forces s essentinlly decoupled from the effects of
statistics or temperature; since we have argued that at the same
density the corresponding values of f: und f: will be quite
similar, the effects of statisties or temperature come in only
through an(”m)' To the extent thnt we have described nl]l the
consequences of particle {nteraction by f: nnied f:. then one hny

"

[ ]
1 ( ", wheto R” in the non-dnteracting single quasiparticle or
" (Y]
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quasipair response: thus fcor

2
* Nq~/
xg(aw) = ___ g [16]
w2 - (q2/2m:)2

n

T
He:  x. (qu)

3

1?2

le: .+ (ae) 2 K (qu) [17]
where the expression, [16], represents the excitation of single
quasiparticles from the condensate, and x:(qm) i{s the Liadhard
response function for quasipairs of mass m:. To the extent that
the collective modes in 3He possess a frequency large compared to
the single poir energies appearing in R:(q.w). this expression is

well approximated by its high frequency limit, Nq2

/m: w2 and the
differences in the collective mode energies for 3Hc and 4Hc are
determined by their mass difference, and by the influence of zero
point motion on f:.

The oxpressions [16] and [17] are, in fact, exnct only in the
long wavelength limit (where, for example, [15] and [17] yield the
usunl Landau resumit); at finite wavevectors, maultiparticle
excitetiony bogin to play a significant role, and their influence

mist be taken into account 1f one hopes to obtadn a quantitatiy

account ol the excitation spectrum. We consfider these now.
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4. The Two-Branch Spectrum, and Mode-Mode Coupling

Quite generally, for both Bose and Ferml systems, one has two
modes of excitation out of the ground state. and hence two
branches to the excitation spectrum. For Bose systems, the
multiparticle branch corresponds to states characterized by the
excitation of two or more quasiparticles from the condensate, [5],
while for Fermi systems it corresponds to states in which two or
more quasipairs are excited from the filled Fermi sea ground state
[6]. The branches can easily be distinguished in the long
wavelength limit, since in this limit the frequency of the single
quasiparticle or quasipair branch vanishes, while the frequency of
the multiparticle or multipair branch is finite. In polarization
potential theory, we describe the presence of the two branches by

letting Rsc(qm) contain contributions from both; thus we vwrite
L]
Rsc(qm) = ag No(qm) + (1 ~ aq) Nm(qw) [18]

where the strength of the single quasiparticle or quasipair
response function contribution to Rsc i{s now mecasured by vertex
renormalizacion fanetion, uq(gl). nnd Rm(qm) is the multiparticle
or mu)tipair response.  Sum rule considerations [H]. [G], show

that at Jong wavelengths,

2
Am a, = R NC N T [19]
(=
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while to the extent that the characteristic frequencies which
enter into Nm(qu). GF(q). are large compared to those of the

collective modes we seek to calculate, we can write:

Nm(q.u) = Nm(q.O) = - Ng“/m [20]
(a)>

3N N

{w

For 4Hc. one can obtain (mﬁ(q)) directly from neutron scattering
experiments, while for 3He. one can estimate it from Raman
scattering experiments. To the extent one knows <wi(q)> then, the '
influence of the second, multiparticle or multipair, branch on thel
collective mode energies is contained in the phenomenological
parameter, aq. Since in all cases ;a(q) > wq. the effect of
mude-mude coupling wi'l be to depress the collective mode energy,
(A)q '
5. The Phonor-Maxon-Roton Spectrum of 4Hc

The first major success of polarization potentinl theory came
in its quantitative account of the phonon-maxon-roton spectrum of
4“0. Al showed that if the momentum dependence of f; was fixed by
requiring that Nf: ~ 1.8m in the vicinity of the roton minimum,
and n(l and Nm(q.u) were chosen to provide a fit to the excitation

spectrum at svp, and were further nssumed not to vary with

density. then with no free parameters one could get an excellent

. -1
fit to the measured exeltation spectrum for q < 2.1 A 7 at
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pressures up to 25 atom. (Recall that f: is fixed by the pressure
dependence of the first sound velocity.) A striking verification
of the correctness of their pseudopotential was provided by
measurements of anomalous dispersion as a function of pressure.

At long wavelengths, the phonon dispersion relation takes the

form:
2 3
Limw_ = sq (1 + Lya” + waqT + . ) [21]
g 1
where
] 5 m * #* 2 -1
Wy = 5 [f2 — eyt (4mm°s ) ] . [22]

a, is given by Eq. [19] and wy = (w2/24fz) Lim [fs(r)rs]. One

q-o

2
scves in Eq. [22] that the positive values of f;. characteristic of
the AP pscudopotential, bring about anomalous dispersion (a
positive value of w2) while mode-mode coupling. here represented
by aq (20). acts to oppuse it. As the density increases -ibove its
svp valuc, f; must decrease in a directly calculable way, since
the repulsive part of fs(r) increases [in a fashfon fixed by
s{(p)]. while the attracti e part is unchanged; hence, since AP
find "2(“) = uz(svp). anomalous dispersion decreases with
Increasing pressure.  CGalculation of the wavevector, q.. ut which

s
anomitlous dispersion ends, requires only o knowledge of fq and uq:
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AP found excellent agreement with the direct determination of this
quantity (as a function of pressure) by Dynes and Narayanamurthi
(7).

In recent work, Coffey and I (manuscript in preparation) have
examined anew the polarization potential calculation of the
phonon-maxon-roton spectrum. Our reexamination was prompted by
two recent developments: Stirling's extraordinarily accurate
measurements of the excitation spectrum in the vicinity of the
roton minimum (8), and improved microscopic calculations of the
excitation spectrum by Manousakis and Pandharipande (9). By
ma!'ing use of the experimentally determined values of (wi(q)) in
Eq. [20]. we reduced the number of free phenomonological
parameters to one, the multipartjcle vertex correction, aq.
{(Recall that f: is set by the physical arguments presented above,
f; by the effective mass in 3He at the same density, and f; by its
fall-off in the vicinity of the roton minimum.) As shown in Fig.
4, we were able to obtain an excellent account (~0.1% accuracy) of
Stirling's experimental results for the roton excitation spectrum,
thereby confirming the AP description of a roton as a 4He
quasiparticle, of effective mass ”2.8m°. moving in a weakly
momentum-dependent attractive self-consistent field, Nf:, of
strength ~=2K, produced by the other quasiparticles.

In our calculations we neglected the dynamic consequences of

mode~-mode coupling (since we replace Rm(q.m) by Rm(q.o) in Eq.
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[20]: this approximation should work very well for rotons, and for

long wavelength phonons (q < 0.5 A—l). but for shorter wavelength

phonons and maxons, whose energies lie closer to the multiparticle
spectrum, it might be expected to be less accurate. A comparison
of our results with experiment, given in Fig. 5, shows that ghis
is the case. Also shewn in that Figvre is the variational
calculation of Manousakis and Pandharipande in which the same
physical effects (short-range correlations, back-flow., and static
mode-mode coupling) are taken into account. For wavevectors up to
~1.3 A_l. the two theories give nearly identical results: it may
therefore be plausibly argued that the Manousakis/Pandharipande
calculations provide a microscopic justification for the
polarization potential approach. It is likely that the reason we
do considerably better than Manousakis and Pandharipande is that
our calculations incorporate a significant reduction in the

strength of the backflow potential for 1.5 A_l (q< 2.4 A_l.

Finally, as shown in Fig. 6, we see that this modified
version of AP theory gives an excellent quantitative account at
al] pressures of the anomalous phonon dispersion measured in
neutron scattering experiments, and of the shift with pressure of
the overall spectrum, and ol the roton energy and momentum. As 1
have noted carlier, since aq is assumed to be independent of

density., there are no free parameters in the finite pressure




calcu'ations: the agreemernt with experiment thus serves to

vilidate the theory.

G. Ruton-Roten Interactions in qu: Bound States and Transport

Properties

Further confirmation of the Aldrich-Pines description of a
roton as a 4lle quasiparticle of .nass ~2.8m° camc from the work of
Bedell. Pines. and Zawadowski. (10) (herecafter BPZ) who argued
that the roton-roton interaction could therefore be described in a
mannier similar to that used for the background 4Hc quasiparticles:
that is. by a configuration space pscudopotential. ?(r). which at

long distances (2 rc) is identical to the interaction between bare

1
He atums. becomes repulsive nt Te and displays a suft-core

repulsion for r < re which could be parametrized by an expression

-

of the form, Eq. [3]. At svp. they chose a and r. so as to yield
thie experimentally determined binding energy of the € = 2 bound
two-roton state (11) arnd the roton liquiu purameter fo (unalogous
to the fermy liquid parameter, l:). which provides a

phcnom tolactcal description of the shift of the roton energy. A.
vith tamporature At pressurtes 2 5 bar, they chose these
parameters tn osach a way s to yield the experimental value of the
vistosity of Tles at T 2 Ik Thetr resalts are given in Fig. &

the pliysical oriyin ol the larger valuces of r( nnd smaller core

hetyhire a0 s Tikely the 7zeto potnt motion aof the r1otons: thelr
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variation under pressure resembles that found for the 3Hc
pscudopotentials.

BPZ used their pseudopotential to calculate the roton-roton
scattering amplitude which determines the existence oi bound

states and the transport properties of 4Hc at T > 1K. Becauie of

the substantial structure in the Fourier transform of their
pscudopotential (cf Fig. 8), they found that while substantial
binding could exist in partial wave channels with & > 4, for P 2 5
bar, no € = 2 bound state would exist. This prediction of thelr
thecory has been verified in the experiments of Ohbayashi and his
collaborators, which have been reported on at this meating. (12)
Further confirmation of the correctness of their pscudopotential
came from the good agreement they found between theory and
experiment for the roton lifetime as a function of temperature,
ond for the roton liquid parameter, fl. (annlogous to the landau
FT. which determines the roton liquid corrections to the normal

fluid density).

1. The Phonon=-Maxon Spect:m of Liquid 3llc

Perhiaps the most striking confirmation of the AP theory of
the density fluctuntion collective modes in 3“« came from their
gquantitative prediction of o well=defined phonon-miaxon spectrum

for q < 1.4 Aml. On the basis of the fallure by Scherm et al

(13), in thedr ploneering experfment at L Lo, to wee n
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well-defined zero scund mode for q > 1.4 A *. AP concluded that

. 3
the value of thr repulsive core radius for “lle at svp. T.. vas

~3.1 A. this led rhem to the spectrum, shown in Fig. 10. which was

~mped by single quasipair excitntions for q > 1.4 A-l. The

subsequent elegant neutron scattering experiments, carried out by
Skéld and his collaboratoers at Argonne (14). gave a phonon-maxon
spectrum 1n close agreement with the AP prediction, in that not
only did Sk;ld et al find that for q i 0.6 A_l. the zcro sound

portion ol the spectrum exhibited the substantial nnomalous

dispersion calzulated by AP. but that for 0.8 A-l Cq<1l.4 A_l

the specctrum was quite flat. with a maxon energy ~13K, close to
the value 12K predicted by AP

It slould be emphasized that the entire excitation spectrum
discovered by Skold et al s in o non-'nndau regime. in that the

waveveators under study are > P und the energies undel

fnvestipntion nre large compnred to EP' As I f1rst showed in 19G5
(15). well=-defined density fluctuation excitations in o0 non--landnu
repime are just what one would erpect from n strongly coupled
3
neutral quentum l{quid much ny "lHe, for the same reason that the
1
sera somndd modes 1n lJiquid He extst nbove the A-point; 1n both
3 1
He nnd e the stremgeth of the self consgstent Field sespansible
for the collective mede Is s v ictent Iy lange that landaa damping
{ 1
({1 ) nnad mglttpoartge le dampinge (for Hee) onldy ocoar it

tonstderably elevaited values ol wavevedotors atud temperafat ey



Page 28

Because these collective modes possess energies large compared to
the characteristic single particle or pair energies, they resemble
closely the plasmons of charged particle systems, in that the
energy of the collective mode depends only weakly on temperature
(Sk;ld and Pelizzari (14) found almost no change in the density
fluctuation spectrum of 3Hc on going from 40 mK, n "good"
Landou-regime temperature. to 1200 mK, a thoroughly "non-Landau
regime” temperature) and on whether the system {s in a normal or
superfluid state,

Let me now turn briefly to the changes one would anticipate
in the density fluctuation excitation spectrum with pressures: the
experimental situntion will be summarized by Reinhard Scherm (16)
in a lanter talk at this conference. Three aspects are immediately
clear: first, the initial slope of the wq curve, which is
fdentical to the zero sound veloel ty, Sy will increase: sccond,
since sum rule arguments tell us that at long wavelengths the
strength of the zero sound moade is given by Zq E hq/2mso. quite
generally we would expect the strength of the collective mode to
decrease with Increasing pressure; third, since the quasiperticle
cf fective mass increases with pressure, single quasipnir
excitntions will play an even less important role at pressure than

l).

they do at svp (where their role iy negligible for < 1 A”

Thus anomalous dispersion, maxon enerples, and domping, will
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depend only on an interplay between the changes in the non-local
restoring force, f:. and the multipair spectrum, with pressure.

If. for example, neither the effective range of the repulsive
part of fs(r) nor the multipair spectrum change with increasing
pressure, one would have a situation directly analogous to that we
have considered earlicr for 4Hc: anomalous dispersion would

decrease. On the other hand, if both rch "

and Te decrease with
pressure, as the fit to transport propertics obtained by Bedell et
al suggests they will, while the multipair spectrum remains
unaffected by pressure, then calculations with Hess carried out
subsequent to this meeting show that initially one will get an
increase in the magnitude and extent of anomalous dispersion with
pressure, since the reductions in e which enhance the
contribution made by the attractive part of the potential to the
various moments of fs(r). outweigh, in the r4 moment, the
e¢nhancement in the repulsive contribution coming from the incrense
in the core height, u. Finanlly, {l. ns the preliminary annlysis
(16) of their experiments by Scherm et al shows, the damping of
the zero sound mode increases with pressure, while anomalous
dispersion does not show a corresponding inerease, this furnishes
an unambiyuous signnl that the strength of the low frequency tafl
of the milvipadr spectrum must incrense with pressure (the faflure

to obscerve nn {nerease in nnomilous dispersion ruley out the

alternantive explanation, that the damping is due to the deeny of o
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zero sound mode into two lower energy modes). Under these
circumstances, the key physical quantities (the density dependence
of anomilous dispersion, the onset of the maxon regime, the

magni tude of the maxon encrgy., and maxon damping) will depend on
the details of the interplay between the changes in f: and the
muluipair spectrum. That the strength of the low energy part of
the multipair spectrum should increase with pressure is, in fact,
not too surprising. since one might expect that this portion of
the multipair spectrum would be sensitive to changes in the
quasiparticle Fermi energy. with a decrease in the Fermi energy
implying a corresponding incrcose in the low energy multipair

strength.

S. Dilute Solutions of 3“0 in Superfluid 4He

The density fluctuation excitation spectrum of 3“0 - 4“0
mixtures provides information on the extent to which the presence
of the 3““ ntoms modifies the phonon-maxon-roton spectrum of the
bhachground dHc lHquid, and on the quasiparticle and density
fluctuation spectra of the 3”0 ntoms. Neutron scattering provides
a direct probe of these spectra, while indirect information on the
H”r quasiparticle spectrum is provided by specifice-hent nnd
second-sound experiments.

Aldrich, lisu, and Pines (1'7) have shown that the rather

comples wavevector and concentration-dependent shifte in the
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phonon-maxon-roton spectrum found experimentally by Hilton,

Scherm, and Stirling (18) ot T < 0.75K. and shown in Fig. 11, find

a quantitative explanation as the superposition of two distinct
physical effects:

i. The introduction of 3He atoms into liquid 4He rcduécs
the system density, and so changes the liquid 4l-le
restoring forces responsible for the 4He :ollective mode
spectrum. This effect is the largest numerically.

ii. A direct interaction (mode-mode coupling) between the
phonon-maxon-roton branch and the 3Hc density
fluctuation excitation branch of the overall spectrum.
The resulting shift is sensitive to the
concentration-dependent mode-mode coupling constant and
to the temperature-dependent responsce function for the
3llc quasiparticle; it thus depends on 3"0 concentration,
on temperature, and on the exact form assumed for the
3”0 quasiparticle spectrum,

The density=change shift provides n test of the Ald:rich-Pines Alle
pscudopotentfnls at lower (than svp) 4Hc densities, while the
mode=mode coupl iy shift provides o test of the concentration and
momentum dependence of the Hsu-Pines 3”0_4“0 pscudopotentianls, and
ul the JHv quasiparticle spectrum,. The excellent agrecnent
hetween theory amd experiment for the sum of these two shifts

provides sirony; evidence for the correctness of the concentration
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and momentum dependence of both the Aldrich-Fines 4He
pscudopotentials and the Hsu-Pines 3Hc—4Hc pscudopotentials, as
well as for the 3“0 quasiparticle spectrum derived by Greywall
(19) from specific heat and sccond sound experiments, since only
with the latter does one obtain good ngreement with the necutron
scattering experiments.

Aldrich et al (17) also show that for 4He excitations !n the

vicinity of the roton mumentum, and temperatures > 1K, the
L)

scattering of rotons ngainst thermlly excited 3Hc quasiparticles
produccs a significant shift in energy: the effect is proportional
to the 3Hc concentration, while its variation with temperature is
governed by the 3“0 quasiparticle spectrum. As may be scen in
Flg. 12, on taking this effect into account with the Greywall
spectrum i(hey find excellent agreement with experiment for the
temperature dependence of the total energy shift. Finnlly, they
find that with the Greywall spectrum they are able to obtain good

\;
agreement between theory and experiment for the peanks of the “He

density fluctuntion excitation spectrum,

- 3
0, lransport Properties of e

" \ 3

e four measurable transport properties of normal “He, the
thermal conductivity, viscosity, spin diffuston, and quasiparticle
Hifetine, depend upon various angular avernges of the squared

stoeder and tedplet quasiparticle  quasiparticle senttering
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ampliudes (QSA’'s). Following the pioncering QSA calculation of Dy

and Pethick (20), the s-p approximation. QSA's have been

determined during the past decade in a number of different ways:

i.

ii.

i1,

using potential-scattering models, involving two
phenomenological local potentials, chosen to yield both
landau parameters and the best fits to transport
properties (21) (pa.-magnon models (22) represent a
specinl class of such models).

by using a Bethe-Salpeter equation to relate QSA's to
the AP polarization potentials, which represent
cffective quasiparticle-quasihole interactions.

by scparating the quasiparticle interaction into two
picces, one direct, one induced, and then using a
phenomenological approuch combined with either sum rule
arguments or approximate microscopic calculations to
speeify the direct internction, while obtaining the

induced interactions by symmetry arguments (23) (24).

Fer each of these approaches the caleulated transport properties

are in quite good (< 10%) ogreement with experirent, Deciding on

their respective merits {s therefore, at least {n part, a matter

ol taste,

The virtue of the thicd appronch, which is 0 generalizntion

of the fnduced -interaction model of Bbu and Brown (27.) 4s that

once the fnput potentialy are fixed at o given density (say svp),
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ane 15 able to get correctly the density dependence of both the
Fermi liquid parameters and the transport properties. The recent
calculatious based on this approach by Ainsworth and Bedeil (23).
and by Pritzner arnd Wolfle (21). differ in derail, but are
tsaschitlasly similar. and prove equally successiui in reiating to
expeniment.  Buth sets of calculations yield q-dependenit
pularization potentials. which however. differ considerably from
the AP 1cesults. cubscquentl]l 1t thesc induccd:lnrera"tion
potentials are usced 1o calculate the density fluctuation
excltation spectrum. the agreement with experiment is not good.

The sccond approacli. first developed by Bedell and Pines
(2'-). usces the previously determined AP polarization potentials as
thput o &oucheralized Bethe-Salpeter equation for the QSA's. A
simple algor fthm was then used to guarantee the exchange symmnetry
of the resultims scatter g anplitudes.  These scattering
amplitudes were kot however. seli-consistend, in that when
substttured into n Bethe=Salperer equation for the
uasipat ticle-quasihoie scattering ampliturdes, the AP polurization
hutentmls were uot recovered  This deficiency was subsequently
temedicd by Pritzner and Wolfle (247) whose fully self-consfuient
GSA s Jed 1o a0 modest charge (o the transport codfilcients

I bl 1 caleulatfons, B took & l(-TT II-TI) ‘o be o free
v ter o aal selooted that value which gave che hest it to the

transpmc U expet fmenls Whiile & fs wnadd ] (viayvtliee trom O 1] nt s
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to ~0.007 at P > 20 atm), it plays an important role in

determining fz. which in turn plays a significant role in
determining transport properties. Since neutron scattering
cxperiments are not at present capable of resolving 6 to this
degree of accuracy, it is only by combining transport calculations
wlth neutron scattering results that one finally arrives at a
conplcte specification of both ITT(r) and le(r). For a further
discussion of these and related matters, the interested reader is
referred to a forthcoming paper (Bedcll, Hess, Hsu, and Pines, in
preparation).

In concluding this discussion, let me emphasize that any
complete and unified theory of 3“0 should be able to give a
quantitative account of both the polarization potentials (i.e.
q-dependent lLandau parameters) and the QSA's. So for it would
scem that the polarization potential upproach does this best,
since {1t desceribes acceurately both the density and spin
[Tuctuntion excltation spectra, and ylelds, given the simplicity
of the BP ansatz, an amazingly aceurate QSA. one which Alnsworth
und Bedell (273) have shown §s quite close to that enlculated using
the {nduced interaction model.  The next significant improvement
will likely come from solutions of the parquet equations for the
coupled seavtering amplitudes, sinee only in this way is one
Hkely to obtaln a microscople theory for both the polarization

potentials and the QSA's,
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10. Fully Spin-Polarized “He

Hess, Pines, and Quader (in preparation) have studied
ef fective interactions, elementary excitations, and transport in
Bﬁc. spin-polarized 3Hc in the fully polarized limit, and I should
like to comment briefly on their results. In constructing the

polarization potential, fTT(r). in this limit, they make use of a

simple ansatz for its spatial average, f;r. namely that at a given
density the upper limit to the physical effect of spin
polarization on f;r is given by the magnitude of Pauli principle

changes on going from f;l to f;T for the unpolarized system. Thus

(23]

(Reecall that Paull principle effects are small compared to those
of short=range potential inducerl correlations or zero point
motion, and are typically “2NF3 ~2K.) By combining this ansatz
with the forward scattering rum rule, and on assuming that only
the £ = 0o and 2 = | moments play a role in determining
quasiparticle interaetion nt the Fermi surface, they obtain values
For m Zm and he compressibility which are close to the
microscopice caleculations of Manousakis et al (28).

The resulting density fluctuation excliwntion spectrum depends
on the assumed form of the wavevector dependence of the boackflow

potential.,  HPQ consider two limits: one in which the effects of
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L]
spin polarization on mq is assumed to be wavevector independent:
onc in which this effect is assumed to operate predominantly at
long wavelengths, so that by the time one reaches, say,

1

q~ 1.8 A", there would be little difference between m: and m:.

In the first case the reductioa of ;: leads to a substantial '
qualitative change in the spectrum: the onset of Landau damping
is much carlier, and no maxon regime is found. In the second, the.
spectrum is qualitatively the same; the wavevector which
charucterizes the onset of Landau damping is only slightly

reduced.

HPQ construct the sﬁe QSA's from ?: and ;: following an
approach similar to that which BP used for 3He. and use these to
calculate the thermaul conductivity and viscosity. Their results
are qualitatively similar but quontitatively different from these
calculated by Bedell and Quader (29) using the s-p approximation;
both transport coefficients are some two orders of magnitude
larger than the corrcsponding quantity for unpolarized 3He.
Transport in spin-polarfzed 3Hc may thus be oxpected to vary
rapidly with spin polarization; indced. Hess and Quader (30) find
for the partially polarized liquid that the viscosity initially
decreases w!th spin polarization, a decrease which ngrees well

with the recent measurements of Archie (31) before starting, at

~304 polarization, o dramtlic increase.
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11. Concluding Remarks

I hope that this review of the physical origin of
polarization potentials in the helium liquids has served to bring
out their common physical origin, and that the brief overview of
the application of the theory to experiment provides evidence of
its success in making possible a unified and quantitative theory
of excitation and transport in these systems. There was not time -
in either the talk, or in this written account, to review all the
applications of the theory or consider in more detail its relation
to variational nd microscopic theories. Thus I have not described
the way in which 1t makes possible a derivation of the momentum
dependence of the over-all interaction between 3He quasiparticles
in dilute mixtures of 3He in 4lle. nor compared theory with
experiment for the transport properties of these mixtures (4), or
discussed quasiparticle interactions in partially spin-polarized
3Hc. To cite two further examples: the close relationship
between the results of polarization potential theory and
variational calculations of the phonon-muxon-roton spectrum of 4llc
is highly sugpestive, and deserves further exploration, while the
connections between polarization potentinl theory und the recent

"Guizwiller™ ealculation of effective fniternctions in JHu Ly

Anderson, Vollhardtu, and Wolfle (preprint) likewise deserve

further study.
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Table 1. Comparison of the spatinl average, core radius, and core
height of the pseudopotentials which describe effective
interactions between quasiparticles in helium liquids at a density

of 0.0218 A™> (svp for ?He) (from Hsu and Pines).

System Interaction Spatial Core Radius Core Height

Averoge (K (A) . {K)
Yie Ye-ie r% = 27.3 2.68 49.3
e 3e-Tie u, = 35.1 2.751 19.3
Yie Ye'Set vt - 428 2.821 49.3
Y e'-He'  vIT <450 2.903 39.8
3He e'-Bet 1t - 465 2.773 55.7
Yo elBhe' M- as2 2.780 54.2



Table 2.

avecrage, core radius, and core height of the pscudo potentials
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A comparison, at various densitics, of the spatial

which describe the effective interactions between quasiparticles

responsible for the restoring forces for zero sound and spin’

density fluctuation excitations in

Pressure (bar)

sVp

5

10

15

21

34,36

3He.

3 ARSI

1.8 10.1 3..0
22.4 20.8 2.936
31.0 20.6 2.878
3.7 37.3 2.826
1G5 a5.2 2.773
6.8 57.6 2.705

3.03

2,953

2.890

2.833

2.780

2.712

23.2
32.0
39.9
17.4
56.7

G8.8

20.9
30.1
38.2
415.9
54.2

67.2
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Table 3. Spin-dependent backf{low potential parameters for

unpolarized 3Hc.

S .,
P (bar) F‘l1 F] Nh . /m Nk, /m

sSVp -0.5 5.3 1.2 2.3

27 -1.0 12.5 1.6 6.8
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Legends for lllustrations

Figure 1.

Figure 2.

Figure 3.

Figure 1.

Figure 5.

Figure 6,

Schematic drawing of liquid helium pseudopotentials:
a) configuration space, . . . bare interaction,
pseudopotential; b) momentum space.
Momentum dependent pseudopotentials which describe the
effective interaction between He atoms in very dilute
(x=0) mixtures of 3Hc in 4He. compared with the
corresponding potentials for pure 3Hc at the same
density [from Ref. (4)].
Backflow potentials in liquid 4”0 as a function of
pressure [ from Ref. (3)].
Comparison of the calculated excitation spectrum in
the vicinity of the roton minimum with experiment [8].
Comparison with experiment of the polarization
potential and variationnl [(Ref. 9), shown by
triangles] results for the phonon-maxon-roton
excitation spectrum; in both theoretical enlceulutions,
dynamic mode-mode coupling corrections are neglected.
Comparison at five pressures of the enleulated
anomalous phonon dispersion with neutron scattering
measurements [Aldrich, Coffey, and Pines, in

preparation].



Figure

Figure

Figure

Figure

Fipure

10.
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The pressure dependence of the phonon—naxon-roton
spectrum of 4”0.

The configuration space pscudopotential which
describes roton-roton Interactions, calculated at two
pressures, and compared with that which dcscribc§ the
interaction between background 4Hc quasiparticles,

The momentum—-dependent roton-roton pseudopotential at -
LWO pressures.

Comparison between theory and experiment for the
collective modes and mean single pair energies in the
density fluctuation spectrum of liquid 3”0. The
dot-dashed line represents the phonon-mnxon spectrum
predicted by Aldrich and Pines in advance of its
observation by Skold et al [14], while the solid line
is the subsequent Aldrich-Pines calculation in which a
3% lower value of r. was used [3]. The dashed line is
the AP calculation of the mean quasipair excitoation
energy, wiilch depends senstitively on the quasipair
miss, m:. nnd which 18 seen to agree with experiment

for q > 1.0 A_l.

Fnergy snifts of the phonon-maxon-roton spectrum in
3 1 " .
dilute mixtures of "He in He, measured nt T = 0,7THK

by Hilton et al [Rei'. (16)] as o funetion of

concentrat fon, x.
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Figure 12. Comparison of theory and experiment for the
temperature-dependent energy shift of the phonon-maxon
roton spectrum in a GX solution of 3Hc in 4Ho [from

Ref. (17)].
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