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1. INTRODUCTION

The basic hope of statistical mechanics is that the overall beshavior of
large and complicated systems can be disentangled from the details of their
dynamics to some adequate spproximation. Navier-Stokes (N-S) turbulence is
a particularly chailanging cendidate system. The dynamics are highly
nonlinear and unstable and the statistical states of nhysical! relevance differ
strongly from the absolute equilibrium for which classical methods of
statistical mechanics are most powerful.1 A combined consequence of
nonlinearity and dissipative nonequilibrium is the appearance of plastically
ordered structures in the midst of the rardo.nness traditionally assigned to
turbulence.

This combinstion of order and randomness is perhaps the most perplexing
feature of turbuience for theorists. There is a fundamental dilemms
concerring honeaty of representation, If structures are guessed at the star:
(whether the guess is shear layers, horseshoe vortices, smoke rings, «r
whatever), there is danger that thc subsequent theoretical construction may
have its most Important predictions built in. If a neutral underlying
representation is .dopted, like uncorreleted Fourier modes, the danger is that
the effects of characteristic structures of the roal flow may be totally lost.

The present assecsment ls mostly In the context of an idealized part of
statistical turbulence theory: attempts to treat Isotropic turbulence by
analytical procedures applied to the N-S equation. Here the rerresentation is
all too honest: typically a neutral Gaussian statistical state is sssumed at an
initlal time and thon the N-S equation Is switched on. The analyticsl
approaches are riostly besed on truncation of one or another series or
sequence, Thereby they fsce the embarrassment that turbulence at high

Reynolds numbers offers no obvious small expansion perameter by which to



justify the truncation.

The approaches discussed in this paper are direct moment approximetions
(truncation of a moment representation of the joint probability
distribution),2-10  renormalized perturbation theory,n‘17 decimation under

7 renormalization-group methoda,le'32 and the upper-

symmetry constraints,
bounding of transport under integral constraints.>>-36 Decimation under
symmetry constraints plays a central role in the discussion. In this approach
some subset of the totality of degrees of freedoin is followed by explicit
equations of motion, while the effects of all other modes (the implicit
modes) are expressed by a constrained stochastic forcing in the equations for
the explicit modes, The constraints express the statistical symmetries among
or within classes of modes,

The explicit set >f modes may be formed by choosing a few sample
modes in each dense neighborhood of wavevector space. A small parameter
thereby arises, namely the ratio of sample size to total neighhorhood
population, In the limit where this ratio goes to zero (strong decimation), the
imposition of a basic symmetry constraint yields the direct-interaction
approximation. Higher approximations arise if successively more symmetry
constraints are imposed, They are related to renormalized perturbation theory
approximations but, in contrast to the latter, are expected to form a
convergent sequence,

Instead, the explicit set of mndes may be all the modes below a cutoff
wavenumber and the implicit set all modes above the cutoff. In this case the
symmetry constraints express an extrapolation which relates moments of the
implicit modes to those of the explicit modes. The result is a sequence of
subgrid-scale representations. If this is done for an Iinfinite Kolmogorov

inertial renge, the extrapolation simply expresses the Kolmogorov scaling of



momenta, The resulting nonperturbative analytical framework is related to
renormalization-group approaches,

Finally, if the imposed symmetry constraints are limited to overall
integral properties, the resulting approximations are similar in spirit to the
upper-bounding analysis for turbulent transport developed by Busse, Howard,
Malkus, and others,33-36

It is unclear to what extent any of the approximations here examined can
succeed in representing the dynamical effects of organized flow structures,
Certainly it is not expected that the explicit geometry of such structures in
physical space can be inferred from any description limited to low order
moments or other low-order statistical descriptors.” But it may be hoped
that the essential effects of structures on energy and momentum transport
and other averaged properties of the flow can be captured to fair
approximation,

It is of particular interest to assess what order of improvement can be
expected from analytical approximations above the prr.sently studied level of
2nd-order renormalized perturbation theory, Certain features of turbulence
are first captured at the level of 4th-order perturbation theory, or at the
level of constraints involving 4th-order moments in the decimation method of
Sec. 4, These include Intermittency effects, possble force-free orde;ring,38
certain effects of helicity on turbulent diffusion’?80 and, in magneto-
hydrodynamics, negative diffusivity effects.”®

The most straight-forward approximations exariined in this paper are the
moment-related ones describey at the end of Sec. 2, They are guaranteed to
converge, What then Is the motivation for examining more complax and
uncertalr approximation methods like renormalized perturbation theory,

decimation, and the renormalization group? Firut it should he said that the



simple moment-related approximations may deserve deeper exploration than
they have had. But the complex approaches offer the possibility of more
faithful representation bf the physics at a given level of approxirnation, They
all involve probing of the dynamics by examination of the effects of

perturbations. This is a powerful tool,



2. MOMENT APPROXIMATIONS AND REALIZABILLITY

Consider the evolution in time of an incompressible velocity field which
obeys cyclic boundary conditions and has an isotropic, spatially homogeneous
Gaussian statistical distribution at time t=0. Problems of existence of
solutions of the N-S equation can be sidestepped, and the number of degrees
of freedom made finite, if the field and the N-S equation are expressed in
terms of wavevector amplitudes and truncated at some cutoff wavenumber

k If this cannot be done without destroying the physics, then the validity

max®
of the N-S equation itself is questionable. The evolution prohlem can be
made wholly finite by replacing the N-S equation with a finite-difference
form and evaluating the amplitude only at the discrete times tg.

The initial and evolved joint probability density (JFD) for the surviving
and discretized Fourier amplitudes can be represented by the set of all
moments., Basic questions are what comprises sufficient conditions for
completeness of this representation and how to construst convergent
approximation sequences which involve only finite sets of moments. Consider
the space in which the independent real and imaginary parts of the Fourier
amplitudes of all the surviving modes are Cartesian coordinates., Let these
amplitudes be represented by the vector y with components y(t,), where i is
agssociated with some l-dimensional ordering of the Fourier amplitudes. The
sufficient condition for completeness of moment representation is that the
JPD fall off exponentially or faster at infinity along any direction in this
apace.7

If this condition is violated, as it may be for a phytically interesting JPD
that is sufficiently intermittent, a complete representation can still be built
from weighted moments, defined as follows, If p(y) is the normalized JPD, a

general moment then has the form



<YQ.YB°"> = [lyayg--'oy)dy, (2.1)

where @ B,... represent particular values of the index pair (i,s). A general

weighted moment can be defined by

<Ya¥ B"°>ro = [lyqyge-)y)oly)dy, (2.2)

where wy) is positive weight function. If p(y) vanishes at infinity along any
ray, then exponential falloff of w(y) in all directions is sufficient to insure
that the weighted moments are a complete representation.7

The existence of a complete moment representation of the JPD implies
that it is possible to form converging sequences of approximants constructed
from finite sets of moments. There are pitfalls in doing this. Thus the
expansion of the JPD into cumulants is nonconvergent in general. An example
is the well-behaved 1l-dimensional density o(x)=(21¥)‘1/2x2exp(-x2/2), whose
cumulants grow like (2n)!. [The wunphysical results in isotropic turbulence
theory obtained by the approximation of setting ‘..h-order cumulants to
zero*? are apart from the convergence difficulty at high orders.]

One way of constructing convergent approximants to ply) from finite sets

of its moments is by the orthogonal expansion

M
om(y) = wiy) ] =0 brPn(¥)s (2.3)

where the p.(y) are a complete set of polynomials in the y(t,), orthonormal
with respect to the positive weight w(y) and placed in some l-dimensional

order. The b, are fixad by

by = {Prly)) (2.6)

and involve the values of moments only up to the order of p,. The

approximant2 converge in mean square as M+ |f _ﬂ:o(y)]z[w(y)]'ldy exists, If



the moments are complete, this condition can be satisfied with a §(y) which
falls off exponentially, and thereby has a set of Pnh Wwhich are complete. In
this case the mean square convergence of the approximants is to p(y). If p(y)
fells off so slowly that its moments are incomplete, then the expansion (2.3)
can be replaced by a similar expansion for [w(y]l/ Z6(y) and convergents to
p(y) in mean square are constructed from finite sets of weighted moments.’
When p(y) is represented by its moments, it is important to express the
condition that n(y) be positive everywhere. Obvious neccssary conditions are

the infinite set of moment inequalities

{Pn?) 2 0, (2.5)

where P_ is any real polynomial. If the moments are a complete
representation, (2.5) is also sufficient. The finite approximants py\,(y) satisf;
(2.5) up to a finite degree of polynomial, but in general are not positive
everywhere. Also, it should be noted that satisfaction of (2.5) for all p.(y)
whose degree is <J, does not assure that every positive real polynomial of
degree 2J has a positive average over Pms some positive polynomials are not
expressible as sums of squares of lower-deqree polynomials. If the ordinary
moments are incomplete, (2.5) is replaced by corresponding inequalities for
weighted moments.’

Consider now the construction and moment representation of a JPD which

approximately satisfies the N-S equation. Let the discretized form of the

latter be represented by
Ligly) is a 2nd-degree polynomial. Thus the mean-square of the N-S equation

(L) = 0 @.7)



may be considered a limiting case (equality) of one of the relations (2.5). If
all the relations (2.5) are satisfied, and (2.5) is sufficient for realizability,

then the entire moment-equation hierarchy

(PryLigly)) = 0 (2.8)

follows from (2,7) by virtue of Schwarz' inequality
{PrnLig)? < (PN YILiswi?).

P,(y) here is any polynomial.

If (2.7) is satisfied and any equation in the hierarchy (2.8) is not, then
the moments represent a JPD which is not positive-definite. It can be shown
that the entire hierarchy (2.8) in fact represents a subset of (2.5), specialized
to polynomials L-ls(y)HSPn(y), with & infinitesimal.’ Any approximate set of
moments which satisfies (2.8) for all first and second degree polynomials Pn
satisfies (2.5), since L,; is of 2nd degree. Therefore such an approximation
either is an exact solution of the entire hierearchy or cannot be realized.

The existence in general of converging moment-based approximants to
JPD's suggests that it should be possible to construct converging moment-
based approximants to ensembles of solutions of (2.6). One way to seek such
approximants is by Galerkin methods: use the representation (2.3) in a subset
of the hiersrchy (2.8) large enough to fix the b, and assert a subset of the
realizability conditions (2.5) which grows with M, Convergence is not totally
assured by the general convergence of the pM(y). It is also required that the
exact p(y) to which convergence is sought have certain stability properties
under small perturbations of (2.6).’

An alternative way of constiucting approximants which have assured

convergence, and automatically satisfy (2.5), is the following. Write



10

OM(Y) = [WM(Y)]Z
and expand Yp(y) in the form

M
m(y) = ano Iw(y)1H 2e pr(y)- (2.9)

Then pp4(y) is positive-definite and (2.7) is sufficient to ensure satisfaction of
(2.6) in all but zero-measure set of the realizations that comprise the
ensemble. The left side of (2.7) is a quadratic form in the c_. The latter
may then be determined -ariationally in order to minimize some positive
linear sum taken over (2.7) for all i and s, subject to whatever other
constraints (for example, initial conditions) may be appropriate.llJ

The c. in (2.9) do not have a relation to moment values as simple as

n
that for the b, in (2.3). Another scheme which produces converging
approximants to exact solution JPD's, and automatically satisfies realizability
inequalities, is a variational procedure based on the truncated expansion of
the y;(t,) in powers of Gaussian random processes (many-time Wiener-Hermite
expansion). The coefficients of this expansion again determine the moments,
but according to a still more complicated structure.8-10

Approximations based on (2.3) or (2.9) appear to have been little explored
and may deserve further study. The rates of convergence are not known, but

it is plausible that the order of approximation required for given accuracy

stays finite as Reynolds number becomes infinite.
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3. RENORMALIZED PERTURBATION THEORY

A formal solution for the time evolution of the wavevector amplitudes
ui(k,t) of the velocity field may be developed by straightforward
perturbation-iteration treatment of the Navier-Stokes equation. Let u?(k,t) be
the solution of the linear problem posed by striking out the nonlinear terms
of the N-S equation, and let G%-(k;t,t') be the Green's or responée function of

the linearized equation. Then

Wik,t) = U?(k,t')Gij(k;t,t'), G?j(k;t,v) = §;Gqt,t), (3.1)
where
GO(kst,t) = expl - VKZ(t - t')] (3.2)

and v is kinematic viscosity. Then the reintroduction and iteration of the
nonlinear terms yields u;(k,t) as a functional power series in all the initial
values ui(p,O)zu?(p,O) and zeroth-order response scalars Go(p;s,s').

Assume that the initial state is homogeneous, isotropic, and multivariate
CQaussian. The power-series expansion together with well-known reduction
rules for Gaussian moments yields a formal expression for any moment of
the evolved wavevector amplitudes as a functional power series in the el
and the defining scalars Uo(p;t,t') of the zeroth-order 2-time covariances.
Also, similar expressions may be obtained for the Green's functions that
measure the ensemble-averaged response of the full N-S equation to
infinitesimal perturbations. In particular, this may be done for the defining
scalar U(k;t,t') of the covariance of the exact amplitude ui(k,t) and for the
defining scalar G(k;t,t") of the aversge response tensor for a statistically
sharp perturbation of a single Fourier mode.

Renormalization of these primitive perturbation series is rnotivated by the
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plausible argument that the actual covariance scalar U(k;t,t") and actual
responsc scalar Gk;t,t") are more physically relevant than the zeroth-order
quantities. The primitive expansion is essentially an expansion in powers of
Reynolds number, whicli is not a small number in most cases of interest.
Huwever, straightforward truncations of the primitive expansion car give
surprisingly good results for the initial-period evolution,*142 Renormalization
can he carried out by a variety of methods.}1-17 The best known is
summation cf diagrams (classes of terms in the primitive exparmion).n'13
Pernaps more flexible is term-by-term reversion of the expressions for
Lidgt,t) and G(kst,t") as functional power series in the W0 and GO.17:43 Thig
yields Uo(k;t,t) and Go(k;t,t‘) as functional power series in the exact U and
G. In turn these last series can be substituted into the primitive expansion
for any moment of the exact Fourier amplitudes to yield a reworked
expansion in which appear only the exact U and G. These reworked
expansions for all moments consiitute the complete iine-renormalized
perturbation apparatus.

Approximants to U and G may be constructed by truncating the
ranormalized expansions for those moments which, according to the moment
hierarchy equations, express the time derivatives of U(k;t,t'") and G(k;t,t") The

hierarchy yields

(3/3t + vk2)U(Kkst,t) = Slkst,t),

(3/3t + wk2)Glk;t,t) = H(kst,t, (3.3)

where G s a triple moment expression and H involves the covariance of a
mode amplitude with an unaveraged response tensor, The leading term In the
renormalized expansion for S has the structure GUU., Thy* s, it Is a time

and wavevector integral over an integrand contzining geometric factors, one
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G function factor and two U function factors. The higher terms have the
structures GGGUUU, GGGGGUUUU, etc. The terms in the expansion for H
have the structures GGU, GGGGUU, GGGGGGUUU, ote.ll

[f the renormalized expansions for H and S are truncated at some order,
the result is closed integrodifferential equations for G and U. There is no
reason to believe that successive aporoximants constructed in this manner
converge. In fact, there is evidence to the contrary from model problems, If
extrapolation from few-mode bilinear systems is vatid, both the primitive and
the renormalized perturbation expansions have zero radius of convergence
either in t or in the strength of the nonlinearity (that is, in Reynolds
number). In a 3-mode bilinear system, the radius of convergence in a typical
realization is finite, and the averaying over the Gaussian initial conditions
yields zero radius of convergence for the moment cxpanslons."“‘ The
divergence of the renormalized expansion appears not less severﬁl at high
orders than thst of the primitive expansion, In fact it is more dangerous,
because the renormalized expansions are used via (3.3) to form a closed
system, Padé methods and other acceleratinn techniques may help with the
covergence problems for both primitive and renormalized expansions, but the
results are uncertain.4314°

If H and S are consistently truncated at any order (the same for both),
the resulting approximant formally conserves energy transfer by nonlinearity,
in accord with the exact dynamics, and if v=0 it gives formal absolute
equilibrium  distributions which obey detailed balance and vyield the
fluctuation-digsipation relations of the exact dynamlca.11

The loweat’ truncation retains only the GGU terms in H and the GUU
terms In T. Substitution of the result into (3.3) ylelds the so-called direct-

interaction approximation (DIA), which has specla! properties, The DIA can be
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obtained, in two separate ways, as an exact consequence of certain model
amplitude equations, independently of the perturbation and renormalization
analysis., These model representations show that the approximation is self-
consistent in the sense that U(k;t,t") obeys the 2nd-order realizability
inequalities. In particular, U(kst,t) is non-negative. This property, together
with energy conservation, is sufficient to assure that there exist healthy
solutions to the DIA equations. In contrast, it is known from examples that
solutions for higher truncatioms of the expansions of H and S can blow up
catastrophically.

The fundamental dynamical model underlying DIA is obtained by
randomizing in a particular way the coefficients in the N-S equations which
describe interactions of individual mode triads.!l The alternative model is a

generalized Langevin equat’.icm:“5
t
(3/3t + vkz)ul(k,t) + IO n(k;t,s)ui(k,s) + bi(lt,t) = fi(k,t). (3.4)

Here the dynamical damping n(k;t,s) is statistically sharp and has the
structure GU, while bi(k,t) la a random internal force, with Gaussian
statistics, and fl(k,t‘) is 1 possible external force. The model is closed by
requiring that the 2-time covariance of bl(k,t) be identical with that of the
total nonlinear term in the N-S equation for uj(k,t), under the assumption
that the Fourier amplitudes u’(q,t), which appear in the nonlinear term, are
exactly statistically independent. Thereby the covariance of b; has the
structure UU, The DIA equations for G and U follow immediately from (3.4)
if G is identified with the response scalar of (3.4).

The DIA giver reasonebly accurate predictions of the decay of lIsotropic
turbulence at moderate Reynolds numbers, including satisfactory predictions

for 2-time quantlt!es.“'” It hes also had success In some plasma and
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magneto-hydrodynamics (MHD) applications,ae"‘9 in turbulent dl\'\‘usior\,s’g’36

51 and in Boussinesq convection, 2

in anisotropic homogeneous turbulence,
Applications to shear flows and to convection at lower Prandt! numbers are
being developed.”"s5

If applied to high-Reynolds-number turbulence, the DIA equatiors exhibit
a failing, of broad impact in analytical turbulence theory, associated with the
interaction of strongly disparate wavenumbers.’® This problem arises in a
somewhat subtle way from the renormalization; it does not afflict truncations
of the primitive perturbation expansion. The origin of the difficulty is the
separation between the characteristic time Td(k) for distortion of features
with characteristic wavenumber k, eand the time Tc(k) for decorrelation of
the amplitude ul(k,t) due to convection of the features by the total velocity
field. In a Kolmogorov inertial range, 1c~1/(v0k), where vg is the rms value
of the total velocity compcnent in any direction, while Td(k)~1/(ell3k2/3),
where € is the energy dissipation rate per unit mass. The ratio is
Tc(k)/rd(k)~(k0/k)1/3, where kg is the characteristic wavenumber of the
energy-containing range. In the exact dynamics, Tc(k) is the decay tiine of
U(ks%,t") as a function of t-t', and this is also true in DIA. However, the
OIA energy balance equstion, obtained from (3.3) at t=1t, eifectively
substitutes this convective dephasing time for the .proper intrinsic distortion
time t. The result is a depression of energy transfer and a change of the
Kolmogorov spectrum law from -5/3 to -3/2. (In some MHD applications, this
trouble does not arise.’’)

Error from the ~ounfusion of convection and distortion times persists in
every order of the line-renormalized expansions for S. It also persists, but Is
numerically reduced, in every order of expansions where line renormalization

is augmented by vertmx renormalization,”8
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The distinction between convection and distortion times can be expressed
formally by the property of invariance under random Galilean transformation
(RGT),%8 Suppose that the turbulent velocity field is augmented by a
spatially uniform velocity which varies randomly over the realizations of the
ensemmble and has zero mean. The Galilean invariance of the N-S equations
insures that stretching and other distortion effects are unaffected by the
uniform convection. This is expressed mathematically by the invariance of
moments under RGT. In particular the triple moment <ui(k,t)uj(p,t')um(q,t")>,
with k+p+q=0 is invariant. Any finite truncation of the renormalized
expansion for this moment, however, is not invariant, because the
correlations among the phase changes induced in the three factors by the
RGT are lost.

The underlying physical problem with the renormalized expansion, as it
has been formulated, is that the distortion time 7t4(k) has no simple
expression in terms of Eulerian 2-time quantities. But it arises naturally in a
Lagrangian representation, where convective effects of large scales are
transformed away. The entire line-renormalized apparstus can be recast into
a form whern Lagrangian as well as Eulerian 2-time correlations enter in a
fundamental wcay.':'e’17 The reworked expansion is properly invariant under
RGT in every order. The lowest truncation of this expansion yields the so-
called Lagranglan-history DIA (LHDIA) in which the convection difficulty
disappears, and the -5/3 Kolmogorov spectrum is recovered. An abridged
version (ALHDIA) yields excellent absolute agreemert with measured inertial-
range and dissipation-range spectrs, normalized by € and vo?  The
improvement over DIA is gained at a cost in complication and at the loss of
the exact model representations. (But see the work of Kaneda.60'61)

The LHD!I and ALHDL approximations have yielded good qualitative physics
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in a variety of situations: the k'sl3 inertial range in 3D and 2D turbulence,
the log-corrected k™3 range in 2D turbulence, the k'5/3, k'l, and k'17/3
ranges in turbulent convection of a passive scalar, the k"/z MHD inertial
range, ard the k-2 shock-dominzted range for Burger's equation.57’59’62'65
The predicted cascade rate in the k"‘-’/3 and k™1 scalar ranges and the 2D
K-> range is probably too high by a factor of 2 or 3. An alternate version of
LHOI has been constructed from Lagrangian reverted series which are based
on the strain field rather than the velocity field as the fundamental
Lagrangian construct.56:67 This has ylelded numerical constants for the three
last-named ranges in fairly good agreement with experiment, without
sacrificing agreement in the 3D k'5/3 Kolmogorov range.

The RGT-invariant Lagrangian form of renormalized perturbation theory is
most naturally based on the generalized x-space velocity field uy(x,t]s),
defined as the velocity measured at time s in the fluid element whose
trajectory pusses through the spacetime point (x,t).'j8 The ordinary Eulerian
velocity is ul(x.tlt), while Ui("otolt) as a function of t is the l.agrangian
velucity of a fluid slement tagged at *time 5. The full evolution of ul(x,t|s)
is fixed by the N-S equation together with a passive advection equation
which determines the t dependence at fixed s, The linearized solutions
u?(x.th) are independent of s. This mukes it pussible to revert the series for
covariances and Green's functions to express the zernth-order functions in
terms of tho exact Lagrangian covariances and Green's functions instead of
Eulerian functions, The result is a rsworking of the renormalized expansions
for moments, in particular triple moments, so that Iintegrations over time
histories are back along fluid-element trajectoriee, instead of at fixed
coordinate positlom.17 The tagging time of the trajectories is continually

updated,
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4. DECIMATION UNDER SYMMETRY CONSTRAINTS

The use of statistical description carries an implicit appeal to redundancy.
A system with N deqgrees of freedom sampled at T time steps in R
realizations is described in full detail by NTR numbers. A full statistical
description by moments up to order M requires the order of (NT)M/M!
numbers. The statistical description is prohibitively bulky at large NT and
moderate M unless the moments change slowly and smoothly with change of
mode label and time. If the change is slow, it is sufficient to specify the
moments fcr a relatively small set of strategically chosen modes. This is an
exploitation of statistical redundancy (statistical symmetry) within classes of
modes, Such symmetry certainly characterizes homogeneous turbulence in a
large cyclic box, where the Fourier modes are dense and neighboring modes
are statistically similar,

Statistical symmetries can be exploited in a systematic way tu yield
equations of motion for & reduced set of modes, the explicit set, which are
sufficient to characterize the entire system. The rest of the mode: (Implicit
modes) are represented by a constrained stochastic forcing in the equations
for the explicit modes. This ls a forcing distinct from any external forcing.
The constraints are expressions of the underlying statistical symmetries; they
relate moments of the Iimplicit modes, and thereby moments of the
stochastic forcing, to moments of the explicit modes. This pirocedure, which
will be termed decimation under symmetry constraints (DSC),7 turns out to
have deep connections with renormalized perturbation theory (RPT) and
renormalization-group (RNG) approaches, as well 88 with the moment
hierarchy of Sec. 2.

The gener.i structure of the equations of motion for the explicit modes is

readily found. In the notation of Sec. 2, the N-S5 equaticn has the form
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(3/3t + wy;(t) + ij AfmY[tlym(t) = #(t). (4.1)

Here the yi(t) are independent real and imaginary parts of the Fourier
amplitudes (or more generally some modal representation), V| represents
damping by viscosity, the Aijm are the coefficients of the wavevector triad

interactions, and fi(t) is a possible external force. Let ys(t) represent the

explicit subset of y(t) and write the equation of motion for y-:‘:’(t) as
/ S + 10 S(t)yS
(3/at + \)i)yi t) + ijAijmy] (t ym(t) + qi(t) = fi(t). (4.2)

S
Here ij denotes a 3um restricted to j and m both in the explicit subset,

and the effects of the implicit modes are represented by

gi(t) = qlt) = Z’jm Ajjrm: O mt (4.3)

where Z'jm denotes a sum restricted to either j or m or both in the implicit
subset.

The furction qi(t) is now to be written as a stochastic forcing term which
expresses statistically the effects of the implicit modes. It comprises a
primary contribution by(t), which is the value of qll(t) with all the explicit
amplitudes clampec to zero in the equatiore of motion for the implicit
modes. In addition, thére is an infinite series of contributions which express
the change in q}(t) induced by the actual nonzero velues of the explicit

amplitudes. Thus’

q®) = bi®) + J " domtayfie) + J " dof “d vt FEVEE) ¢y 0)

by(t) = [al(t)ly, nyjtys) = [Gqf(t)ldyf’(o)lo,

Yijm(te) = [62al(t)/ 8y P()By3 (sl . (4.5)
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and []0 denotes a value taken at ys=0. The functions by(t), n”(t,a),
Yi]m(t's's')"" are stochastic, with nonzero means and nonGaussian statistics in
general. In the present case of isotropic homogeneous turbulence, b(t) has
zero mean. The bi(t) for distinct i are not statisticelly indupendent in
general.

Eqgs. (4.2)-(4.5) are a general formalism which can express a variety of
physics depending on how the explicit set is chosen. The convergence
properties of the forme xpansion (4.4), with exact values (4.5) inserted, are
not known. A sequence of approximations will now be outlined which
plaueibly are convergent and are associated with finite truncations of (4.4),
but with approximate values of by(t), nu(t,a), ver s

The assumption that statistica: symmetries relate the impliclt set to the
explicit set implies that all mcments of q and ,S can be expressed in terms

S

of moments of y~ alone. Thus

(ai) = 0, {q@yfe) = M,
<ql(c)yf’(t')y§n(t")> = Mﬁm(t,t',t"), vy (4.6)

where Mic’](t,t') is a triple moment of the explicit amplitndes alone,
Mf’lm(t,t',t") is a 4th-order moment of the explicit amplitudes alone, ... . This
follows from the fact that q‘(t) is Quadratic In the mode amplitudes. Eqs.
(4.6) ar® an Infinite set of moment relaticns. They are not members of the
moment hierarchy (2.8) but instead merely express the assumed statistical
redundancy between explicit and Impliclt modes. There c¢;e also symmetry

constraints for momenta of highar order in q. The 2nd-order ieguence |s
N - ND (e
<ql(t)q](t )) - Nll(t’L ), ase (a|7)

where Nﬁ(t.t') s a 4th-order moment of the explicit amplitudes alone. The
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higher members of this sequence involve y factors in the left-side averages.
Now suppose that the sequences (4.6), {4.7), ... are truncated so that only
a finite number of the symmetry constraints are imposed. For a concrete
example, suppose that the only constraints imposed are the first two of Egs.
(4.6). Then the random process qi(t) is not uniquely dstermined by the
constraints and initial statistics, Among the solutions is of course the exact
solution, since the imnosed constraints are a subset of exact constraints. The
ambiguity may be resolved by seeking a lesst-squares solution under the
subset of symmetry constraints together with the initial conditions and an
appropriate subset of realizability inequalities. The initiol conditions are

simply
g0 = af@® (4.8)

and the statistics of q}(O) follow trivially from the assumed Gaussian
statistics of the y,(0).

A least-squares solution that satisfies the first twe equations of (4.6)
must project on y;‘;(s). [n order tc also satisfy (4.8) it must in addition have
a part which initially is statistically independent of y?(O). One is led to infer
that the least-squares solution has the form of (4.4) truncated to the first
two terms on the right side. Similarly, if more uf the symmetry constraints
are imposed, one is led to infer that the least-squares form for q(t) Is a
higher truncotion of (4.4).

All the symmetry constraints plus the equations of motion for the explicit
modes imply the full moment hlerarchy (2.8) for the total set of modes,

implicit and expllclt.7

This follows from simple substitution. Then solution of
the equations of motlon for the explicit modes under successively larger sets

of the symmetry constraints implies that successively more of the hierarchy



22

equations for the total system are satisfied. As noted in Sec. 2, if an
enlarging set of realizability inequalities are also satisfied, and if the exact
statistical solutions have certain stability properties, then the resulting
approximations converge to an exact solution.

Realizability inequalities that involve the explicit modes alone are
automatically sastisfied, because actual amplitudes are evolved, But because
of weightings built into the symmetry constraints, realizability inequalities
that involve the implicit modes are not automatically satisfied in general.
This complicates the construction of successive approximetions and can
complicate the form of the least-s. uares solutions for the qjt).

The approximations outlined above are noriperturbative. But there is a
limit in which they can be analyzed accurately by perturbation methcds,
Suppose that the modes are dense in wavevector space and that the explicit
set is formed by choosing a few sample modes from each neighborhood in
wavevector space, A small parameter thereby is introduced, the ratic of
sample size to total neighborhood population. Consider the limit where this
ratioc goes to zero (strong decimation). Tha 15 sum in (4.2) then is
infinitesima! compared to q;(t) and may be treated perturbatively. If this is
done for the lowest-order least-squares approximation described above,
namely with the firat two equations of (4.6) taken as the only symmetry
constraints, the result is precisely the direct-interaction approximation in the
form (3.4).7 [The 2nd of equations (4.6) taken at t=t enforces energy
conservation in the mean by the nonlinear dynamics.] Thereby DIA s
imbedded in a 8sequence of approximations corresponding to taking
successively more symmetry constraints and consequently satisfying
succeasively more of the hierarchy equations, In this way the DSC approach

links renormalized perturbation theory to the moment approximations of Sec.
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A strong-decimation limit may also be constructed for systems with finite
numbers of modes by the device of considering an infinite collection of such
systems and performing the manipulations on suitably constructed coilective
coordinatea.7

In the strong-decimation limit, the higher DSC approximations again may
be treated perturbatively, But in contrast to higher truncations of line or
vertex renormalized perturbation expansions, the present approximations are
expected to converge. It should be noted that the Yijm(t,t',t") term in (4.4),
the next term beyond the DIA level, i3 a vertex correction term in the
language of renormalized field theory.

A different way to form tke explicit set is to put into it all modes with
wavenumbers less than some cutoff wavenumber and put all the modes above
the cutoff into the implicit set. The symmetry constraints now are
extrapolation formulas which express moments of modes above the cutoff In
terms of moments of the explicit modes. The truncations of (4.4) associated
with least-squares solution under successively more symmetry constraints then
form a sequence of subgrid-scale representations. Some techniques for
realizing the least-squares <=olutions in this kind of nonperturbative situation
have been deacribed.’

The problem of noninvariance under random Galllean transformation which
afflicts Eulerian RPT (see Sec. 3) can be handled in the DSC r~oproach
without the need for Lagrangian representation. This Is because the actual
amplitudes of the expllcit set of modes are followed. 't was noted above
that the imposition of just the first two of the symmetry constraints (4.6)
led, In ths strong decimation limit, to DIA, which is noninvariant under RGT.

If the third of the constraints (4.6) 1s also Iimposed, the resulting vertex
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correction terms in the least-squares solution precisely counteract the
spurious decay of triple correlations in DIA and restore invariance.’

The consistent imposition of all symmetry constraints and realizability
inequalities associated with up to A4th-order moments of the explicit
amplitudes is of particular interest, because it implies that the fundamental

equation (2.7) is satisfied. The relevant constraints are the first three

equations of (4.6) and the first equation of (4.7).
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5. RENORMALIZATION-GROUP APPROACHES

A variety of analytical approaches have been made to the problem cof
eliminating the modes above some cutoff wavenumber k.. Comprehensive
citation will not be attempted here. Lindenberg and West have written down
an exact formal solution in terms of time-ordered exponentials built from the
explicit field (l<<kc).68 They then study a perturbative approximation
constructed so as to have desired fluctuaticrn-dissipation properties.

The elimination problem hae also been studied by renormalization-group
(RNG) methods.18-20,24-31 The treatments so far worked out explicitly have
involved rather drastic approximations. A distant eddy viscosity plays a
central role in the lowest approximation to the theory of Yakhot and
Orszag.m’}l It may be defined as the eddy viscosity exerted by modes of
wavenumber k >k, on modes k<<k.. An effective extrapolation from the
form of this distant eddy viscosity yields in a self-consistent way the total
eddy viscosity felt by a mode in the inertial range.m'32 A description of
this approximation and its relation to the full Yakhot-Orszag theory is given
by Dr. Yakhot in Lhese |=’rcn:¢aedincgs.69 Yakhot and Orszag have obtained good
predictions of the Kolmogorov conttant and other inertial-ranqge parameters,
They have successfully applied the inertial-range eddy-viscosity formuias to a
calculation of the von Karman constant and to detailed numerical
calculations of shear-flow behavior.>0

The discussion of RNG methods to follow here is not primarily concerned
with present applications. Instead, it offers some rather Procrustean
speculations on modifications suggested by the nature of the higher RNG
approximations. Three principal techniques have been used in the RNG
treatment of small scales, The first is elimination of successive thin shells in

wavenumber space, starting with the highest wavenumbe.s, instead of
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elimination of the modes k >k, all at once. The second is the use cf
primitive or renormalized perturbation treatment of the N-S5 equation,
effectively like that of Sec. 3, to accomplish the elimination of each band.
The third is the e-expansion: The treatment of the Kolmogorov inertial range
with energy spectrum E(k)ﬂtk'sl3 starts with the analysis of a spectrum
E(k)¢k1'2€/3. The Kolmogorov range is then recovered by an power series
expansion in € about €=0; the -5/3 spectrum corresponds to e= 40
Alternatively, thia may be regarded as an expansion about dynamics for space
dimensionality D =17/3, wi*s the modal intensity U(k) [UK) = E(k)/2mk2  for
D=3] held fixed at the Kolmogorov dependence U(k)«k'n/}. The approach
of Yakhot and Orszag envisages approximation sequences based on
simultaneous ana coordinated inclusion of successively higher perturbation-
theory contributions and successively higher terms in the € expar\slon.m’31

Any sequence of approximations which converges tn sxact el!imination of
the modes k >k. must yield, in the limit, rcnormalized equations of motion
for the explicit modes which are at least formally equivalent to (4.2) with
(4.4). The infinite series expansion (4.4) muy not converge, but basic features
expressed by it characterize the exact qi(t). Thus the exact qy(t) exhibits
contributions from all explicit wavevectors and integrations over past history.
It must be assumed that ql(t) is a complicated nonalgebraic stochastic
functional of all the explicit mode amplitudes, most likely not expressible in
closed form by any known tools,

It seems likely to the present author that some recasting of RNG
approaches is called for if they are to yield physically natural higher
approximants that converge to the exact q|(t). Fundamental questions arise
around both the concept of fixed point' and the process of successive

elimination of thin shells. As RNG methods have been applied to turbulence
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so far, they assume an underlying power-law spectrum which extends over an
infinite ratio in wavenumber. The fixed point which is sought is an invariant
behavior, under successive band eliminations, of the suitably rescaled
dynamical damping exerted by all the eliminated modes on modes with very
small wavenumber. If higher approxirnations are to be analyzed, this concept
of fixed point naturally enlarges to that of invariant behavior of all the
(suitably rescaled) stochastic functions b(t), n”(t,s), Yijm(tvavs') which enter
(4.4). The dynamic damping exerted on very small wavenumbers is expressed
by the k <<k, limit of n-lj(t,s). What scaling is actually correct cannot be
assumed in advance. Successive approximations may force a deviation from
the -5/3 law.

The fundamental problem with the fixed-point concept is not that it must
be enlarged but rather that it may be substantially irrelevant. Actual
turbulent flows have finite Reynolds numbers., Even in an infinite inertial
range, the really interesting behavior involves semicoherent flow structures,
intermittency, and cther deviations from the classical Kolmogorov -5/3
scaling. It is likely thet these effects are dominated by dynuamical
interactions among wavevector triads with finite wavonumber ratios, rather
than by coherence effects that extend over infinite wavenumber ratios.26 1f
this is so, then the interesting dynamics of the infinite inertial range are
inessentially different from thuse of turbulent flows with finite wavenumber
ranges. In both ceses, it is the structure within a finite range that Is
important, If that structure were well enough portrayed, then the chaining of
finite ranges to yield an infinite Inertial range would be a lesser and
secondary task.

Suppose that the fixed-point apparatus were eliminated and It were

desired to construct a formalism tnat applies equally to finite as well as
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infinite Reynolds numbers. The remaining parts of the RNG approach would
be the successive band elimination and the € expansion. The relevance of
elimination of infinitesimal shells is also questionable in higher
approximations, The natural shell thickness is a range in wavenumber over
which there extend dynamically significant correlations. At finite Reynolds
number the entire spectrum may fell within one such shell. In a infinite
inertial range it is unlikely this natural shell thickness is less than a decade
in wavenumber,

At the lowest order of RNG treatment, an infinitesimally thick shell on
the brink of elimination is assumed to be statistically independent of the
currently explicit modes, Then the interaction with a mode of wavenumber
ky <k, I8 introduced and calculated perturbatively. The result is an
incremental eddy damping felt at kl.m In this process, interaction of the
shell with explicit modes k) <k <k, does not appear. If now higher
perturbation orders are included, the dynamical structure within the natural
shell thickness begins to show. Already at A4th-order, excitation at k. Is
spread over a bandwidth ky in the convection time 'rc-(kl/kc)l/}Td by
interaction with all modes k; <k <k.,. Here 714 Is the internal distortion
(cascade) time at koo The implication is that it is more appropriate and less
complicated to eliminate the entire natural shell at once Instead of
artificially breaking it up into Infinitestimal shells. This granted, it may be
simpler, and as Justified, to eliminate all the implicit modes at one blow,
and not dea! with shells at all,

In any event - thin shells, thick shells, or no shells - the problems of
convergence of primitive and renormalized perturbation series arise as they

do In Sec. 3. A guessed at or simply estimated simple eddy damping could be
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introduced at the outset to accelerate convergence in low orders of the
approximation sequence. The introduced eddy viscosity could be that
determined by the lowest order of the Yakhot-Orszag theory.“”0 If this eddy
damping were added to the molecular damping and subtracted from the
nonlinear term of the N-S equation, it would automatically disappear as the
true dynamics were developed by successive approximation. No device of this
kind can bo expected to help significantly with convergence problems at high
orders.3%

The € expansion is the most mysterious and intriguing component of the
RNG arsenal. The combination of low orders of perturbation expansion and
low orders of € expansion has given good results in the study of critical
phenomena. The € expansion in turbulence theory has a problem of a priori
plausibility: elementary arguments give the E(k) «k spectrum, about which the
expamsion is based, @ substantially different qualitative physics from that of
the Kolmogorov -5/3 spectrum. No clear counterbalancing arquments for the
validity of € expansion have been stated.

It should be noted that the € expansion logically need not be tied to the
band-elimination procedure. For example, the ¢ expansion could be interlaced
with the Eulerian or Lagranglan renormalized perturbation expansions of Sec.
3, since the latter can be applied, at any order, to the kl‘z‘:/3 spectrum, Or
it could be used in conjunction with the DSC approximations of Sec. 4.

If the attempt is made to remodel RNG to handle finite Raynolds
numbers, the € expansion as usually stated becomes less plausible, If U(k) is
kept fixed in form and dimensionality changed to 17/3, the Initial spectrum
E(k) for @ decay problem ls radically changed, and there ls little reason to
expect the qualitstive physics to survive the change. However there is an

alternative procedure which does not have this drawback and which may be
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interesting to study. Suppose that dimensionslity D is increased from D=3
with E(k) rather than U(k) kept fixed. [t may be that at a large enough

value D, (especially D r=°°)70 the true dynamics and the perturbation-

c
theory dynamics both simplify importantly. An expansion in powers of Dcr'D
(or 1/D) might be more physically relevant than the original € expansion.

Some remarks should be made about the relation of RNG approximation
to the problem of noninvar.ance under random Galilean transformation, which
afflicts Eulerian RPT. In the lowest order of RNG approximation the
effective eddy viscosity felt at k is found to have the physically expected
relation to the characteristic distortion time 1d(k). This is in contrast to the
predictions of Eulerian RPT, in particular DIA. However, as noted earlier,
the effects of intermediate wavenumbars do not appear In this lowest order.
In higher orders of the Eulerian perturbation theory used in the RNG
analysis, the effects of convection by intermediate wavenumbers are large.
They bring the dominant convection time 1. into the analysis of distant eddy
viscosity, This is so whether the Kolmogorov spectrum is treated directly or
the € oxpansion is used In higher orders. The results will depend very much
on how the perturbation treatment is developed. It primitive ordering of
perturbation terms Is used, problems of random Galilean invariance need not
arlse.”® But other orderings of perturbation terms can give noninvariance
effects similar to those encountered by Eulerian RPT and described in Sec.
3. In particular, this problem can affect the predicted localness In
wavenumber of enarqgy cascade from explicit to implicit modes.

In this connectlon, a fundamental differsnce betwesn eddy viscosity and
molecular viscosity should be noted, Eddy viscosity cen be representad by an
absolute equilibrium incompressible motion at thermal velocity on the spatial

scale of the molecular mesn free path.’l The Lagranglan and Eulerian
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correlation times of this motion are of the same order, and this equality is
unaffected by convection by the total hydrodynamic motion because the
latter has a velocity much smaller than thermal velocity. Thus the effects of
convec:iion by intermediate hydrodynamic modes on the molecular viscosity
felt at low k are negligible. In contrast, the velocity associated with the
inertial-range excitation above ko is small compared to the velocity in
intermediate modes at wavenumbers <<k, and the result is Lagrangian and
Fulerian correlation Limes that scale differently with k..

In summary, three suggestions have been offered concerning the

implementation of higher crders of RNG:

1. Eliminate the implicit modes all at once instead of in successive

infinitesimally thick shells.

2. Introduce by hand a simple eddy damping, like that of the lowest o.der of
the Yakhot-Orszag theory, in such a way as to accelerate convergence in low

orders of perturbation theory.

3. Modify the € expansion so that the enerqy spectrum [(k) rather than the
mode intensity U(k) is held fixed In form under change of space

dimensionality.

With these chenges, several methods of successive approximation could be
interlocked with the € expansion. They include the primitive and renormalized
perturbation expansions of Sec. 3, with or without convergence accelerators,

and the decimation approximations of Sec. 4.



32

6. THE UPPER-BOUNDING APPROACH OF BUSSE, HOWARD, AND MALKUS
The upper-bounding theory for turbulent transport was first formulated by

34 after a germinal investigation by Malkus.>? Latter dovelopment is

Howard,
due to Busse and others.>® This approach deserves mention in any survey of
analytical methods for turbulence because it uniquely gives rigorous results.
The latter are in the form of upper bounds for turbulent transport of
momentum and heat, and they are obtained with utmost economy of
materials. All that is used of the N-S equations (or the Boussinesq equations
for thermal convection) are certain exact integral properti .s. The bounds are
found by extremalizing transport with these properties as constraints. Most of
the work has been restricted to single-time constraints, but recently
Krommes and Smith have used two-time constraints in a study of heat
transport by passive advection.>® No applications to nomogeneous turbulence
in an Infinite box seem to have been reported, but Sulem and Frisch have
developed bounds on energy flux and inertial-range power laws for turbulence
of finite energy.72

There is a possibility that it may be feasible to combine similar
extremalizing techniques with the DSC approximations outlined In Sec. 4,
This Is because the latter are obtained by imposing a subset of the exact
symmetry constraints. In Sec. 4, approximate solutions were sought by
constructing least-squares realizations of the stochastic forcing terms qy(t)
under the subset of symmetry constraints, Instead, solutions could be sought
that maximize or minimize chosen inteqral properties, such as the total
dissipation by viscosity, or the total transport of energy through a given
spherical surface in the wavevector space. The DSC method Is not limited to

homogeneous turbulence., In Inhomogensous problems, transport could be

maximized preclsely as in the upper-bounding theory.
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The remarkable success obtained with the upper-bounding theory using
very few integrai constraints suggests that it may be profitable to examine
DSC approximations (with or without extremalizing) under broadly similar
constraints, rather than the detailed constraints that yield DIA. It may be
that integral constraints constructed from several orders of the set of
symmetry constraints will yield better results at lower computational cost
than detailed constraints confined to the first two orders of (4.6)., Such
constraints logically would be chosen to express overall conservation and

invariance properties.
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