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TOWARD; AN ANALYTIC SOLUTION OF QCD; THE GLUEBALL MASS GAP*

Geoffrey B. West
Theoretical Division

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

In spite of the apparent simplicity of the QCD Lagrangian only meagre

progress has thus far been made towards an analytic understanding of its

low energy behavior, Indeed, almost all efforts these days have shifted

to the area of numerical simulation. In this talk I would like to

review certain

to seeing (a)

(b) whether we

that we have in

general features and beliefs concerning QCD with the view

whether (following ‘t Hooft)l the theory makes sense and

can determine its physical spectrum. The sorts of ideas

mind include the following:**

i) A typical Green’s function can be represented, as a function of

the coupling constant (g), as an expansion around minima of the action;

ii) Eac!~ term in such an expansion is divergent and therefore

requires rl~normallzation;

Iif) Even after renormalization, each of the ser!es generated by an

expansion around a mlnlmum is divergent and therefore requires a

summablllty prucedure to make sense;

iv) The resu’tlng physical Green’s functions must remain causal,

Not.lce that statements (t) and (i Ii) imply certain analyt!c

properties ir] g whereas (iv) implies certain analytic properties In

momentum (q). On tho other hand, renormallsabllity (ii) tells us thnt

the henavlor in qz and gz are not, In fact, independent of each other,

This rather curious state of affairs will be of crucial ~mportance,

.—.

*Talk given at the [rvinc Conference on Non-perturbatlve Methods III Field
Theory, l.aguna Reach, CA. January 7, 1987,

‘*For a general review of some of these Ideas as well as the standard
notation see, for example, ref, 2.



Typically, no matter how the theory is initially defined, the momenta and

couplings are treated, to start with, as completely independent parameters.

Yet, after introducing an arbitrary, though consistent, procedure for

sweeping inevitable infinites under the rug, they no longer remain so.

Concurrently the resulting finite Green’s functions must s’till respect

general principles such as gauge invariance and causality, for example.

Indeed, since the renormalization group (RG) requires that g and q
2 l/g2

generically come in the combination q e it is clear that analyticity in

one cannot easily coexist with analyticity in the other. The tension between

the behavior in these two variables is highlighted by the presumed existence

of a perturbative regime (i.e. of the Feynman series) which naively wo~ld

suggest a finite region of analyticity around g2 = 0. This is clearly in

conflict with a finite region of analyticity in qz around q2 = O. A major

theme of this talk will be to examine in what ~’ay this makes sense and how

the theory deals with the apparent conflict with analyticity in q2. We shall

try to show that the resolution of this apparent d!lemma can lead to a

calculation of the mass gap in QCD and, more generally, to the spectra of

Green’s functions.

To be specific and to keep things as simple as possible we sha?l consider

the case of the scalar gl~eball in pure QCD defined in the usual way, by th,e

Lagrangian $(F~v)2. The interpolating field for the glueball will be taken

to be

o(x) =% (F:V)2 (1)

where p(g) 4s the standard p-function, Notice that 0(x) Is gauge invariant

because of the trace anomaly,
2

and, has no anomolous dimension. After a

scaling of the gauge-fields A; + A~/g, its propagator is defined by

~ DAa e is’gze(x) e(o)
G(q2) = ~d4xe{q”x

J DA; els’g2

(2)

whore complications due to gauge fixing, ghosts, etc. have bren suppressed.

Let us now examine points (1) - (Iv) {n more detail.

1) Expansion around Minima of S

The ranvent{onal systematic way of deallng with (2) is to expand it around

local m!nima of S (Sm, say) using a stationary phase or, In Euclidean space,



a saddle point technique. The generic form for the expansion is

@ 2 n-v
G(q2) ~ g4 Z Amn(qz) e-sm’g (g*) m

m, n=O

(3)

The only known minima of S, apart from the trivial one S = O, occur in the

Euclidean region. In Minkowski space, these are identified as tunneling

events between different vacua.
2

Thus , each m can be thought

characterizing a different topological sector. The standard Feynman

(m = O) corresponds to So = O and, for the glueball, VO = O. The

expansion represented by (3) is pathological in two separate ways:
.-l

of as

series

“bare”

first,

each coefficient Amn(qL) is divergent and second, each series, summed over n,

is divergent (i.e. has zero radius of convergence). The first of these is

fixed up via renormalization whereas as the second by a summability

technique.

ii) Renormalization Group Constraint

The finite renormalized coupling g(p) must be defined at some arbitrary

mass scale u thereby introducing a mass into the massless theory. The

resulting renormalized Green’s function, (2), should therefore be considered

as a function G(q2,p2,g2(p)). As such, it still has an expansion of the form

(3) but with g replaced by g(p). The renormalization group (RG) expresses

the invariance of G to the choice of p; explicitly (recall that 0 has no

anomolous dimension)

[ 1
2

2(2-m) q2m Ire(9)
P ~ + P(9) ; G(q2,p2,g2) = x p

m=o
(4)

The inl?omogeneous terms on the right come from extra subtractions needed to

remove divergences arising from the composite nature of t)(x). The general

solution to (4) is given by

[1 2
G(q2,p2,g2) . p4e-4K(g) F ~ e2K(g) + ~ ~2(2-m) q2m Qm(9) (5)

lJ2 m=l

where K(g) = Jg ~ and F(z) is an “arbitrary” function of the single

variable z = ~q2,p21e2K(g)
The functions $m(g) ar~ related to Ire(g); in

perturbation theory, it turns out that @l(g) ~ 0(g4) whereas $2(9)

- J 12(9)/9(9) : 0(92)1 At first sight this is somewhat surprising since in

perturbation theory G : o(g4)m However, it is easy to see that the



cancellation of the O(q2) term in @2(g) requires both

F(z) ‘~ z2(ln z)
-1

and——

for all q2.G(q2,p2,0) ~ Ao(q2) = q4 in q2/lJ2 _

(5a)

(5b)

The first of these (5a) is none other than the asymptotic freedom result
2

for G and implies that G(q ,P ,9 )2 2 2 q ~ q4 [ln q /p2]-1. The second (6b) is

simply its normalization.

Notice, incidentally, that p(q2,p2,g2) = Im G(q2,p2,g2) satisfies the

conventional homogeneous renormalization group equation and so must have the

structure

[14 -4K(g) f ~ e2K(g)
P(q21P2)92) =pe

P2

(7)

where f(z) ~ ImF(z). It is not difficult to show that the perturbative

requirement that p - 0(g4) for small g2 leads to p(q2,p2,0) = ao(q2) = q4

2
22-2

222q~q4[lnq/p]and p(q ,P ,g ) in agreement with the results for G,

Eq. (6).

The expansion of the P-fbnction ~(g) = ‘blg3 + b2g5 + ....lea~ to

K(g) = l/blg2 - b’lng2 + .....where b’ = b2/b12; thus K(9) ‘m ‘hen g + 0.

From Eq. (5) this is equivalent to q2 + e and therefore to asymptotic

freedom. On the other hand, if g2 + O- (i)e. from below) then K(g)+ - ~

which is equivalent to q2 + O. Thus ~ G were analytic in g2 at g2 = o (50

that it doesn’t matter how the free field limlt is approached) then its

infrared behavior (q2 + O) uocld be identical to its ultraviolet (q2 + (0).

Of course, this Is not so, precisely because, as we shall demonstrate bel~w)
2

even the perturbation series is not analytic at g = 0, Nevertheless this

observation illustrates the potential power of the use of arguments based

upon analytlcity. Tne apparently innocuous (though erroneous) assumption

that perturbation theory be analytic at g2 = O would lead to a determination

of the infrared as well as ultraviolet behavior of the theory! A valid

statement, however, IS that the difference between the infrared and

ultraviolet is a measure of tl)e non-analytic behavior at g2 = 0.



I We should also remark at this point that, according to ‘t Hooftl, there

exists a renormalization scheme where K(g) is completely determined by its

first two perturbative terms: K(g) = l/blg2 - b’in gz. The claim is that in

a given scheme there always exists a transformation of g which reduces K(g)

to this form. This is motivated by the observation that bl and bz are the

only terms in p(g) which are both scheme and gauge invariant. Furthermore,

they are the only terms in K(g) that are singular when gz + O.
4

iv) Causality and Analyticity

The fact that the implicit commutator in (1) is causal and therefore

vanishes outside of the forward light cone is the physical reason taat G is
.

analytic everywhere in the complex qz-plane except possibly along the real

axis as shown in Fig. 1. In a physical channel the first singularity must

n12

Fig. 1 ExpPcted singularity structure in the q2-plane for a physical

channel.

occur at q2
2 2

=m where m > 0. It is usually assumed, or implied, that in

order for this to be interpreted as representing a free particle or

asymptotic state it must be an isolated pole -(q2
2 -1

-m). Recall , however,

that for the electron in QED (which is certainly a physical particle) this is

not the case; its singularity is a cut whose strength is In fact, gauge

dependent. 5 This, of course, is a reflection of the fact that an electron,

being charged, is alweys autended by a C1OUCI of zero mass photons. Naively

one would not expect this to be the case for the glueball since it is

colorless and, furthermore, gluons unlike photons are supposedly

unobservable. Nevertheless it is presumably possibl~’ that physical colored

singlets are always accompanied by a sea nf gluons which are also in a

singlet state.

singularity the

at q2 = 0. The

at gz = 0!

Notice, incidentally, that regardless of the nature of the

existence of a mass gap means that G must be analytic in q2

RG, Eq. (5), therefore, forbids G from being analytic in g2



Analyticity can be expressed and exploited in many different ways, the
2

most primitive of which is a Taylor series expansion in q for qz < mz;

@ 2n

()
G(q2,p2,g2) = p4 Z Cn(g2) ~

n=O P

(8)

Unlike the expansion in gz, Eq. (3), this series has a non-zero radius of

convergence, namely mz. Furthermore, this ser

invariant form as in Eq. (5). It is easy to

full g2 dependence of the coefficients Cn(g2) v

es must be expressible in RG

see that this determines the

z:

C (gz) = Cne(n-2)2K(g) + bnl $II(g, + ~nz I$IZ(g)
n

(9)

where the En are

The expansion

numbers independent of gz.

Eq. (8) with coefficients giv~n by (9) is an exact statement

expressing causality and the renormalisability of the theory. It can be

thought of as the complement to the original expansion in gz given in

Eq. (3). This immediately raises the question as to how these apparently

different representations (3), (5) and (8) can coexist. In particular, what

is the meaning or nature of perturbation theory since the coefficients Cn(g2)

in the “exact” expression (8) are so singular at gz = 0? To put it

explicitly, how, for example, in the ‘t Hooft scheme can

a
~ ~ e(n-2)/bg2(g2)- (n-2) b’(q2/p21nG(q2,p2,g2) = p4

n
n=O

m

z 94 z An(q2)g2n +,..... ?
n=O

(lo)

To answer this, we need to review the ideas of the summability of asymptotic

series. Before doing so, however, let me give the more familiar disperson

representation of analyticity since this generalizes the Taylor series

expression, Eq. (8).

Assuming that the number of subtractions is determined solely by

convergence properties and that these are given by asymptotic freedom,

Eq, (6), allows us to write the representation

G(q2,p2,g2) = G(0,p2,g2) + q2 G’(0,p2,g2)

,$J”d Ptq

m2 q’4 (CI’2-C?)

(11)



*

This
3

can be expressed in RG invariant form, Eq. (5) to give

2 2 ‘2K(g)F~(0)4 -4K(q)F(0) + p q e
G(q2,~2,g2) = p2q2@l(g) + q402(g) + P e

+:J”d; ()

2 ’22 2K(g)1
20 z [z-(q /p )e

(12)

2 = ~ ~2e-2K(g).where m
o

gap Below, we shall
‘o is a RG invariant number that determines the mass

show how it can be calculated. Notice that an

expar,slon of the dispersive part of Eq. (12) in powers of (q2/p2) reproduces

the Taylor series, Eq. (8), thereby showing how the Cn are related to moments

of f(z).

Summability

We have already stressed that a typical series in the expansion (3), and,

in particular, the perturbation series, is divergent. At best, we can hope

that these series are asymptotic and therefore amenable
1,2,6

technique such as that of Borel . To review

perturbation series

@

G(q2,p2k) ~ z A@k””(n+2)
n=O

where, for convenience, we have introduced k s l/g2.

G is basical ’

#(q2,P2

y just an inverse Laplace transform

~)z~$ke ‘LG(q :p ?k)

the

to some summability

idzas consider the

(13)

The Borel transform of

(14)
L

where the integral is along a line L running parallel to the imaginary axis

in the complex k-plane and standing to the right. of all singularities.

Substituting the series (13) into (14) gives

(15)
~ AJq2)d’

w(q2AJ2)o= z n!

n=O

This new series has considerably more convergence than the original one and

the idea is that if It has a finite radius of convergence then the resulting

sum car) be used to reconstruct G via the inverse of (14); namely the Laplace

transform



-W#(q2,p 2,&) .G(q2,p2,k) = k~d& e (16)
o

From a naive point of view, such a scheme may have sGme chance of success

since the series (13) and, more

asymptotic expansion of the path

looks like a functional Laplace

many conditions to be satisfied

generally (3), have their origins in the

integral, Eq. (2). In Euc; idean space this
-kS

transform on e . There are, naturally,

for this procedure to work in a consistent

and unique manner. Obviously, we must at least demand that the new series

(15) has a finite radius O? convergence and that the singularities in ~ for

( > 0 he integrable; furthermore, the integral over [ must converge and so

on.

Some of these questions, and indeed the ones relevant to our calculation

of 2., can be answered from what we have already discussed. The position and

nature of the singularities in the Borel plane can, in principle, be

determined using the representations (12) or (8). For example, in the

‘t Hooft scheme

2b’-2
%(q2, P2,0 = p2q2i@ + q4 ~2(0 + P4F(0) ~

2 2 (&l/b)b’-2
+ q P r(b~-~) F’(0) +#J”dz~@

Z.
~2 ~ 2ni

ek~
k

[z-(q /p )e2 2 “bkb’l

(17)

where ~m(~) are the Borel transforms of @m(g). Notice that there are

singularities on the positive real axis at ~ = l/b and 2/b but that these are

associated only with the real part of G. The singularities in the dispersive

part, on the other

this gives a string

(&+n/bl)
-nb’-2

r(-nb’-l)

hand, occur only for ( $ 0 as can be seen using Eq. (8);

of singularities

n>o (18)

Notice that the nature of these singularities is governed by the signs of

~~ bl and b’, reflecting their role in determining the convergence

properties of the integrals in (17). Based upon this we have suggested6 that

if Borel .summability be used as a criterion for consistency then only



theories with bl > 0 and b’ < 0 could qualify. Remarkably, QCD appears

unique in satisfying these conditions provided the number of flavors, n
f~8”

The cognoscenti will recognize the singularities in (18) as those first

discovered by Parisi using various approximation schemes such as leading log.
7

or l/N expansions. These were dubbed renormalons to distinguish them from

explicit instanton contributions which would give singularities at ~ = Sm.
8

From our “exact” result Eqs. (17) and (18) however, it would appear that

to renormalons would be double counting, ~ least in the- instantons — —— — ——

‘t Hooft scheme. This could be an indication that this scheme is inadequate

to accommodate explicit non-perturbati ve effects such as those due to

instantons. On the other hand, it is worth pointing out that instantons are

a product of Euclidean space whereas our derivation of the Borel singularity

structure was strictly valid only in Minkowski space since qz -analyticity

was an essential ingredient. The latter, as already emphasized, follows from

causality and, concomitantly, the existence of a light cone both of which

require Flinkowski space to have meaning. It is therefore conceivable that in

Minkowski space with the ‘t Hooft scheme all non-pertubative effects

including those due to instantons are included in the renormalons. This, of

course, is implied by equating Eq. (10) with the expansion (3). Some

additional credence can be given to this conjecture from the observation that

mathematically any instanton-like contribution can be expanded in terms of an

infinite series of renormalons [and vice-versa). For example, for a given m

e-1/’blg2 = - ~

[-

o (nsm-l/bl)”n-l e-sin/92
~z

n=o r(l+vn) sinvrrn
92V

This suggests that in an arbitrary scheme there

(19)

n

may well be no unique way of

dividing a renormalized amplitude into separate renormalon and instanton

contributions even though the physical basis for each is quite distirct.

From this point of view the ‘t Hooft scheme represents the extreme case where

all instanton-like contributions have been implicitly expanded in terms of

renormalons ~; in Eq. (19). The “conventional” expansion, represented by

(3), can bt thought of as the exact converse of this in which all renormalons

have been expanded in terms of instantons. An alternative possibility to

this somewhat radical conjecture, is, as already mentioned, that the ‘t Hooft

scheme is simply incomplete and essentially perturbative in nature,



There is a final important point that has thus far been ignored and that

is the question of an apparent singularity at & = O. Going back to Eqs. (12)

and (17) notice that since @2(g) - gz, $2(E) - 1/[ . Recal 1, however, that

asymptotic freedom arose from the cancellation of this “non-perturbative”

behavior of $2(g) by an exactly similar behavior in F(z) [see Eqs. (5) and

(6)]. Obviously, then, the apparent singularity l/~ in the transformed

variable must similarly be eliminated from (17) by the asymptotic behavior of

f(z) and, indeed, it is not difficult to verify that this is the case,

However, the renormalons singularities given in (18) contain a l/&2 term

which is in violation of this general result. The problem can be traced to

the observation that (18) was derived from the Taylor series representation

(8) which can be thought of as an expansion for the dispersive part in (17)

and which is valid only when qz < mz. It should therefore not be expected to

accommodate the q2 + ~ behavior needed to cancel the l/~ term. The

uniformity of the Borel singularity structure with respect to the infrared

and ultraviolet is a subtle one which we shall address elsewhere. Suffice it

to say here that asymptotic freedom ensures the absence of a singularity at

g=om In summary, we can say that the series f#(q2,p2,&) can be expected to

have a finite radius of convergence (=l/bl in the ‘t Hooft scheme but

min(l/bl,Sm ) in any other. )1 This implies (at least for the perturbative

series) that

v?(q2,L12,0)= Ao(q2) = q41n q2/p2

and

Im~(q2,p2,0) = a. (q2) = q4

(20a)

(20b)

An analogous result is valid for each sector m of Eq. (l). Although &has

singularities on the positive real axis these do not contribute to its

absorptive part.

The Glueball Mass

I shall now show how the ideas developed above can be used to determine

the position of the first singularity in G. Before doing so however, I want

to exploit q2- analyticity in a somewhat different way than is usually done,

Consider the following function



,

:

+(s) = J dz ZS-l F(z)
L

where the line L runs parallel

analyticity shown in Fig. 2. The

to the

integrand

L

I z~

(21)

mag’ nary axis in the regidn of

has cuts on the right hand

[

From F(z)

t
I

Figure 2. Singularity structure of the integrand z‘-lF(z) of Eq. (21).

positive real axis coming from F(z) -- this is the physics ‘- and a cut on

the left beginning at z = O due to Zs-l. O(S) therefore defines an analytic

function of s everywhere the integral converges. This, however, is determined

by asymptotic freedom, Eq. (6), sn we can conclude that O(S) is an analytic

function of s provided Re s < -2.

Suppose now that the contour is closed in the right hand plane, then $(s)

reduces to a conventional Mellin transform of f(z) = lmF(z) rather than of

F(z) itself:

$(S) = ; dz Zs-if(Z)

‘o

and this must be analytic for Re s < -2, Its inverse is given byg

(22)

(23)

where L here is a line standing tu the left of Re 5 = ‘2, These equations

therefore embody the general analytic properties of G as dictated by

causality and illustrated In F!g. 1. Notice that they Involve f(z) rather

than F(z). llecause of this It Is considerably more convenient to work with

p(q2,p2,g2) than with the full G.



Retail from Eq. (7) that p must be of the form

-4K(k) ~
p(q2)P2,92) = P4 e [1<~2K(k)

P2

which, with the Mellin representation (23), can be expressed as*

2 -s

P(q2dJ2)92)
()

9- e-(s+2)2K(k)
= p4 { ~ ‘$’(s) ~2

Its Borel transform is therefore [see Eq. 16]

(7)

(24)

(25)

where

I(s,E#) = [{%
ek&(s+2)K(k) k

(26)

Now, for the moment, restrict the discussion to the perturbation series;

as already shown, its Borel transform has a finite radius of convergence and

(q2,p2,0) =ao(qz) = q4, Using this in (25) gives*

(27)

In the ‘t Hooft scheme I(s,~) can be evaluated exactly leading to

Q(s) =
r[(s+2)b’-l]

[-(s+ 2)/bl](s+2)b’-l

(213)

Notice, that if b’ < 0, then, as promised, 0(s) has singularities only in

the region Re s < -2, (see Fig. 3). This is in agreement with the require-
.

ments of qz -analyticity and the convergence of the Borel series. Given $(s)

we can use (23) to determine f(z) and thereby, p. Although technically it is

difficult to evaluate the integrals, it is fairly simple to

*In order to accommodate the usual “’Jnsummed” perturbation series which has
no mass gap, generalized Mellin transforms must be used, ‘These are defined
by analogy with generalized Fourier transforms discussed, for example, ill
Ref. 9,



x x

-2

i

L

Fiqure 3. Singularity structure of o(s). Eq. (28).

determine the threshold ZO, The important point to note is that the

integrand in (23) has the following asymptotic behavior when Re s + OJ:

-s
z ‘s $(s) -+ [1

z

s -b’
(- +)

(29)

Clearly if z < (-e/blb’)-b’ this vanishes when Re s + -~; in this case we can

close the contour in the left hand plane where there are ~ singularities and

thus obtain no contribution. On the other hand if z > (-e/blb’)-b’ the

contour must be closed in the right hand plane where there are singularities

thereby giving a non-zero contribution. Thus f(z) is non-vanishing only for

Z>z o
= (-e/~lb~)-b’ so that the first singularity in p occurs at

-?K(k)q2=m2= 20 1.42e

Notice that Z. can be re-expressed as

2
eb

2
-b2’bl

‘o ‘ ‘- T/

51/121
= ~88en2)

51
{n the pure gauge theory

(30)

(31)

Thus {fA2 ~p2e ‘2K(k) is the renormalization group invariant mass scale the

first singularity In the glueball propagator occurs at M2 ~ 5 A2.



●

Remarks and Conclusions

The above calculation can be repeated for each sector m, defined in

Eq. (3), if we assume that each such contribution is separately causal and

therefore analytic in q2. In that case one can show that, although the

detailed structure of G changes, the position of ZO remains the same. Thus ,

the location of the leading singularity ot G given by Eqs. (30) and (31)

includes the contribution from all possible instanton-like contributions. We

caution, however, that these explicit calculations were all carried out in

the ‘t Hooft. scheme and, as already discussed, this may be too constraining a

scheme to accommodate all non-perturbative phenomena. Nevertheless, it is

remarkable, that a unique result for Z. can actually be derived in this

particular scheme. We remind the reader that its major attraction apart from

giving an explicit expression for 13 is that only gauge and scheme invariant

contributions are retained. Thus A, the only mass scale in the theory, must

also have this property. However, it is difficult to compare its value with

values in other schemes. The only unambiguous way cf comparing calculations

is to eliminate A by calculating a dimensionless quantity such as the ratio

of masses. We have therefore repeated the above calculation with e(x)

replaced by its axial counterpart eA(x) = ~(g)/g ~pv Fpv. Unlike e, eA does

have an anomolous dimension, which, of course, changes the details of the

calculation. Surprisingly, however, we find that the location of its leading
*

singularity is identical to that found for e, which suggests that the Or

glueball is degenerate with the O-. In future investigations we intend to

examine other higher spin states as well as the fundamental matrix element
10<OIFp~lO> which can be related to F(O) via a low energy thereom,

As already remarked we have not yet succeeded in showing that the leadlng

singularity represents an isolated pole. Thus far, we have only been able to

show that the singularity must be of the form (q2-m2)a with a < 0, It is, of

course, conceivabl~ that a # -1 in which case some thought would have to be

given to its interpretation and physical consequences. It is not impossible

that pure QCD does not admit of a simple particle interpretation and that it

is analogous to a 2-dimensional SU(N) theory in the N + @ limlt where

propagat~rs have cuts but no poles, The physics of such a situation and what

it might mean for particle detection have been discussed by McCoy and Wu.
11

Notice, incidentally, tt)at u # -1 would be very hard to detect numerically,

Naturally the inclusion of quarks, especially massive ones, can be expected

to change the situation dramatically, The RG equat!ons change and the

question of operator mixing becomes important and complex. The variat{on due

to the quark mass parameters means th~t in the solution to the RG equation



the function F now depends on two variables rather ‘;han one, A reanalysis in

this more general case is therefore considerably more involved and is now

being investigated.

In conclusion, we would like to stress that the general constraints of

renormal inability, causality and summability are a remarkably tight set which

can lead to determination of the glueball mass gap. In principle the

analytic structure of all relevant Green’s functions in the theory could be

unravel led and the physical spectrum determined.
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