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We critically review the present status of phase dynamics, the

analogue of hydrodynamics for large aspect-ratio pattern forming
non-equilibrium systems. Low frequency, long wavelength

excitations in systems such as the regular patterns which arise in

the Taylor instability (a simple fluid in the gap between two

concentric cylinders is subjected to a torque by rotating the inner or

both cylinders) or the Benard instability (a thin layer c! fluid is

heated from below) are examined and the question of nonlinear

excitations such as solitary waves is addressed, The connection

between the phenomenological parameters arising in the phase

equations and results obtained from amplitude equations valid close

to the onset of a specific pattern are investigated, Suggestions for

experiments to test further the concept of phase dynamics are

included.
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Introduction

That there is a strong similarity between phase transitions in

equilibrium systems (as e.g. the paramagnetic-ferromagnetic
transition in magnetic systems or the superfluid-normal fluid
transition in ‘$He) and nonequilibrium phase transitions is well
established since the pioneering work of Graham and Haken [1] and
deGiorgio and Scully [2], who pointed out the analogy between second
order phase transitions and the onset of laser action in the ‘ingle
mode laser in the field of quantum optics. Since then many examples

of such a similarity have been found in nonequilibrium systems
including fields such as quantum optics, hydrodynamic instabilities,

autocatalytic chemical reactions, nonlinear oscillators in diverse

fields etc.

After this analogy has been well established it seems natural to ask

whether there is also a non-equilibrium analogue for the theory

close to thermodynamic equilibrium, which deals with the low
frequency, long wavelength excitations around a given ground state,

namely for hydrodynamics. This question seems to be all the more

important, since a considerable body of work has been accumulated

over the last few years dealing with the influence of spatial degrees

of freedom on nonequilibrium systems, especially in connection with

hydrodynamic instabilities [3-1 2] .

In the present contribution we propose that such an approach indeed

exists: phase dynamics, the analogue of hydrodynamics for large

aspect ratio pattern forming nonequiiibriurn systems. The role

played by atoms or molecules in the derivation o! hydrodynamic

equations is taken over by vortices, rolls or hexagons for pattern
forming noneqwlibriurn systems, This fact irnplios that such an

approach can only be applicable if there is a sufficiently high

number of unit cells (rolls etc, ) in the container. It turns out that

this number is of order ten or so, but it might be sometimes even

lower. As for the case of hydrodynamics for equilibrium systems,

phase dynamics can only be applicable for ~round states with a well



defined symmetry. I.e. one has to assume e.g. that one is in a given

state such as the Taylor vortex flow in the Taylor instability. The

symmetries: of this nonequilibrium ground state are then used to
determine the macroscopic variables, which govern the long
wavelength, low frequency excitations of the ground state under
consideration. We will also discuss, how the phenomenological
coefficients appearing in the phase equations can be evaluated
approximately from a more microscopic approach such as amplitude
equations, which are valid close to the onset of an instability (and
which are the analog of a Ginzburg-Landau approach for the order

parameter in systems alose to thermodynamic equilibrium).

The key question in this connection which clearly needs further

experimental and theoretical studies, is:

Can phase dynamics serve as a next step in the hierarchy Newtan’s
law, Boltzmann equations or dynamic equation of motion for the
Green’s function, hydrodynamics,

a sequence that is obtained by investigating the dynamic behavior on
larger and larger length scales after averaging out the information

contained in higher wave vectors.

In this contribution we will exploit the gateway of attack outlined

above to investigate the long wavelength, low frequency behaviour

of a number of systems such as the spatially periodic or multiply

periodic states arising in the Taylor and Benard instability.

Questions addressed include the following. Which analogues of

broken symmetries (such as gauge invariance, broken translational

symmetry etc. ) have been established in large aspect ratio pattern

forming nonequilibrium systems? What are the hydrodynamic

exciti~tions, i.e. is there an analogue of diffusive and propagating

modw? Do the conserved quantities of hydrodynamics Cuch as

density of linear momentum have an analogue in phase dynamics?

Can defects oe incorporated into the phase dynamic description?

Does phase dynamics help to understand pattern selection problems?

Are there critical experiments, which can test the predictions

made? Is it possible that we learn something for the onset of

turbulence from phase dynamics, if the motion of defects is included

in tho description?
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Phase diffusion

The first step to reach the goal outlined in the introduction was

done by Pomeau and Manneville [13] in 1979. They investigated the
dynamics of slow spatial modulations for a model of convective
rolls, the Swift-Hohenberg equation [14]

At= EA-(ilXX +~YY+qOz)z A- Aa (1.1)

where i3XXdenotes the second derivative in x-direction in the xy

p;ane of the convective layer, & measures the relative distance from onset

and where q. is the critical wave vector at onset,

Using the gradient as an expansion parameter, Pomeau and
Manneville derived, using a reduced perturbation expansion, a
dynamic equation for the slow spatial changss of a spatia!ly
periodic solution of (1.1), which can be expres~ed in terms of the
spatial and temporal variations of the phase $ associated with the

position of the rolls As a result the equation

q=rwxx+D2%Y (1.2)

emerges, where x denotes the direction parallel to the normal of the

convective rolls and y the direction along the crest of the rolls.

Since the starting point was a concrete microscopic model, namely
the Swift-Hohenberg equation, explicit expressions for D1 and Dz

have been obtained in [13] as functions of the parameters contained

in (1.1). Those can in turn be determined approximately close to the

onset of the Instability from the coefficients entering the Navier

Stokes equations such as kinematic viscosity etc.. This situation is

reminiscent ot the same problom that arises in hydrodyna nits close

to thermodynamic equilibrium: to determine quantities such as the

!hermal diffusivity or the thermal expansion coefficient, which

arise as phenornenological coefficients when deriving the
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hydrodynamic equations, one has to resort to more microscopic

techniques as e.g. the Boltzmann equation. Or one has to determine
the corres~onding parameters experimentally.
The structure of (1.1) can be obtained by a simple alternative

consideration. Taking into account that the ground state (the set of
regular, parallel rolls) satisfies x + -x and y + -y symmetry and keeping

in mind the fact that the variation of the phase is the only candidate for a

macroscopic variable compatible with all the symmetries of the ground state

considered, one arrives immediately at (1.2).
The validity of (1.2) has been investigated in detail experimentally by Wesfreid

and Croquette [15,16] and complete agreement was found. It seems important

to note that (1.2) is contained implicitly in the Newell-Whitehead-Segel equation

[17,18], the amplitude equation which is applicable close to the onset of
convection in a simple fluid in the high Randtl number limit. Based on a similar
amplitude equation approach, Ortoleva and Ross have derived a phase
equation of the form (1.2) in the context of autocatalytic chemical reactions [19]

A generalization of (1.2) to cross-rolls was considered by Zaleski [20] and the

existence of two coupled, purely diffusive modes emerged from his study.
Another application rwwlts for the phase diffusion in the Taylor voflex flow of the

Taylor instability and an equation isomorphic to (1.2) applies in this case

[21,22]. The importance of the diffusion of a perturbation in the vofiex diameter

for ,,le vortex flow was recognized first by Snyder [23], although the terminology

and the framework of looking at the problems had not been developed at that

time.
In closing the section on phase diffusion we briefly outline ths generalization of

(1.2) into the nonlinear domain, which has been given in [24]. Taking into

accwnt higher order derivative the equation

=(D1 + D1’~xx+El VX)VXX

(1.3)

obtains, if only spatial variations along the axis of the cylinders are

considered, (1 .3J allows for static solutions in the form of a

hyperbolic tangens, but there is probably no physical significance

associated with these solutior s, since the ‘potential’, which can be
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associated with (1 .3), is not bounded from below [24]. If higher order
nonlinearities are included, the resulting equation is considerably
more com~icated than (1.3) and neither a static solution nor a

potential has been found in this case [24]. An equation isomorphic to
(1.3) can be equally well derived for the nonlinear variations of the
phase for the roll state of the Rayleigh Benard instability and for

any large aspect ratio pattern forming nonequilibrium system, which
has only one phase and the same symmetry as the Taylor vortex flow.

Phaso dynamics for the wavy mode and the modulated wavy mode in

the Taylor instability

In tho Taylor Couette instability the flow between two concentric

cylinders with the outer one fixed (or rotating) and the inner one

rotating is investigated. The first instability cbserved for fixed

outer cylinder is the Taylor vortex flow, in which vortex pairs with

their axis parallel to the cylindrical axis emerge. At higher rotation

rates one observes the Taylor wavy mode state, which has no Ionge,

the azimuthal symmetry of the Taylor vortex flow, since periodic

displacements in the vortices propagate around the cylinders. The
wavy mode flow arisGs for cylinders with a small gap at Taylor

numbers which are only slightly higher than those for the onset of

vortices.

The clescription of long wavelength, low frequency perturbations for

the vc~rtex flow and the wavy mode state has been given in [21 ,24] ,
To describe the wavy modg state two phases are necessary. One (o)

gives t$e azimuthal position of the waves and the other one (v) characterizes

the p(xiithn of the t~orticesalong the cylindrical axis. In both cases the phases

are associated with changes in position, as is the case for the displacement

vector in solids. I.e. we have, just as in the case of Rayleigh Benard convection

discussed in the last chapter, the analogues of variables characterizing broken

translational symmetries. To derive phase dynamic equations we must keep in



mind the symmetries of the nonequilibniumground state under consideration.
First we have, as for Rayleigh Benard convection, the symmetry x + -x, v + -V

where x den6tes the coordinate along the cylindrical axis. In addition the wavy
mode state has, due to the presence of the waves, the symmetry y + -y, v + V,
@+ -$ where y is the azimuthal direction. For the linearized phase equations

we find

yft = ~1W(X+ q (qy) ox (2.1)

(2.2)

In writing down (2.1),(2.2) we have ignored spatial inhomogeneities

in azimuthal direction and we have denoted the wave vector in this
direction as qy. The dependence of the cross couplings in (2.1),(2.2)

on qy has been emphasized since the symmetry of the wavy mode
state in azimuthal direction requires Cl and C2 to be odd functions of
qy. The additional assumption of analyticity then implies for small

- Cl ,C2 ocqy. In (2.1),(2.2) $t gives the change in frequencyvalues of qy .

of the wavy motion and Vx the change in the wave number of the

vortices.

As is readily shown [21], the static solution of (2.:),(2.2) can

account for the experimental observation [8], that in the wavy mode

state the wavelength of the vortices varies over a long length scale,

which is in contrast to the case of rolls in the Benard instability and

the v~rtices in the Taylor vortex state, in which the wavelength is

essentially constant over the bulk of the cell.

To investigate the dynamic consequences of (2.1 ),(2.2) we study the

time evolution of small perturbations of the wave number. Using a
disturbance ocexp[i(kx-wt)] we find a propagating mode for k + 0 with
frequency u = * (C1C2)l/z k and damping - I@. For larger k we obtain

u = - i/2 (C)l+ D2) kz + 1/2 k [4 C1C2- kz (Dl - 02)2]”2

for 4 C1C2 > kz (Dl 02)2 and

(2,3)

u = - i(l/2 (Dl+ D2) kz~ 1/2 k [-4 C1C2+ kz (I?l - DZ)2]”Z) (2,4)



for 4 C1C2 < kp (Cl- D2)Z .Thus we [21] find with increasing wave

vector first ‘a propagating mode, then an overdamped mode and
finally a purely diffusive mode. In writing down (2.3),(2.4) C 1 and C2

have been assumed to be positive as it also follows from the
amplitude equation in the small gap limit given below. A change in
sign of either Cl or C2 would signal the onset of an additional

instability.
In retrospect it seems worthwhile to mention that the wavy mode

state of the Taylor instability has been the first nonequilibrium
ground state for which a propagating mode in phase dynamics has

been predicted.
To incorporate nonlinearities and higher 0rd8r gradient terms in the
phase equations we proceed as above for the derivation of the

nonlinear diffusion equation for Benard rolls in convection. Taking

into account the symmetries of the ground state of the Taylor wavy

mode we obtain in lowest order in the nonlinearities [24]

w = D1 Vfxx + c1 my) $x+ D’1 Vxxxx+ C’1 my) +xXx (2.5)

+ El Vxx Vx + E2Vx $x + E3$Xx@x

(2,6)

For a detailed discussion of (2,5) and (2.6) we refer to [24], We

would like to draw the attention of the reader to one quite

interesting special case of these two equations: if one is ab!e to

keep the wavelength of the vortices fixed expqrimontally, the wavy

mode state of the Taylor instability could serve as a testing ground

of the Kuramoto Sivashinsky equation [25,26]

(2.7)



as a phase equation. To clamp the vortex wavelength in the wavy
mode state would thus be worthwhile, since no experimental system

satisfying (2.7) has been reported so far (cf. also our discussions on

the importance of Galilean invariance in one of the sections below).

To evaluate the coefficients appearing in the phase equations one

can use, as discussed above, an amplitude equation valid close to
onset of the instability. Using the technique of Newell and COII.[17,
27-31] one obtains [21] in the small gap limit

At = ~0-1(A+(~Xz+ ~Yz)A-g lAlzA)+iTC1/zsl AXY (2.8)

where A(x,y,t) is the comp’jx envelope function and where we have used

appropriately scaled variables (cf. [21] for details). From this amplitude equation
it is possible to extract values for all coefficients in (2.1),(2.2) close to onset [21]

by treating the wavy mode state as a superposition of an amplitude for the
vortices and one for the waves, which vanishes at the wavy mode onset. This

amplitude equation approach has been supplemented by studies of the effect of
finite length of the cylinders [32] and by investigations of the influence of

pressure variations [33]. Expressions for the nonlinear coefficients can be easily

evaluated close to onset using a technique devised by Kuramoto [34].

In the modulated wavy mode state, which has been observed at higher rotation

frequencies than the wavy mode state in some cases [35], one has two waves

propagating in azimuthal direction. In [24] we have proposed a phase dynamic
description of this state using two phases@and u to describe the traveling

waves. As a result we obtain threg linearized phase equations, which give rise

to one pair of propagating modes and one purely diffusive mode in the limit of

small wave numbers. That one can have simultaneously propagating modes

and diffusive modes in linearized phase dynamics compares well with

hydrodynamics in systems close to thermodynamic equilibrium, where one has

e.g. in a simple fluid sound waves and heat and vorticlty diffusion. The details of

the phase dynamics for the modulat6d wavy mode state can be found in [24].

In closing this section we remark that we have used two different types of

phases to characterize the wavy mode state and the modulated wavy mode

state of the Taylor instability: one type is even under x + -x and the other one is



odd. This feature is reminiscent of the different behaviour of hydrodynamic
\fariables under spatial parity. The simultaneous presence of both types allowed
for the possibility of a propagating mode and we have seen ?hatthe

nonlinearities in the phase equations (2.5),(2.6) also strongly reflect the

different symmetry of the phases involved.

Phase dynamics for spiraling Taylor vortices and for

interpenetrating spirals

[n addition to the Taylor vortex flow, the wa~~ymode and the
modulated wavy mode state, which are periodic along the axis of the

cylinders, there are also two helical flow states for counter-
rotating cylinders: the spiraling Taylor vortices, which are

characterized by one helix propagating parallel to the axis of the
cylinders [3,4] and the interpenetrating spiral state, in which two
interwoven helices, which are probably incommensurate, propagate

along the axis of the cylinders [4]. Single propagating helices have
also been observed in configurations with a through-flux and only

the inner cylinder rct~ting with the outer one at rest T36,37] and for

the case where both cylinders are at rest [38]. In the latter case the

gap between the two cylinders was filled with mercury, a magnetic
field was applied parallel to the cylindrical axis and an electric

current in radial direction. The acticn of the Lorentz force then

makes the occurence of a spiral intuitively quite plausible.

A phase dynamic description of both, the spiraling Taylor vortices

and the interpenetrating spirals, has been given in references

[39,40] and we will therefore focus on the description of the main

ingredients and the results.

For the spiraling vortices the phase changes in a helicoidal way

according to



(p=27c/lz+m(3+$0 (3.1;

and the grciund state is, in addition, characterized by a frequency COO.
In (3.1) L is the wavelength of the periodic structure,z has been chosen to be

parallel t Jthe cylindrical axis, 0 is the azimuthal coordinate, m an integer and
00 a constant. In the experiments values of m between 1 and 4 have

been observed. If m is e.g. equals to 3, this means that going up along
the z-axis by one unit is equivalent to a change of 0 by 120°.

“Themacroscopic helical structure in the nonequilibrium system discussed here

is reminiscent of two equilibrium system showing also a macroscopic helical

structure: cholesteric and chiral smectic liquid crystals [41]. As it is known e.g.
from the optical [41] and hydrodynamic [42-44] behaviour of these phases, the

loss of mirror symmetry is strongly reflecteu in the macroscopic properties of

these matwials. Just as for chiral smectics and cholesterics one can associate a
pseudoscalar quantity with the spiraling Taylor vortices: the helical wavevector
qO of the nonequilibrium structure.

If we denote the only phase variable associated with the spiraling
vortices by & we obtain from general symmetry arguments the linearized

phase equation

@t= ~ qo”~zo + Wz14 + Dz ~zzf$ (3.2)

where DL and Dz are the diffusion coefficients perpendicular and

parallel to to the axes of the cylinders and the helix, 1he term
proportional to C on the right iand side of (3.2) is directly related to

the existence of a pseudoscalar quantity associated with the spiral

structure in the present system.
To see the physical implications of (3.2) we study plane wave

perturbations and obtain for these from (3.2) the dispersion relation

m = - kz C qO+ i (C4kZz+ DZ kla) (3.3)

By inspection of (3.3) we s~e immediately that perturbations
parallel to the axis of the helix can propagate with velocity Cqo .

Only fluctuations strictly perper,dicular to the helical axis show



purely dissipative behavior. Interestingly enough spiraling Taylcr

vortices can. show a propagating mode with only one macroscopic

variable. Stih a phenomenon is unknown from hydrodynamic systems

cluse to local thermodynamic equilibrium. Previously at least two

variables (phase or hydrodynamic) were thought to be necessary for

the occurence of a propagating mode. The existence of this novel and
unique behavior in condensed matter physics can be traced back to
the fact that th6 n~nequilibrium ground state of the present system

breaks time reversal symmetry and violates spatial parity. It also
seems important to stress that the broken symmet~ associated
with the existence of the macroscopic helix is a combined

translational - rotational symmetry.

The ncnlinear phase dynamic equation given in [33] also reflects the
loss of mirror symmetry and contains - even in lowest order in the

nonlinearities - a large number of terms.

The simplest amplitude equation, which can be written down using

the technique of Neweii arid COII. [17,27-31], takes the form [39]

Al=e A-~l A\z A+ D1aUA+D2azzA +yqoazA (3.4)

Close to threshoid C M y. An amplitude equation of the form (3.4) has also

been studied, aiong with more compiex models, in [45]. For q. = O, (3.2) and

(3.4) reduce to the corresponding equations for the Taylor vortex
fiow discussed in the iast section.

Interpenetrating spirais have so far only been observed fof counter-

rotating cyiinders [4], In [40] we have suggested for the first time,

triggered by the obsewations described in [4], that interpenetrating

spirals represent an incommensurate nonequiiibrium ground state.
This implies that they can be described by two phases $1 and $2 as

foiiows

$1=2nAlz+m8+@l~ (3.5)

02=2tikzz+ne+0zo (3.6)



where Al and L2 are the incommensurate wavelengths of the two

helices, n fid m are integers, $10 and Ozoare constants and where @

is as above the azimuthal coordinate. We also note, that in contrast

to the single spiral state, interpenetrating spirals have no analogue
in systems close to thermodynamic equilibrium,
Since one has, by assumption, two incommensurate spirals, there are
also two pseudoscalar quantities ql and q~. One spiral can be moved

in this case by an infinitesimal amount with respect to the other
without restoring force in the long wavelength limit by definition of

the term incommensurate. Neglecting the interaction between the
two spirals, we obtain, due to the uniaxial overall symmetry, the

two equations

$It - c1 ql az% + (DL1 h+ ‘zI ~zz)@l + (b ~LL+dza&)02 (3.7)

(3.8)

There is no term proportional to ~z@2in (3,7) to preserve incommen-

surability and vice versa for (3.8).
To “incorporate the effect of a finite interaction between the spirals

one can proceed in the same way as in the case of hydrodynamics for

incommensurate equilibrium systems [46]. We then find [40], that

the sum cf the two phases is still strictly hydrodynamic, whereas

the difference of the two relaxes in a long, but finite time thus

giving rise to a hydrodynamic excitation with a gap, which turns out

to be propofiional to the strength of the interaction.

1. e, as the wavenumber of the investigated pei turbation is reduced,

we predict a cross-over from two propagating modes to oI:I~, with

the latter being accompanied by a mode with a gap at k=O. Equations

(3.7) and (3.5) can be easily obtained near threshold from the two

amplitude equations



At= EIA-~llA 12A-511 B12A+D1dUA +D2~zzA

(3.10)

Equations (3.9) and (3.10) are applicable to the case of non-
interacting interpenetrating spirals, As it is easily checked, a finite
interaction changes the structure of the amplitude equations so as

to give rise to the microscopic mode for the difference of the phases
in phase dynamics.
To describe the case of incommensurability of a stationary roll

pattern, as it has been observed for the spatially modulated electro-
hydrodynamic instability in nernatic liquid cry~tals [5,47], the

apppoach outli~:ed above just goes throligh in parallel. All one has to
do is to put Cl M C2 = 0. I.e. in this case we predict a cross-over from

two diffusive modes to one microscopic and one diffusive mod~

Amplitude equations for the case of spatially periodi~ forcing have

been discussed for this case by Coullet et al. [48,49] and we refer

the reader to this work for the details.

In closing this section we would like to point out, that similar

considerations as the ones presented here for incomtnensurate

systems go through equally we’1 [40] for the nonequilibrium

analogues of icosahedral phases, [50,51], in case those should ever be
found in nature,

In conclusion it turns out that incommensurate nonequilibrium

systems bring along additional piase variables, but they are most
likely not truly hydrodynamic (u -+ Ofor k+ O ), just as it has also been the

case for the phasons in incommensurate systems clo:~eto thermodynamic

equilibrium.



Phase dynamics in

..

After we have discussed

of propagating modes in

the vicinity of a co-dimension two point

above several examples f~r the appearance

phase dynamics, mainly in connection with

the spatio-temporal structures in the Taylor instability, we
investigate now the phase dynamics in the vicinity of a multicritical
point, namely a co-dimension two point with double eigenvalue zero.
That a propagating mode might be possible in this case can be
inferred immediately from

spatial modulations in the
This equation reads [52]

wfl -{a

the amplitude equation including slow
direction parallel to the layer normal,

(eo+L$W-f21w12}wt

-{ P(es+5: ~xx)+fllw12}w -0 (4*1)

Inserting the ansatz w=r,exp(it$) in (4,1), a linearised phase equation of

the form

witha=-a~o, bm -p~~ ,cM=u& results.

Eq, (4.2) is associated with the amplituda equation (4.1) in the same

way as the phase diffusion equation (1,2) is related to the Newell-

Whitehea%Segel equation [17,1 8].

looking for plane wave solutior~s we obtain from (4,2) after a fourier

transform in time and space the dispersion relations:

a) for a # O and arbitrary, but microscopically small k two over-

damped modes
(1)1,2= O5,(i(a + c k2) k [ -4 b ka - (a + c kz)z]lia) (4,3)



b) fora*Oandk+O

@,2 = ia f Ibl lR k+ O(ik2) (4.4)

c) for a = O,i.e. at the onset of the oscillatory instability, purely propagative

behavior

01,2= *lblllzk+i/2ckz (4.5)

i.e, the situation is different from that in incommensurate systems.

In those one variable always stays hydrodynamic (no gap in the

excitation spectrum for k=O), whereas in the present case both
modes - and not just one as in the case of the Incommensurate

systems for small k - are overdamped,
As all phase dynamic equations, (4.2) is also valid well above the

onset of the instabilities, as long as one is in the vicinity of the

polycritical point in parameter space. Near onset, however, the
coefficients in (4.2) can be determined from the coefficients in the
amplitude equation, as listed after (4.2) above.
It is now straightforward to generalize (4.2) into the nonlinear
regime using symmetry considerations. The arguments are similar to

those presented in the last section and we obtain in the vicinity of a

co-dimension two point with double eigenvalue zero the nonlinear
phase equation [53]

h+a%+~+xx +c$xxt+boxyxx +Oxxxti
(4,6)

+ dl $x @xx +d2$xx $xt + da$xxt% = O

Equation (4,6) has two obvious applications , First of all it applies

near the onset of convection in a binary mixture of rmiscible fluids

(such as etg, ethanol-water or 3He/dHe mixtures) with or wi!hout a

porous medium. Secondly it should be also applicable in the vicinity

of the co-dimension two point near Me onset of convection in

nematic liquid crystals, Additional applications can be expected for

all systems for which an amplitude equation uf the form (4,1) in the
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vicinity of a co-dimension two point with double eigenvaiue zero can

be derived.

The gener~ization to the case of a co-dimension three bifurcation

with a triple zero eigenvalue is straightfonvard now and we obtain

the linearized phase equation

The discussion of the dispersion relation is similar as for the co-
dirnonsion two point with double eigenvalue zero and we obtain also
for the co-dimension three point with threefold eigenvalue zero the

pos:;ibility of a propagating mode in phase dynamics. As above, (4,7)

can be easily generalized to the nonlinear domain,

On the importance of Galilean invariance for phase dynamics

Recently several authors (cf. especially Coullet and Fauve [54,55]

and Shraimtm [56]) have examined the impact of Galilean invariance
on phase dynamics and it has been proposed [55], that it leads quite

generally to an additional dynamic degree of freedom.
To discuss this question one can follow various paths of thought.

It is e,g, immediately clear that the Newell-Whitehead Segel

equation [17,1 8] does not reflect Galilean invariance,

This is different for the Sivashinsky equation

Ut+ ux~+ u~~~~+ uu~= o (5,1)

where u is the amplitude, Equation (5.1) as an amplitude equation has

been derived for a number of systems (including flames, combustion

and convection between insulating boundaries) by Sivashinsky and

collaborators [25,57,58] , Shraiman uses the fact that (5,1) is



Galilean invariant, to derive two nonlinear equations for a phase $

and a variable ~, which corresponds to a weakly inhomogeneous

Galilei trar$sformation [56]

(5.3)

It seems important to keep in mind, however, under which

assumptions (5.1 ) was derived for specific physical systems. One

always assumes [25,57,58], that the diameter d of the unit cell of

the emerging spatial structure is very iarge compared to all

characteristic lengths of the system. Then one performs an

expansion in inverse powers of d and obtains in lowest order as a

resultat (5,1), I.e. the assumption, upon which the derivation of (5.1)

is based, is, that one has only one roll (e.g. for the case of
convection between thermally insulating boundaries) in the

container. If one takes into account the next order in l/d, one
obtains in (5.1) for all considered examples (aside from other terms)
an additional term of the form = u, which breaks Galilean invariance

and also changes the dynamic behavior substantially [79],
Accordingly so tar no observation of a second dynamic degree of

freedom has been reported for the examples studi6d leading to the

Sivashinsky equation.

in [54] Coullet and Fauve discuss in all generality the potential

impact of Galilean invariance on phase dynamics, In [55] the same

authors propose that in a one-dimensional, spatially periodic

structure with a mean flow a phase dynamic equation arises, which

is second order in time, because of Galilean invariance,

Coullet and Fauve start from t.le amplitude equations

A[=A+AXX -l Ala A-iqOAB-BAX (5,4)

B@BXX+l A12X-BBX (55)



and then show, that a nonlinear phase dynamics results, which is

second order in time and gives rise to a propagating excitation.
An application of (5.4) and (5.5) to correction is not possiblg,
however. Whatever scaling is used tot B, at and ~X, one never obtains

the amplitude equations (5.4) and (5.5). Especially (5.5) is not
dynamic, if me choses, as an example, the scaling with the distance
from onset familiar from Rayleigh Benard convection in simple
fluids as discussed by Newell and Whitehead [17],This can be read

off immediately from eq. (1b) of the paper by Siggia and Zippelius
[59] , keeping in mind that their coefficient y depends on e,

This might be different in the limit of very small Prandt,l numbers

[55,60], a case discu-sed especially by Coullet and Huerre [60], “rhis
limit clearly deserve: further investigation, We would like to

emphasize, however, that even for free slip boundary conditions

there is no scaling for the Prandtl number and the distance from

onset, which would render both, the amplitude equation and the
equation for the vertical vorticity dynamic in lowest consistent
order in an expansion with the distance from onset.

The influence of the vertical vorticity on the phase dynamics of

convective systems

As has been shown by Cross [61], the incorporation of vertical

vorticity into the phase dynamics for stationary convection in the

Rayleigh Benard instability leads to a modification of the phase

diffusion equation for finite Prandtl number

(6.1)

where U is a drift term, which comes from the horizontal velocity, which Is in turn

driven by phase gradients, If one eliminates U one ends up with an equation for

the phase only, The price one has to pay in some cases is a singular expansion



in tha gradients [61] (cf., however, the discussion by Manneville and Piquemal

[80] for tho zig-zag instability). It seems important to note, however, that no
additional d~tiamic degree of freedom is arising by the hcorporatbn of the
[~ean drift, This is also clear from inspection of the amplitude equations derived

by Siggia and Zippelius [59]: in lowest consistam order the equation for the
mean flow Is static.

This situaticmchanges, when going to the oscillatory instability with tt’zweling
waves, as they arise e.g. near the onset of conved’ktiq in binary i:!.~idmixttires,
In th!s case we obtain from the amplitude equations cferivad by BrOnd,Lomdahl

and Newell [30,31]

4V=M$)-CU (6.2)

(63)-P”liltU + UYY= 4(PkC)-1rz +Y

where N(Q) is a generalization of the expression $XX+ $XXXX+ ($X)2

in the K(JramC)tOequation discussed above.

Thus one finds for an oscillatory instability with traveling waves

and slow spatial variations in both directions of the plane for

systems with broken rotational symmetry two dynamic degrees of
freedom in phase dynamics. A detailed discussion of (6.2) and (6.3)
along with the explicit expression of N($) can be found elsewhere [62].

Phase dynamics of pattern forming equilibrium systems in an

external field oder under an external load

All examples discussed so far have address~d pattern forming

nonequilibrium systems including convective rolls and Taylor

vortices.



There are also equilibrium systems, however, which form static

spatial patterns under the influence of external fields or external
forces. As ‘*xamples we mention: the Rosenzweig instability in

ferrofluids [63], the dimple instability arising for electrons at
helium interfaces [64] and the deformations of an elastic plate
(buckling) under an external load [65]. Them systems are
intermediate between pattern forming nonequilibrium systems on

one hand and systems close to local thermodynamic equilibrium
without macroscopic spatial patterns on the other.
Therefore it seems natural to investigate to what extent the concept
of phase dynamics developed for dissipative pattern forming

nonequilibrium systems m be carried over to pattern forming

equilibrium systems. ‘. destion has been addressed very recently

by Brand and Wesfreiu j and we wi!l only summarize here some of
their main conclusions.
In contrast to dissipative nonequilibrium systems, which give

typically rise to phas6 equations, which are first order in time,

equilibrium systems with an ext~mal constraint possess a kinetic

term in the ge~eralized free energy.

If we consider a system with a one-dimensional spatially periodic

structure - as it is e.g. approximately the case for a long,

rectangular elastic plate under the influence of an external load -

we obtain for the generalized free energy asociated with changes of

the wavelength [66]

(7.1)

where x is the direction perpendicular to the unit cells (e.g. rolls)
and where we have assumed x + -x symmetry, as it is satisfied for ‘buckling’

in the configuration aescribed above.The coefficient a corresponds to the mass

density From (7.1) we obtain the dynamic equation

(7.2)

and for ~ <0 keeping a higher order gradient term



(7.3)

For ~ <0 thtiassociated instability of the phase is the Eckhaus instability

against compression and dilatation of the periodic structure.
For the dispersion relation characterizing low frequency, long wavelength

excitations we obtain [66]

C# = ~/aka+ y/akq (7.4)

i.e. a propagating mode with velocity C2= ~/a.Dissipation and

nonlinearities can be incorporated along the lines indicated above [66].

A generalization to the case of hexagons, which arise quite frequently in pattern
forming equilibrium system under an external constraint (e.g. for the
Rosenzweig instability in ferrofluids, for the dimple instability of eiectrons at
helium interfaces and for the buckling of thin shells) has also been examined

[66] and leads to two pairs of propagating modes. This result turns out to be true
as well for the less frequently obsewed square patterns.
In conclusion we would like to stress, that also for the case of pattern forming

equilibrium systems under externai constraints a description can be given,
which is valid on length scaies large compared to the period of the underlying

spatial pattern and thus on iength scales much larger than those of classical
hydrodynamics. I.e. also for the systems described in this section the sequence:

Newton’s law, Eoltzmann equations, hydrodynamic equations, can be extended

by phase dynamics.

Phase dynamics with a material derivative due to a flow field

In the last section we have seen

applicable to large aspect ratio

systems, but that it can also be

close to equilibrium in systems

that phase dynamics is not only

pattern forming nonequilibrium

used to describe spatial patterns

with an external constraint.



In this section we extend our previous investigations in a different

direction. .We address the question to what extent an internally or

externally i’~posed flow field changes the phase dynamic equations

discussed so far. This issue has been considered in detail in a recmt
paper [67] and so we can be brief here.
There are at least three experimemal observations [6,68-70], which
indicate the importance of this question. Ref.68 describes the effect
of a Poiseuille flow through a rectangular container, which is
studied near the onset of Rayleigh Benard convection. Luijkx et al.
[68] report a propagation of the roll pattern with apparently no
change in wave vector. Wimmer [69,70] investigated ths flow

between concentric rotating cones and found a propagation of the
vortices as well as a variation of the pair size along ths generating
line of the cones. Quite recently, Pocheau et al. [6] reported for a

well controlled, quantitative convection experiment in an annulus
with a through flux, a change in wavenumber of the rolls along the

annulus and no propagation of the rolls.
These experimental results naturally call for a theoretical

description. We start with the analysis of [6]. Clearly the external
flux breaks the x + -x symmetry, where x denotes the coordinate along the

azimuthal angle. Since a stationary situation is obsetved, a driving term

propodional to the external flow field v is ruled out. The lowest order nontrivial
term satisfying all requirements listed is of the form v~x$where the phase $

denotes the position of the rolls along the anrwlus.

This consideration leads naturally to a phase equation of the form

which describes the transformation of the phase diffusion equation

(2.1 ) to a situation with advection due to the imposed flow. There is

no reason, however, to write down an additional dynamic equation

for v, since the flux is completely externally controlled.

For a stationary situation as observed in [6] one obtains from (8,1)
for the change Ak in the wavevector k as one moves along the cell



Equation (8.2) has been confirmed quantitatively near onset of
convection ~n [6] and we refer to their thorough discussion for the

details (cf. also the contribution by Pocheau [71] to this volume).
The generalization of (8.1) to the nonlinear terms including higher

order spatial derivatives follows the procedure outlined above for

other cases and we refer to [67] for the details.
Near threshold an amplitude equation of the form

At+v~XA=&A+Dll AXX-g!A[z A (8.3)

gives rise to (8.1), as is easily shown using the technique developed

by Newell and COII. [17,27-31].
For the flow between concentric rotating cones clearly a driving as

well as a convective term in the phase equation are necessary to

account for both, the propagation of the vortices and tne variation of

the pair size observed by Wimmer [69,70]. At the conference
reported here, I learned from Pocheau [71], that a similar situation

also arises for the case of convection in an annulus with an imposed
flow field at higher flux rates.
This leads to suggest the following minimal model phase equation

to describe the results by Wimmer and by Pocheau et al.

at~+vax~=qoxx+av (8.4)

From inspection of (8.4) it is clear that the convective term and the

diffusion can be combined to give a variation in unit cell size

whereas the time derivative and the driving term yield a

propagation.of the pattern. An amplitude equation similar to (8.3) is

easily deriv~d for the present case and it turns out that one only

needs to add the term iAv to the right hand side of (8.3) to account

for the propagation effect.

Clearly (8.4) should be tested in detail to make sure that other
contributions are not relevant to account for the experimental

results, The results reported in [68] seem to indicate that there are

also situations where there is only propagation and no v?riation of



the roll size. This observation is also contained in (8.4) as a special

case.
Thus we airive at the conclusion that there are four poss!ble cases

a) there is no external or internal flow and the phase diffusion

equation suggested by Pomeau and Manneville applies
b) an external flow can give rise to a change in roll size without a
propagation of the pattern

c) there is a propagation without change in the size distribution and
d) both, a variation in wavelength and a propagation occur.
And all four cases have been verified experimentally [6,1 5,16,68-
71].
As a next step, which still needs to be done, it seems now impotiant

to predict from the basic equations which one of the three scenarios
b)-d) arises for a given set of parameters in each experimentally

relevant situation.

We close this section by pointing out, that in none of the cases

considered, it was necessary to write down a dynamic equation for
. the flow field (external or internal). TFis fact is nicely

complemented by the observation of the mean f!ow close to the

onset of convection in a circular container [7] by Croquette et al., for
which it has also been unnecessary to invoke an additional dynamic

degree of freedom to account for the results. Thus the additional

terms discussed above seem to be sufficient to cover all the
reported results near the onset of convection in simple fluids, even

in the presence of mean flow or external flow fields

Conclusions and Perspective

In the bulk pati of the present survey we have discussed the phase

d~namics for a number of large aspect ratio pattern-forming

nonequllibrium systems, concentrating on their excitations and on

the question how the phenomenological coefficients in these phase

equations can be related to more conventional approaches such as



amplitude equations. The most important point, which needs to be

checked experimentally to establish phase dynamics as the analogue
of hydrodytiamics for large aspect ratio pattern forming nonequi-
Iibrium systems, is the occurrence of propagating modes. A number

of systems which might show such an excitation has been suggested
here.

Other questions, which are closely related to phase dynamics and
have not been reviewed here, include the dynamics of defects in non-

equilibrium patterns and the field of pattern selection mechanisms.
For the former problem two approaches have been put forward in

1984. Cross and Newell [72] extract the motion of defects from their
nonlinear phase dynamics for convective patterns. The second

approach has been suggested by Kawasaki and the present author
[73-75]. Here the idea is to derive a kinematic equation for each

defect for a small number of defects and to COUPIQthe resulting

equations to phase dynamics. More recently Coullet et al [48,49] have
followed up with yet another way of looking at the problem, For

neither of the three points of view there has been a critical

experimental test. It therefore seems a major task for each

approach to come up with suggestions for experiments which could

be used to distinguish between the theoretical ways of looking at

the problem.

Another important issue is the question of pattern selection or

wavelength selection in large aspect ratio pattern forming

nonequllibrium systems. Loosely speaking the problem arising is how

to guarantee that e.g. a Benard cell contains a certain numbar of
rolls and not just any number within the band of wavevectors

allowed by the Eckhaus instability. In 1982 a partial solution to this

problem was given by Kramer, Benjacob, Brand and Cross [76], who

used a phase dynamic type approach to show that for a sufficiently

smooth change of the bifurcation parameter as a function of the

spatial coordinate a unique wave number is selected. In this paper

the example chosen was a system of reaction diffusion equations.

Shortly thereafter this prediction was tested experimentally for the

vortex flow state of the Taylor instability by Ahlers, Cannell and

Dominguez-Lerma [77], They designed a Taylor cell in which one of



. .

the cylinders had over part of its length a wedge shaped geometry.

Selection was found and since then the mechanism was ussd to
explore fufiher details of pattern selection [10,78].
In closing we would like to emphasize that only the analogues of

broken translational symmetry and of combined broken translational
and rotational symmet~ have been found in phase dynamics. Neither

broken rotational symmetry nor broken gauge invariance, which is
characteristic of sjperfluids, have as yet found an analogue in large
aspect-ratio pattern forming nonequilibrium systems. A rionequi-
Iibrium analogue of broken rotational symmetry could possibly be
found in disordered convective patterns in a circular cell [12], in

which one has patches of rolls or hexagons (if up-down symmetry is
violated) with a given orientation. If rotational symmetry in such a

system is broken, it could be detected experimentally by the
presence of a diffusive mode. So far, however, there is no evidence

for tt,is behavior, nor has it been suggested before theoretically.
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