LEGIBILITY NOTICE

A major purpose of the
Technical Information Center is to
provide the broadest dissemination
possible of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although portions of this report
are not reproducible, it is being
made available in microfiche to
facilitate the availability of those
parts of the document which are

legible.

= LA
JONE TN - - SN

Los Alamos National Ladorstory m oowrsted Dy the Unmveraity of Califorma for me United States Depertment ot Energy under contract W.T408.ENG. 38

TITLE. A METHODOLOGY FOR FABRICATION OF INTELLIGENT DISCRETE-EVENT
SIMULATION MNDELS

LA--UR--87-2602

DEB87 013177
AUTHOA(S):. J, D, Morgeson
J. R. Burnc

suamitteo to: 1987 1EEE Conference on Systems, Man, and Cybernetics

DISCT AIMER

Th repert swas prepared a0 anaccommt ol waork spomaored by an apency of the Umited States
Crovermment Neither the T omted States Government mor any agemos thereof, nor any ol (hen
cmployvee makes any wareaniy, cxpeess ot mphied, oc asumes any legal labihity or respons
bl for the accura s completeness, ar uselulness of any mlormation, apparatus, product, of
process disclosed, or repesents that iy use would not mfringe privately owned nghts. Refer
ence herem oy speah commercnal product, process, or service by trade name, tridemars,
manufacturer, or atherwise does not pecessatily constitute or imply 1y endorsement, recom.
mendaton, or Lavosing by the United States Giovernment or any ageney thereol. The views
and opmions of authors expresed herein do not necessanly state or reflect those of the
Uimted Shates Government or any agency thereol

By acceotance of thig arncie, the DudIINer recogriled Inat ihe U S Jdovernment rething & nonesciusive, 7ovaity:iree hCANSS 10 DUDIIBN OF re0roQuce
1@ OudhisAed torm of IRy CONIIDUNION Or 19 Q10w oINS 10 dO 50, of U.S. Gévernment purnotes

The Leos Alamos Nauonal Laooratory requesis IRat e Dudlisher denhly thia artcte 48 worn pertormed under 1hg aui0ices of the U S Depantmanm af Crargy

L@S A @m@g Los Alamos National Laboratory
Los Alamos,New Mexico 87545
:5';'7‘-'-'3: MASTE R . DISTRIBUTION OF THIS DGCUMENT IS UNLIMITED £BA

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A METHODOLOGY FOR FABRICATION OF INTELLIGENT
DISCRETE-EVENT SIMULATION MODELS

J. D. Morgeson
Group A-5, Mall Stop F602
Los Alamos National Laboratory

Los Alamos,

New Mexlco 87545

J. R. Burns
College of Business Administracion
Texas Tech University
P.0. Box 4320
Lubbock, Texas 79409-4320

A methodology for formulation of In:
telligent discrete next event simulatlons ls
presentad. An appropriate class of problems is iden-:
tified. The relevant literature ls cited and notlons
ara borrowed from software engineering as well as
knowlcdge engineering.

Intxeduction

This article pressnta a meta-requiremencs
spacification for fabrication of medium to lirge in-
talligent discrece next-svent simulation models. It
f{ st describes what is currently known about the
scate of tha model-formulatlion art {n discrets nexc-
event simulations. It incorporates what has been
recently learned (at Los Alamos) about formulation of
{ntelligent discrete-event simulatlions that utilize
concepts borroved from ob)ect-orlented progranming,
actor paradigms, and rule-oriented programming.
Moreover, it borrows from design methodologies found
in ~he software engineering and knowledge engineering
'{terature. Threcugh synthesls of conceprs and
mett.odologles from these disciplines, a methodology
has been devaloped that is consistent, complets, and
appropriate for the problem classes and user sophis-
tication levelr for which it was Intended.

The deslgn mathodology presented herein is in-
tended ro he both flexible and adaptive in the sense
that the end-user ls given an opportunity to see a
portlon (or all) of the model working before the final
product (s delivered. In the same vein, the end-user
ls permitted to critique the model and suggest chances
where appropriats even {f those changes run counter to
earlier speclfications generated by the end-user.

Second, In the {nterest of developnment ef-
ficlency, the design methodology le intended to take
full advantage of prototyping methodologlas available
{n some expert system shells and environments.
Specifically, the LISP/KEE environment was used in
this research This environment permlcas rapld nodel
davelopmenr and turn-around so that end.user feedback
can ke readily incorporaced. The environment alsoc
supports an objact-oriented programming approach to
sftware davelopment. KEE Integrates frame-bhased and
vula-banad reasoning tachniques to describe knowledge
structures and behaviors quickly. Tha frame-based
syntam anables ona co {nclude descriptive and procae.
dural knowlesdge with eazh objact,

verviaw of ths Methdology fu be Presanted

Table 1 {s the cutline fora of rhe nathdology to
be prasented, which consiscts of a softvare raquire-
ments speclification and a software deslign
spucification. The ateps Listed In Table 1 will be
ravognizod as tha conventi{onil procedure undertaken Ln
most sor(wvare aysteme analyses and designs., It la how
these steps are accomplished Ln the context ot objact-
oriented and rule-based progranming that nmakas the
Jethodology to be prerented unique.

Qbjeccives Scatement

The primary objective of this article i(s to
present a methodology for design, devalopment, and
documentation of intelligent discrete-next event (also
called knowledge-based) simulation models.
Intelligent simulacions are appropriate for planning
and orchestration of systems {nvolving one or more in-
telligent and racional decision-making enticles. This
article specifiss the formac that software requira-
ments and des{gn documaents should take and suggests
methodologles for accomplishing the analyses,

End-User Assumptions

We shall assume the ultimace user (termed the
"and-user") of the simulation software product to be
one and the same on both the input and output axtremas
of the model. Furthermore, we shall assume that the
model has been fabricated by teams of analysts and
dasigners other than the end-user, Hence, the end-
user encers the necessary Iinputs to specify the
parametera of the run, and the policles and plans to
be in effect, prior to the actual run. The end-user
may wish to {nteract with the model during Lts execu-
tion. And, the end-user interprets the computer-
generated outputs and reports produced oy the modal
following Lts executton, The end.user(s) will ltkely
be different from the . .

Table 1. A Suggested Methdology for Intelligent

Simulation
SOFTWARE REQUIREMENTS SPECIFICATION
1. Problem Statement
1.1 Verbal Description
1.2 Statement of Purpose
1.3 Detailed Questions to he Addrossed
1.6 User Parspective

2, System Da:'ription

}. Functional Raquirsments

3.1 Hardware/Software Constralnts/

Requiraments

3.2 Major Madal [nputs/Outputs

3.} User Interface

J.4 Execution/Pe.formance

SOFTWARE DESIGN SPECIFICATION

L. Event Architecture Design
2. Detalled Data Structure Design

2.2 Data Structures for the
Prototyping Language

2.3 Data Structures for the
Production Language

3. Event Internal Structure Design

3.1 Specification of Rule-.Sets
within Cognitive Events

4. Specifications for Verification
and Validation

5. Model Translation (Coding) Phase
6. Software Debugging and Verification Phase

7. VUser Satisfaction Testing, Modificattion,
and Vali{dation Phase

Appropriate Problem Contexts and Clagses

The requirements and design mechodology
presanted herein ls appropriate for moderate to large
model developmer.t projec.3 involving formulation of
intelligent, discrete next-event simvlation models.
Problems involving systems whose actual behavior {s
strongly influenced by extensive "endogenous"
dacision-making which must therefore be modeled in
detall are most appropriate. Thus the systems of in-
terest may entall several decislion-making entities,
each capable of making rational decislions which
strongly {impact upon the ultimate state of the svstem
as well as tha sequence of activities engaged in by
the entitles,

There are three relevant areas of literatura
which methodologically contribute to the content of
this article. They are the softwaras engineering
literature, the simulation literature, and the litara-
ture on knowladge engineering.

Simulation Litexature

The simulatlion lirterature {s replete with
methodologies for model formulation. The methodology
described harein ls unique bacause Lt {ncorporates
object-oriented programming which permits expliclt
consideration of actors whose declsions scrongly {m-
pact upon the performance of the system and, hence,
must be included In a robust mcdel of the system. Tha
usa of rule bases and rule basy processing to repre-
sent the endogenous lJeclislun-making of these actors
has yet to be incorporated ifnto the conve: ~{onal mo.el
tormulation methodologles

Sofiware Engineexing LiCerature

The software snginesring literacure prascribes
the ganeral methodology tor ths dezlgn of any software
syastem. Throughout this literature thers {s a general
methodologlcal concern for softwaroe devalopment and
design taken in the larger context of the software
1ife cycle.

Knowledge Englnserxing Literature

The knowledge engineering literature sugpests
techniquens for knowledge acquisition, rapresentation,
and processing which are appropriate and useful for
{ncorporacing judgmental knowledge into the model at
points where decisions invol:ing human judgmeunt must
be modeled. In such contexts a knowladge engineer :may
be required to facilitate the oxtraction ot knowladye
from problem-domain experts, to detevrmine how baat tn
codify the knowledge within the model, and to detec:
mina how the knowledge should be processad. The
knowledge processing procedures should be analogous to
the reasoning procodures actually employed,

Mecthodology for Mode] Specificarion

Consistent with generally accepted practices in
softvare engineering, the methodological framework
(see Table 1) for any software design begins with a
requirements spaci{fication phase, continues with a
design specification phase involving architactural and
detailed design, which is followed by verification and
validation of the design. Then a translation of these
specifications into program code takes place in the
coding phase. The working software is rhen verified
and validated through repeated interaction with the
{ntended end-users of the software and the problem-
domain experts untll a satisfactory product is
obtained. The end-prcduct {s documented with one or
more manuals which describe how to use the software as
well as one or more manuals which describe how to
maintain, upgrade, or modify the software.

Software Requirements Specificaction Phase

Inputs to the software requirements specifica-
tion phase come from the end-users and the problen-
domain experts. In this phase, the system analyst
takes these inputs and uses them to specify and plan
the cumponents, content and concepts of the model.
The format for and procedures of the software require-
ments specification phase are described below.

Pxoblem Stagemeny

The real-world system to be simulated is
described by the problem-domain experts in sufficilent
detall to enable a design team to fabricate detailed
specifications for writing code sufficient tec model
the problem. The problem domain expert(s) may or may
not be rhe same as the intended end-user(s) of che
model .

Virbal Description

The problem statement should begin with a verbal
(wreitten) description of the process that {3 concise
yet darafled enough to communicate a "feel" for the
character and cortent of the system to be modeled.
This descriptive scenarlio should contain sufficlent
background and history to enable design and coding
analysts to understand the "problem."”

Statement of Purpos:

Cuncept articulation {s the essence of any
problen stetement. As such the problem statenent
should carefully articulata the purpose of the model-
building activity, particularly as it relates to any
"problems," "concerns," or "difficulties" with the ob-
ject system. This ls otten refarred tc as tlhie need
environment of (he syscem and the statewment of purpose
should reflect a careful analysis of the need environ.
ment.

Detalled Quentiona to bLe Addressed

The problem atatement should then daefine the
"trea" of major and minor {ssues, concerns, and ques.
tions that need to be addressed by the simulation
model. Major policy and planning considerations to be
addresxed should appear at the top of the tree,
whereads minor logiscical, and operational questions
should appear as "leaves" at the bottom of the tree.
Each major issue is called a Mal 2
or MEA for short. Each minor question to be addrossed
s called an Egye 3.8 ot EFA for
short, Each MEA L+ decomposed into contributing sub-
Lssues, and thess are further decomposed until
quastions that are capable of heing answared divectly
by the modal output are reached. Theye latter low.
lavel questions are EEAs,

L e tiv

An {mportant component of the problem statement
is a2n explanation of whose perspective i{s to be used
{n the study. Normally, the problem should be studied
from the perspective of the end-user(s) of the model.
Identifying who the intended end-users of the model
are will usually determine whose perspective is to be
used as a basls for the study. The user’'s perspective
along with the purpose of the model-building activity
and the {ssues to be addressed will be strong deter-
minantcs of the content of the model itself.

Sysg‘em EQSQILQ;LQ“

The system to be simulated will be described in
co formance to an actor-centered taxonomy that {8 con-
s{stent with object-oriented programming.

Traditionally, the "even:c" has been the point in
time at which state changes (n the modeling system
take place in discrete, next-event simulation. The
procassing of an event was performed {n an esvent
routine. A dynamic portrayal of the behavior of the
modeled svstem was obtained by allowing rhe events to

occur in thelr natural stochastic sequence thereby
causing state changes to occur.

The same is true of object-oriented intetiligent,
di{scretes simulation, but there are differences.
Central to the concept of object-oriented discrete
simulacion is the object which we shell hereafter con-
sistently call an actor or - The entire
structure of the model s defined {n terms of the
various generlc actors and pseudo-actors that are ia-
volved with the process to he modeled. Several actors
and pseudo-actors of a particular genre may reside
within the modeled system at any time. We shall use
the term "actor" to refer to an instance of a class of
actor and the term "actor class" when we wish to
define and create an entire class of actors.
Ganerally, we expect that actors are capable of ra-
tional decislon-making which will impact upon the
stata of the modeled system and the sequence of ac-
tivities pursued by the actor. On the other hand,

-agtory generally do not perform rational and
cognitive decislons that are of {nterest to the model,
Pseudo-actors may bhe thought of a analogous to en-
tities {n the conventional discrete simulation
paradigm. The model endeavors to replicate the ac-
tiritles the actors (and pseudo-actors) engaga {n and
thereby portray the dynamic behavior of the modeled
system.

Assoclated with each actor (or pseudo-acior) are
daca structurey representing the actor’s attributes,
assets and capabllitles, as shown (n Fig. 1. The
state of the modeled system will ba defined by the
daca structures of all of the actors and pseudo-actors
which make-up the model of the system at any point In
tima. The entire coliection of {dentifled acter
classes ls referred to as the

Each actor class must then be defined and
dascribed L. accordance to the actor-centered descrip-
tion presented in Fig. L. Fach actor clasa should
flrst be verbally defined {n general. Then the
assets/attributes of the actor class, the capabilities
of the actor class must all be described as suggested
by Flg. 1. These components make up the data struc-
ture of the actor class. Fach individual actor will
possass this same generic data structure that has heen
deflined for the actor class.

ACTORL
/ ~

T~
T

/7’/}(’,\51 ITIES

PHYSICAL

ASSETS ATTRIBUTES

//'

P

COGNITIVE

Fig. 1. Data-Structure of euch Actor

An actor's physical capabilicties are categorized
as those which the actor is physically capable of
doing. Significant decision-making should not be em-
bedded in the description of an actor’'s physical
capabilities. :

An actor'’'s cognitive capabilities are described
in the form of well-defined cognitive acrivities. For
each cognitive capability and hence cognicive ac-
tivity, {t is appropriate to define the elements of
the associated decisions that are to be contemplated
within each cognlitive acctivity, as shall be explained.

In addition to owning its own data structure,
each act>r or pseudo-actor will own a set of eventg
and activicies. Specifically, each actor class will
own those activities and events whicl. the actor can
angage in.

Two types of activities can be engaged i{n by an
actor--physical activities and cognitive activities.
These correspond to the actor's physical and cognitive
capabilities which are delineated as part of the sys.
tem description. To suggest that an actor is capable
of an activity {s tautologous to the assertion that
such an activity 15 owned by the actor. An activity
is a capabllity exercised by its actor.

Physical activities are the conventional form of
activity around which traditional discrete next-avent
simulation has been developed. They are elementary
tasks with finite time durations. Cognitive ac-
tivities are accivities involving some form of
intelligent, rational decision-making. Like physical
activities, cognitive activities have finite cinme
durations which may be random, but could also be de-
pendent upon when certain information ls ava‘lable or
when a decision becomes urgent,

As in conventional discrete, next-.event simula-
tion, each aevent is modeled by its own event method
(rontines ace called methods Ln object-oriented
programming). Events are of two types--physical and
cognitive, These two types correspond to the two
types of "capabilities" of an actor--physical and cog-
niti{ve. Physical events ars analogous to traditional
event routines in conventional discrete simulation,
Cognitive event methods, on the octher hand, favolve
knowladge processing analogous to the knowledgze or
cognitive processing actually performed by the actor
{n the context of a partlicular decision gituation
Cognitive event methods will contain knowleaga repre-
sentad by production rules and hauristics which are
processed whan the declsion representsd by the cogni-
tive event must be nade. There is an fmplicitly
assumed cognitive nodel of raclional decision-making
wirhin each cogniti. e event method.

When & physical event occurs, {t may alter the
state of the modelud syscem in the following ways. It
may change the ground truth accounting of
agsets/attributes of {ts associated acter. It may
change the relationships that exist between the actors
of the system. However, Lt cannot change the actlion
space of the actor,

When a cognitive event occurs, a dacision is
made to take certain actions now or In the future,
The "actions" that will be chosen will rvesult in ac-
tivities to bhe engaged in or {n state-changes, or
both, In additfon, the result of processlug 1 coygnl.
tive avent may be an {nformation product or "plan."”
Such a plan may consist of actions to ba cavried out
at some point {n the futurs,.

Following the actor-centerad system dascriprion,
the analyst should {dentify the distinet pasudo-actors
which make up the system to be modeled. Tha environ-
mant in which tha system is embsddad i1 one such
pseudo-actor. This descriptior can {nelude entitlaes
1i{ke the weather, and o her environmental facrors
which have a significant Llmpact on tha performance otf
the system,

“Once the actor's physical and cognltive
capabilitles are datermined, Lt is a stralght-fovward
task to llst the actor’'s significant activities, iince
the activitias ars simply thoss tasks which the actor
s capable of doing. However, some judgmert and catve

must be exercised here to insure that only those ac-
tivities which are significant for the purpose
considered are included. Delineation of the ac-
tivities should be accompanied by delineation of the
logical time sequence in which the activities would be
pursued. This should be performed for each {dentified
actor. Once the activities aud their time sequence
are {dentified, the delineation of the events in the
design specification phase i{s explicitly deermined.

Similarly, the capabilities and associated ac-
tivities of each pseudo actor should be carefully
defined and their time sequence specified. As for ac-
tors, this delineation will enable the determination
of appropriate events in the design specificaction
phase.

A template for performirng the system description
is provided {n Table 2.

Table 2. Template for the System Description
WHOSE PERSPECTIVE IS BEING USED AS A BASIS
FOR THE STUDY (WHO IS THE END-USER?)

LIST OF ACTORS
FOR EACH ACTUR, DO THE FOLLOWING:

LIST PHYSICAL CAPABILITIES

LIST VULNERABILITIES

LIST COGNITIVE CAPABILITIES AND DETERMINE THE
ACTIVITIES THE ACTOR CAN ENGAGE 1IN

LIST ASSETS/ATTRIBUTES AND DETERMINE THE STATE GF
THE ACTCR

LIST OF PSEUDO-ACTORS
FOR EACH PSEUDO-ACTOR, DO THE FOLLOWING:

LIST PHYSICAL CAPABILITIES
LIST VULNERABILITIES

WG uirem

The functional requirements are a rasult of hoth
the user requirements document and user-developmert
team {nteraction. There are two categories of
concern--the hardware/software cunfiguration, the form
of model {nputs/outputs, and model performance.

Maler Model Inputs/Qusputs

Modal inputs are of twe types--those that are
required to control tha exacution of the simulatior,
and those that represent points of influence which a
decision-maker might have upon the actual system being
modeled. a determination of the latter i{s very impor-
tant to the usabllicy of the model by the {ntended
end-ua.r, and should be end-user defined. Thus the
and.user should be asked to specify the altarables,
the points-of-{nfluence hy which the performance or
behavior of the object system can be changed. These
are hi: of hec jnputs to the actual system. These
points-of.influence nust ba written fnto the require-
ments specification so they can be designed into the
modal In the Jocumentation phases, it will be neces-
sary to specifically describe the type aid format of
zhe {npute which the end-user must supply as part of
the pre-execution preparations,

Next, the outputs from the mocel should ba
deiineated. Again, the end-users must be consulted
and asked to specify the performance parameters that
are observed In the actual system or which the end-
user would like to observe if they could be measured.

A determination of the model inputs/outputs will
Impact strongly upon the content and form of the data
and knowledge basas required to support the simulation
model .

Execution/Performance

Actual executlon of the simulation is preceded
by processing to setup whatever files are necessary
for the simulation run and followed by whatever
processing is necessary to obtain sufficient informa-
tion from the simulation run. The post-:xecution
processor will provide the essential ex lanation
facility that is expected of any "expert" s,stem.

Ltwa e Spec atio has

The input to the Design Specification Phase is
the Software Requirements Document produced {n the
previous phase. In this chase that document {s crans-
formed into a model structure. This phase
traditionally (from a software engineering point-of-
view) consists of two steps--architectural design and
detafled design. We have broken detalled design down
into two substeps--detailed data structure design and
event internal scructure design. (It should be noted
that, when developing discrete next-event simulation
models, these are usually the only two components chat
require detatled design., Moreover, each avent
dalineated in the architecture phase requires a
separate event method be developed for it.)

ve [

Event architecture design refers to the collec-
tion of events employed to model the system and to
thelr initiation sequence as represented by an event
inttiation diagram. The procedure for formulating
event initiation diagrams is the following:

1. For each actor or pseudo-actor identified {n the
software requirements phase, list the events that
actur or pseudo-actor will engage in. Ezach actor
centered event list shk-~ild be easily determined,
based upon the list of activities and the activity
saquence diagram specified ‘n tha requirements
documant.

2. Examine each list of events to determine {f any
will loglcally vccur at the same instant in time.
goncurrent eventg ace events owned by different
dactors which occur at the exact same {nstant in
time.

3, Once again, examine each list of events in terms
of the previously defined states of the modeled
system, Identify rhose evants at whicu the
modeled system does not undergo a state change.
Eliminate thesa. For each eliminated event, do
the following. Since, an event is a point in time
at which one activity ends and another begins, add
the activity time duration of the next actlvity to
the activity tima duration of the previous ac-
tivity so as to arrive at an equivalent activity
which subsumes the two previous activities that
were separataed by the eliminated evant.

4., For each actor or pseudo-actor {dentified {n the
software requirements phase, delineate thes event
iniciation sequence by means of an event Llnitla-
tion dlagram which vtillizes thae ligts finalized (n
step 3 above and the known loglcal saquence in
which the events must occur. Designate those
evants whlch represant declsion points as cognt-
tive events,

A typlcal event (nitlation dlagram {e shown {n
Flg. 2. The arrows >r edges in tha dlagram desaignare
"{nitlation." Thus the evant ASSESS SIT iultiataes
(schadules) tha avents ASSESS-RAD-EFFECTS and DECIDE-
MOVE, The cognitive event DECIDE-MOVE will makae
certaln daclisions and, depending upon the outcome of
those declsions, will schedule DECIDE-.RECON, DEUIDE-
RESUPPLY, DECIDE-REFVEL, and/or PREPARE.-MOVE, For
each event delineated in the avent architecture stap,
a separate program module s assumed, called an ¢vent

mathed.

ASSESS-SIT
ASSESS- DECIDE-
RAD-EFFECTS MOVE
DECIDE- DECIDE- DECIDE- PREPARE
RECON RESUPPLY REFUEL MOVE
Fig. 2. A Typical Event Initiacion Diagranm.

Detajled Datg Structuce Desizn

In order to serve the needs of the two distinct
approaches to ultimate encoding of the simulation
modal described in section l.--Introduction, two ap-
proaches to data structure design are possible. There
1s space sufficient to describe data structures ap-
propriate only for LISP/KFE environments.

Data ftr \'4

KEE uses frames which are called units in {t3
knowledge rapresantation schema. A separate unit is
used for each actor (each object). Assets, at-
tributes, vulnerabilities, capabilities, are described
by slots within each uait., Actor classes, super-
classes, and subclasses can be creat«d as can
{nstances of each actor class, as shown {(n Fig. 3.

MAMMALS HERBIVORES COWS
BIRDS CARNIVORES HORSES
ANIMALS ™ REPTILES \\\\\LIONS
FISH
Fig. 3. An Inheritance Hierarchy {n KEE

In Fig. 3, MAMMALS, BIRDS, and REPTILES are actor
classes whose superclass {s ANIMALS. Moreover,
MAMMALS have two subclasses calied HERBIVORES and
CARNIVORES. There are two instances of HERBIVORFS- -
COWS and HORSES. Note that solid lines denote
subclass, superclass relationships, whereas dashed
lines denote "Instance of" relationships. Thase
relationgships giva rise to the concept of inheritancas.
Thus classes of actors inherit the atcributes (the
slot values) of their superclasses. Generic actors
can be defined which pass along thelr bas{c charac-
teristics to specific .ctor Instances as well as actor
subclasses. It ls possible for a specific actor to
override some characteristics, howaver.

The actor’'s assets and attribuces are defined by
placing values into slors of the asaociatad unlr.
Each physical and cognitive capabiltity is delined by
placing the code of the associared event method in a
slot,

Event Internal Siructural Design

There are two types of events associated with any
actor and these two event types parallel the two types
of capabillities associated with any actor--physicel
and cognitive,

Since event me*hcds {nftiate the occurrence of
other events, the accivity duration times and times
batwesn occurrences of recurrent events muat be
specified {n conjunction with each event. Most
Likaly these times are probabilistic or random and
describable Lin terms of a probabllity distribution, a
mean, and (sometimoas) a standard deviation.

The following outline {s to be used In tha

detailad desgign of the internal astruciure of the event
method.

EVENT NAME

DESCRIPTION OF PURPOSE

PARAMETERS PASSED TO THE EVENT
ITEMS RETURNED BY THE EVENT

LOCAL VARIABLES FOUND IN THE EVENT
LOCAL FUNCTIONS USED IN THE EVENT
METHODS USED IN THE EVENT

EVENT CODE STRUCTURE

The use of action diagramg as depicted in Fi{y. 4
are an expedient to the design of the internal strusz-
ture of each avent method. Action diagrams are always
desirable whenever the logic of the event method is
not immediately apparent from the EVENT CODE STRUCTLRE
and/or ~he logic of the event is complicated. Action
diagrams dccompose the structure {nto logical unicts
and delineate the type of processing to be ac-
complished by the unit, be it sequence, selection,
case structure, rcpetition, concurrency or whatever.

--*DECIDE-DECON
- -PRE-PROCESSOR

RENAME the launcher unit to current-actor
- -END PRE-PROZLSSOR

- -PROCESSOR
FORWARD . CHAIN(K) DZCON-RULES
DECON-RULE-1
DECON-RULE-2

DECON-RULE-4
- -END- PROCESSOR

-POST-PROCESSOR
RENAME the CURRENT-ACTOR to the launcher unit

--CASE action space INCLUDES GO-DECON THEN
REMOVE GO-DECON FROM action space.
RETURN a li{st to schedule DECON
for current simulation clock

--CASE action space INCLUDES DECON-NOT-NECESSARY
THEN REMOVE DECON-NOT-NECESSARY FROM action
space, RETURN a list to schedule END-SITE-PREP
for the current simulation clock plus a-site-
prep-time

- «END POST-PROCESSOR
--END DFCIDE-DECON

Flg. 4. A "Tynical" Actlon Dliagram.

Event method loglic consists of a preprocessor, a
processor, and a post pro-esgor. The preprocessor
will reschedule the event {f it {s regeperagive--i e.,
{t {s recurrent after the fashion of a classic
"arrival event. The preprucessor will also perform
whatever housekeeping detalls are necessary prior to
prncessing the evant loglc.

The processor of any cognictive event will back-
ward or forw:rd-chain any rules placed within the
processor 1. e¢'f This will result In changes to the
action space [the associated actor, As pteviously
maentioned, the .ction-space subsumes all of the pos-
sible actlions that could conceivably be taken by the
actor.

The poac-processor of any cognitive event will
decide what actions to take based upon the actor’'s ac-
tion space. It will empley "cases." Cases are not to
he confused with rules which are placed within the
processor of the avant unly.

ingsxiéslsinxLJmLJQLLn;iasx_xishln
ognisive Evant Msthods

As shown {n Flg. 4, sets of rules are placed
within the processor segment of the cognitive svent
methods. This effectively partitions tha rule bhase up
fnto "seta" approprlate for parcicular actor c¢lasyes
or actor lustances, Doing so contributes graeatly to
the efficlency of rule processing, since non-ralevant

rules do not have to be ssarched. These rules are ac-
quired directly from the problem domain experts who
also explain the reasoning processes implicic within
each rule set and processor. The problem-domain ex-
perts must also participare in the evaluation of the
performance of the artificial rcasoning that is
cod{fied into each cognitive event method.

Design Smecifications Verification and Validation

it {s considared desirable by software engineers
to perform a verification and validation of che re-
quirements and design specifications prior to model
translation. Doing so enables "problems" to be iden-
tified and resolved early in the software life cycle.
By investing more up-front effort into verifyng and
validating thess specifications, the entire project
will likely fincur reduced costs of testing and in-
tegration, higher reliability and maintainability, and
software that is more user-responsive.

Model Translacion (Coding) Phase

This phase involves translation of the require-
ments and design specifications into a working
simulation. Accomplished by the coding team, this
phase requires that actual line of code be wricten in
direct response to the design document developed by
the design team. Actual coding may be performed
within the LISP/KEE environment which allows for rapid
prototyping.

Software Debugging.and Verificacion Phase

Once all code hus been written and entered into
the computer, it must then be debugged and tested by
the coding team. Testing of the code must be thorough
so that all loglc paths are exercised and examined for
authenticity and correctness. Once verificatlon is
complets and the coding team which performs this phase
{s convinced that the model conforms to the design
specifications from both structural and behavioral
polnts of view, Lt is ready to ba examined by the
problem domain experts and end-users, which ls the
next phase.

User Satisfaction Testing, Modificarion
and Yalidation Phase

The working LISP/KEE prototype ls submitted to
end-users for examination and evaluation. At this
juncture, a verified simulation modal {s to be
validated in terms of its appropriateness, accuracy,
and authenticlity of representation. Any significant
departures from perceived reality results in modifica-
tions and embellishments to the model. It is at this
point that tha pravious phases become adaptive, and
the specifications developed within these phases may
undergo revision. The model {tself must be revised to
conform to the revisions in the specifications,
Several {tarations of this type may be required to
achleve a satisfactorily valid resulc.

I{mplementation

In this study, {mplementation begins with trans-
lation of the LISP/KEE prototype into a working ADa
version,

The motivation for translatlion of a model from
LISP/KEE to a general purpose language like ADA stems
from such advantages as portability, lmplemantation on
posstbly less-expensive and small computers, and
faster operating speeds.

Regardless of the ultimate language thy final
form of the model {s implamented i{n, this “inal ver-
alon must be fully rested and verified before heing
tnatalled, Theronfter end-users must be trained to
use the model,

Documentation

Documentation is required to support and verify
the requirements, design, and coding phases of the
software development cycle. Once the final scfcware
product {s developed, additional documentation is re-
quired to describe its use and to explain its
structure.

Each specific requirement in the requirements
specification document should be idencified by numeric
code. Each section of the design spaecification docu-
ment should reference the appropriate numeric code in
the requirements document that serves as the
motivator/descriptor of the design element. In a
similar fashion, each code segment should reference
the appropriate design section in the design document
which specified that segment of code (possibly through
the use of "comments" written into the code itself).
In this way each code segment can be traced back to a
speclfic requirement {n the requirements document.
Finally, each test or battery of tests should
reference a particular segment of code which that test
was designed to verify.

Thus a component in a requirements document may
define a specific requirement. This requirement is
related to appropriate design document components,
both text and figures, which define the design modules
and the module scructure. The design mndule descrip-
tions are in turn related to the code that imple: 'nts
the requirement, and so forth.

Once the final software product (s developed,
there are two basic components of documentation that
are required. One i{s a manual for the and-user. This
manual describes how to use the software and explains
the assumptions and structure of the model. The
second {s the guide for the system or program analyst.
This document explains how to update, wodify, or
revise the existing model.

Conclusion

In this article a meta-specification for the
software requirements and design of intelligent dis-
crece next-event simulation models his been presented.
The specification is consistent with established prac-
tices for software development as presented in the
software engilneering literature. The specification
has been adapted to take into consideration the spe-
clali{zad needs of object-orfented programming
resulcing {n the actor-centered taxonomy. The heart
of the meta-specification {s the methodology for re-
quirements specification and design specification of
the model.

The software products developed by use of the
methodology proposed herein are at the leading edge of
technology in two very synergistic disciplines-.-expert
systems and simulation. By incorporating simulation
concapts into expert systems a deeper reasoning
capability is obtalined--one that {s able to emulate
the dynamics or behavior of the object system or
process over time. By including expert systems con-
cepts into simulation, the capability to emulate che
reasoning functions of decision-makers Luvolved with
(and subsumed by) tha object system s attalned. In
either case the robustness of the technology (s
greatly enhanced.

