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THE EVOLUTION OF HOBO
by R. A. Clark

Los Alamos National Laboratory

I. INTRODUCTION

HOBO is a free-Lagrangian hydrodynamics code which has been under development at Los
Alamos for several years. The original version has been described in detail in reference [1], and
[2]. It was based on free-Lagrangian tracer points and finite difference approximations to the
cquations of motion for fluid flow. This method will be reviewed briefly in Section II. The use of
an independent time step at each point is described in Section I1I. This technique increases the
speed of the code by factors of 10 to 20. In section IV we will describe how the code has been
modified to achieve energy and momentin conservation and how this effects the independent
tine step. Finally in Section V we will discuss the explicit tracking of material interfaces.

II. BASIC COMPUTATIONAL METHOD

In the original scheme we did the following. We begin with a set of Lagrangian tracer points
that essentially replaces a sct of Lagrangian zones. Each point has associated with it position,
velocity, density, energy, and pressure. At a given time step for a point labeled k choose a
representative set of neighbors from which we make a finite differcnce approximation to the
termns VP and ¥ - I7. We then advance each point from time t to time ¢t + §t in accordance with
Eqs. (1) through (5).

pmtY = GtV - U (1)
rintt = [in — &V P/p (2)
S AV ) (3)
Yo s + OM))2 (4)
I)nH - P(p“+l,6"+l) (5)

Note that we started the eycle by “choosing” a set of representative neighbors. At the next
cycle we are free Lo choose a different set of neighbors for the purpose of approximating VP and
V- U/, However, we do not need to do any rezoning since there really are no zones; the fluid
properties are associated with “he points. This is what makes the method “free™-Lagrangian.
There are many details on how the finite differences are done, artificial viscosity, elastic plastie
flow, that can be found in the references.



III. INDEPENDENT TIME STEP

The idea of using an independent time step for each point in the calculation was first
suggested to us by Eligroth [3]. Equations (1) through (3) can be written as

/)n+] — ﬂ" + bfﬂ (6)
u"tt o= w4 et (M)
"= et 4 bté (8)

It is the calculation of VP and V-7 (which leads to p, 1, and €) that takes the vast majority
of computation effort, hundreds of floating point operations as opposed to just six to solve Egs.
(6), (7), and (8). The 6t in Egs. (6), (7), and (8) is actually the minimum ét for all points in
the mesh taking stability and accuracy into account. At most of the points in the calculation
a much larger time step could be used while still maintaining accuracy and stability. Suppose
point k could be advanced from t to t + 10 4¢ in one cycle while maintaining accuracy and
stability. Advancing from t to ¢t + 108t in one step is exactly equivalent to advancing in 19 steps
of 6t each with the values of p, 4, and ¢ frozen. If p,u, and ¢ are frozen we do not need to
calculate VP and V- U at these points and they are for all practical purposes free. In a typical
calculation we update p, i, and ¢ at only 5 to 10% of the points on a typical time step. This 1s
hiow speedups of 10 to 20 are possible.

One more thing needs to he taken into account. A point may calculate a relatively large
tirae step but then as signals propagate that time step may be reduced. For example, the points
ahead of a shock do not know about the approaching sheck when there initial time step is
calculated. The points are considered either inactive (i.e., frozen) or active. The active points
determine the time steps for both themselves and for their inactive neighbors. Hence, a time
step is reduced as a shock approaches.

IV. CONSERVATIVE METHOD

The basic numerical method described in Section 11 makes no effort to conserve momentum
and energy in either a local or global sense, This has worked very well on a wide range of
problems. However, on calculations involving strong shocks it is simply not adequate. Shock
jump conditions can he off by as much as 40%. A conservative method is needed. In Section 11
we stated that we choose a representative set of points for the finite difference approximation
to VP anud V- 17 Actually, we use the neighbors defined by the Vornoi mesh. Some constructs
from the Vornoi mesh are shown in Fig. 1, 2, 3, and 4. Figure | shows the Vornoi polygon
which confines that region of spezce which is closer 10 one point than any sther point. It can
be constrncted by drawing the perpendicular bisectors of the lines connecting the point with
its neighbers, Tt s a unique consiruction. If we draw the connections between each point and
its neighbors we have the Delaunay triangles illustrated in Fig. 2 If we draw a polygon around
cach point whose vertices are the midpoints between itself and each of its neighbors we have
Fig. 3. Finally, if we start with Fig. 2 and draw a polygon around the point whose vertices



Fig. 1 Vornoi Fig. 2 Delaunay

Fig. 3 Midpoints Fig. 4 Median

are the arca centroids of the triangles and the midpoints of the connecting lines we get the
median mesh, Fig. 4. In order to write a conscrvative code we want Lo use a set of zones which
connect the entire space of the problem and across whose surfaces we can compute mementum
and energy fluxes. In the original nonconservative scheme, aithough values of P and {7 are
well defined at the vertices (by straight averaging), it is unclear how to ever make the method
conservative since the zones do not cover all of the space. The Vornoi polygon looks attractive
but it is easy to show that the vertices of the Vornoi polygon do not move in a Lagrangian
manner so that continuous (and expensive) rezoning would be required. We ar. reluctant to
use the Delaunay triangle because of difficulties that have been observed in other triangle based
codes. For our basic computational cell we are using the median mesh of Fig. 4. The vertices
move in a Lagrangian manner so that the mass in the zone is constant. Pressure and velocitios
are integrated over the surface to compute momentum and energy flux. Rezoning is required



whenever neighbors are changed as defined by the motion of the Vornoi mesh. Since we have
the values of all of the hydrodvnamic variables at the points the rezoning can be done with a
high degree of accuracy.

Conservation of energy is assured in the new method by computing the energy flux across
cach surface and thus ensuring the energy loss of one zone is exactly balanced by the energy
gain of another. But when using the independent time step it is possible (in fact, frequent)
that one zone is being updated while its neighbor zone is frozen. But if we change the flux rate
from A to I3 while the rate from B to A is frozen we will lose onr conservation property. Let us
change the way we look at the calculation. Instead of using the cell as the basic computational
clement we use the surface, The time steps are associated with the surface. The rate of energy
flux across a surface may be frozen or updated at cach cyele. Now there are two basic types of
cells. First, if none of the surfaces surronnding the cell have been updated this cycle then g, é
and 1 can be considered fre.en, e, FEqs. (6), (7). and (8) apply. Second. if any of the surfaces
surrounding the zone have been npdated the p, ¢ and & must be recalculated for the zone. Now
evervthing proceeds as previously deseribed in Section I Momemum conservation is handled
in the same manner. There is some storage cost since there are three times as many surfaces as
zones in the problem but the increase in running speed is mauntained.

V. Explicit Tracking of material interfaces

The zones detined by the median mesh work extremely well in a single material. However
they will always produce a jagged edge at material interfaces and this is undesireable. For
this reason we modify the zones at interfaces. The median cell is construced by connecting
the midpoints between neighbors with the centroids of the triangles (Figure Ha). If the tri-
angle s made up a two materials we draw a straight line between the midpoints of differing
material points and draw a second line from the other midpoint to the opposite vertex. The
tntersection of these two lines thes replaces the triangle centroid in the construction (Figure 5b).

Fig %4 Intertor Point Fig b Material Interface



Fig. 6 Typical Mesh

We carry this one sten further by allowing the interface intersection with the line connecting
points of difference material types to move at a velocity other than the straight average of the
two point velocities. We accomplish this by introducing the variable ZED, which is between 0.1
and 1.0, and tells us where the interface intersects between points. A typical resulting mesh is
shown in Figure 6.

At the present time we use a Riemann solver to determine the motio1 of the interface but
we aie also experimenting with other methods.
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