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ABSTRACT

Since its public release in 1985, the KIVA
computer program has been utilized for the time
dependent analysis of chemically reacting flows
with sprays in two sad thres space dimensions.
This paper describes some of the improvements to
the original version that have been made since
that time. The new code called KIVA-II is planned
for public release in early 1988. KIVA-II improves
the earlier version in the sccuracy and efficiency of
the computational procedure, the accuracy of the
physics submodels, and in versatility and ease of
use. Numerical improvements include the usse of
the ICE solution procedurs in place of the acoustic
subcycling method and the implementation of a
quesi-second-order-accurate convection scheme.
Major extensions to the physical submodels
include the in: lusion of an optional k-¢ turbulence
model, and several additions to the spray model.
We iljustrate some of the new capabilities by
means of example solutions.

INTRODUCTION AND BACKGROUND

The iu-cylinder dynamics of advanced
internal combustion engines, such as the direct-
injection stratified-charge (DISC) engine, involves
a number of complex, closely coupled, physical and
chemical processes. These inciude the transient
three-dimensional dynamics of evaporating fuel
sprays interacting with flowing wnulticomponent
gases undergoing mixing, ignition, chemical
reactions, and heat transfer. The KIVA code (1.3),
has the ablllt.{ to calculate such flows in engine
cylinders with arbitrarily shaped piston
geometries, including the effects of turbulence and
wall heat transfer. response to the needs of a
large user community and to recent developments
in the flelds of numerical fluid dynamics and
internal combustion engine modeling, we have
implemented many improvements to KIVA since
its public release in 1983. The changes are
incorporated in a new version of the crde, called
KIVA-IL that will be released in sarly 1988,
Indeed, RIVA-II builds on the capabilities of KIVA
and is quits similar in structure. Current users of

KIVA will find the transition to KIVA-II to be
straightforward.

An excerpt from Ref. (1) explains the basis
under which A was written: "Since KIVA wags
developed withrapplications to internal combustion
engines in mlns. it contains several featuras
d od to facilitate such applications. However,
the basic code structu-e is modulcr and yuite
general, and most of the major nptions (chemical
reactions, sprays, etc.) cen be individually
activated or deactivated by setting appropriate
values for the associated ic;::* swi‘ches. The code
is therefore applicable to a wide variety of
multidimensional problems in fluid dynamics,
with or without chemical reacticns or sprays.”
Indeed, KIVA has been uced for numerous studies
besides internal combustion engines, including
cold flow analyses in complicuted geometries,
continuous spray combustors, Bunsen burner
fiames, nonreacting sprays, and hydrogen-oxvgen
flames propagating in long tubes, to name just a
few. It is impractical to cite all such studies here
becauss of ti.e widesp: ‘ad distribution and uee of
the code i1a industry and universities. For internal
combustion sngines, hesides the studies of the
DISC engine that have been carried on it Genera!
Motors Ressarch Laboratories, Princeton
Univeraity, und Los Alamos, it has been used as
the basis for numerical investigations of diesel
engines (4-8) and to coal-fired diesels (7) us well.

From a historical perspective, KIVA-0 is the
latest in a serios of multidiiaensional codes that we
liave produced sinre we began work on numerical
simulations c¢f internai combusiion engires 12

ears ago, under the upon.ouhiE In what has

o the Dopartment of Energy ECUT program.
All of them are multidimensional finite-difTerence
codes that solve the transient equations of motion.
The first of these was the RICE code (8). RICE was
a two.-dimensional Eulerian code¢ that utilized
rectangular computing sores for its mesh, eddy
difMusivity to model the turbuience, Arrhenius
kinetics with an arbitrary number of reactions and
species to repressnt the chemical kinetics, and a
partially implicit treatment to efficiently treat the
acoustic terms for low Mach number flows. Bracco
ot al. at Princeton ably meaified RICE and



produced the REC code (9), which included the
effect of piston motion in the unresolved third
dimension of the calculetions. Another two-
dimensional Eulerian code. APACHE (10),
followed RICE. This had the capabilities of RICE
and the generality of arbitrarily shaped cells.
CONCHAS (11) followed APACHE and it likewige
utilized arbitrarily shaped cells, but offered the
‘eature of an arbitrary Lagrangian-Eulerian
ormulation that allowed the computing zones to
follow the piston motion. In addition the
turbulence effects were included in the
calculations by use of a subgrid scale model.
CONCHAS-SPRAY (12) replaced CONCHAS. As
its name implies, it included a model for the spray
dynamics, a statistical representation that
accounted for a spectrum of droplet sizes and the
effects of evaporation., The turbulence wag
included by means of a subgrid scale mode! that
included a transport equation for turbulence
kinetic energy, and a law-of-the-wall treatment for
turbuleat boundary layers. The chemistry was
generalised to include both kinetic and
equilibrium reactions. KIVA (1,2) then followed.
In additicn to retaining the capabilities of
CONCHAS SPRAY, it featured the ability to do
either two- or three-dimensional problems with the
same code. Firthermore, it had an expanded spray
model that treated collisions and coalescence. An
acoustic subcycling method was adopted to permit
;._lhc officient computation of low-Mach number
ows,

The following section will give an overviaw of
the changes since the release of KIVA. A selected
set of these changes will then be described in more
detall in subsequent sections.

IMPROVEMENTS OVERVIEW

The improvements to KIVA are listed in
Table 1. These fall irto four ger -ral categories:
computational efficiency imnrovements, numerical
accuracy lmprovementa, aew or improved physical
submodels, and improvem=2:z in ease-of-use and
versatility.

TABLE [

I.  Computational EMclency Improvements

¢ ICE maethod with conjugate residual
jtaration

¢ Subcycled calculation of convaction

e Stochastic spray particle mover

0. Numerical Accuracy Improvements

¢ ICE method with conjugate residual
iteration.

e Optional quasi-second-order upwind
convection scheme

¢ (eneralized mesh diffusion algorithm

¢ Method for computing turbulent droplet
dispersion when At exceeds turbulent
correlation time

¢ Convection of length scale in place of the
turbulence dissipation rate ¢

¢ Simplified velocity boundary conditions

® Stochastic spray particle mover
¢ Spray particle splitter

IMI. New or Improved Physical Submodels

¢ k-c turbulence model
® Modcl fordroplet acrodynamic breakup

IV. Improvementsin Ease-of-use and Versatilit

Nonflat cylinder head option
Inflow/outflow boundarics

Simplified velocity boundary conditions
Alphabetized epilogue listing FORTRA!
variables and their definitions
Gravitational terms

Eulerian and Lagrangian optivng
Library of thermophysical properties «
common hydrocarbons

o Initial Bessel function swirl profile

® Continuvous or single-pulse spray injectio

As a result of the computational efficienc
improvements, KIVA-II is able to perform man
calculat.ons over a (actor of two faster than KIVA
The numerical accuracy of the code has bee
Improved in s great number of ways. 'Two ne\
physical submodels have been added to th
program. In addition to the subgrid scal
turbulence model of KIVA, the user has the ort.ion
to use a standard version of the k-¢ turbulenc
model (13). An accompanying paper (14) in thi
conference details the new model for drople
aerodynamic breakup. This breakup mode
further improves one of the strongest physica
submodels in the code, the spray model.

The improvements to the cudae’s ease-of-um
and versacility are numerous. Most of thes
changes allow the user to run a larger variety o
problems using standard input. This has been ir
responss to many users, both inside and outsid
the automotive engine design community, who ar(
using the code to calculate steady and unstead)
combustion problems, to explore alternativ
combustor designs and fuels, and to Investigate
fundemental equations in flame dynamics anc
structurs. A new alphabetized epilogue allows the
user to easily find the deflnitions and uses ol
FORTRAN variables within the code.

The major Iimprovements since KIVA are the
replacement of the acoustic lubcg:“ng method (15)

th the ICE method (18), a sub¢ycled convection
algorithm, a generalized mesh diffusion algorithm,
the addition of a droplet breakup modei, the option
to have inflow and outflow boundaries, a nonflat
cylinder head option, and an option to use a quasl-
second-order upwind scheme for ¢cor:vection. With
the exception of the droplet breakup model (14),
these improvements will now be described in more
detail. In a soparate section we tell of three
improvements to the vpray model: the wtochastic
spray particle mover, the spray particle splitter,
and the method for computing turbulent droplet
dispersion when At cxceeds the turbulent
correlation time.



THE ICE METIIOD WITII CONJUGATE
RESIDUAL ITERATION

One of the biggest differences between KIVA
and KIVA-!l is in the method for calculating
pressure wave propagation. Whereas KIVA uses
an accustic-subcycling (15) algorithm, KIVA.II
uses the ICE method (168). There are two reasons
‘or this change. First, our test calculationa
‘cvealed some deficiencies of the acoustic
subceycling method as it is implemented in KIVA,
Second, a method called the conjugate residual
(CR) method (17,18), has been found that soives
efficiently the Implicit eguatlonl of the ICE
method. this section we describe and illustrate
by means of an example calculation the
deficiencies of the acoustic-subeycling method and
why the ICE method eliminates them. For rnore
decails concerninyg the implementation of the ICE
method and a short introduction to the CR method,
the reader is referred to Ref. 19,

The acoustic-subcycling method is used to im-
prove the efficiency of compressible flow computa-
programs when they are applied to low Mach
number probiems. Many compressible flow codes
re?}uire a computational time-step At that must
satisfy the Courant sound speed restriction (20)

cad s, (1)

Ax
where c is the speed of sound, At the time-step, and
Ax the computationa! cell size. Thur, the acoustic
mode Is resolved by these codes. In low Mach
number problems, this is inefficient because Mow
festures of interast usually vu? on a time scale
much longer than the times for acoustic wave
propagation, & phenomenon that is usually not of
interest. The idea of acoustie subcycling in to
difference those terms associated with the acoustic
mode explicitly using a time-step 8t that is a
submultiple of the time-step At used for the
remaining terms in the equations. The s-oustic
mode terms are celculated, or subeyel=l, AU/SL
times for each time-step, or cycle. The remainin
lerms are then incrementad using AL. The sma
time-step Ot is still bound by the Courant enndition
(20). Oftan the large time-riap At is determined by
stability restrictions associated with explicit
differencing of Lthe convective Larms:

ﬂ-|' (2)
Ax

where u is the fluid velocity. Thus wc have

1
- — 3
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whera M i{s the Mach numbar. Equation (3) shows
that when M < < 1 the acoustic subeyeling method
cun be inefflcient, unless it iv ¢ombined with a
method that scoles up the Mach number (21), as is
donein KIVA,
We describe two possible ways of
implementing acoustic subcycling. Consider the

At
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pressure and velocity equations of a single-
componcent viscous fluid:
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In these equaiions, D/Dt is the substantial
derivative, p the density, s the entropy, p the
pressure, o the viscous stress tensor, and g the
acceleration due to gravity, Typlcally in low Mach
number flows, the terms on the right-hand sides of
Eqs. (4) and (5) are the slowly varying (S8V) terms,
while those on the left-hand sides are the acoustic
mode (AM) terms. The SV terms are evaluated
once each | time-stap At. In one approach

which we label Method I, the computed values o

the SV terms are multiplied by At and added to the
pressures and velocities on the firat subcycle. On
subgequent subcyclea of the current cycle, only the
AM texms are calculated anc affect the pressures
arnd velacities. In an alternative approach, Method
O, wa¢ values of the SV terms sre calculated and
stored. Each subcycle of the current cycle, theve
are multiplied by the amall time-step 8t and added
to the pressures and velocities. Method Ll requires
mors storage but is more accurate.

Method | was used in the original version of
KIVA, but one of its deflciencies soon became
2 nt. When an SV term nearly balances an

term, this cannot + calculated By Method I if
At > 8t. For example, if the pressure is nearly
spatially uniform and not varying in time, Eq. (4)
implies that the divergence of the velocity fleld is
determined by

1 ap| Da
U — =] == (8)
Vou pJ&\D(

Thus, we have a balance between an SV term and
an term. This balance cannot be calculated by
Method [ (unless At ~ 8t) bacause the efTects of the
8V terms are onlr felt on one subcycle of each
computational cycle. For the remaining subcyclos,
the two AM terms are ll%llll‘d tw balance. This
defect was corrected for Eq. (4) in an imrrovod
version of KIVA (2) by using Method [l, but
Method I ls still used for Eq. (5).

One solution to this problem Is to use Method
O for differencing Eq. sa). This would require only
minor modifications of KIVA, but a disadvantage
of this solution is that three additional urrngl
would be needed -- vne for each compouwont of the
SV term of Eq. (8).

Another approach is to use the ICEl method,
in which, eﬂ'octﬁnly, the terms pc¢? - u and 1/p *p
in Eqs. (4) and (56) are differenced lmflicilly using
the large time-step At. The implicit differencing is
needed to stabilize the Finite.difference
approximation whon the Courant condition iw
vivlated, and vince all termu participate in the
equation balance on each time-step, we can have a



balance between AM and SV terms, as is required,
for example, when ¥ - u is given by Eq. (9) in
constant pressure flows.

A disadvantage of using implicit differencing
equations has been tnat iterative procedures for
their solution are often slow to converge. Recently,
however, relatively faswt and efficient solution
procedures have been developed, and one of these,
the conjugate residual (CR) method, is particularly
attractive because of its low storage requirements
and because the computer logic astociated with it
is vectorizabl: for usc on computers of the Cray

fum'l%’.
o {1lustrate the deficiencies of Method I and
how these are mitigated by the ICE method, we
present results of calculations in which a slowly
varying term, the spray source term in the
momentum equation, Eq. (5), is balanced by the
scoustic mode terms. In this ldealized problem, a
slug of liquid droplets moves axlally in a tube of
S:.; The dror are un]formJ( distributed within
e slug, which occuples one elghth of the length of
the tube. The drope displace a negligible volume of
the S:; in the slug. Initially the is at rest, and
the p volocltL 8 4000 cm/s, which corresponds
teed “Pariodle soundary ronditions sty mpesed
] eriodi¢c boun conditions are im
at the top and bottom of the tubw, and hence, the
gu accelorantes as [t acquires the momentum lost
y the droplets on acoount of drag forces.

In the calculations, the tube was resolved
with a mesh of 16 uniform cells in the axial
dii «ction and the Courant number cAt/A1 was 10.0.
Figure 1 gives velocity vector plots after the first
cycle from the solutions obtained using the
subcyeling and {terating codes. The initial
Bod on of the slug of droplets is indicated in the

gure. The plots from the subcyeling code have
large veloecity variationa. ln contrast, the
velocitivs obtained by the iterating code are nearly
uniform in space, as would bo the case If the flow
were ineompnufblo. Both codes conserve linear
momentum, but both solutions have numaerieal
errors. ThLe plot of the subcyeling codo solution
shows that the gas velocities at the bottom of the
tube, where the droplets are located, sre nearly
1ero, The momentum exchanged between the
dro&l:u and on the first cycle has Eopa ted
to top of the tube. This un cal behavior is
caused by the method (deseri above) used to
calculate the spray momentum source tena, which
is an SV term In the gas velocity equation. Sinece
the spray is continuously giving up lts momentum
to the gas, the gas near the drops should be
movln1. On the other hand, the ltercting code
result ls inaccurtis because at these early times
compressibility effects should be important, and
the volm eld should be nonuniform. The
near! orm valocity fleld of the itsrating code
solution s the result of implicit numerical errors
that damp acoustic pressure waves (22).

In this example the errors of the subcycling
version are more serious than those of the iteratin
cnde because the flow is nearly incompressible, an
the subcyling code has introduced unphysical and
slowly damped pressure waves.

OPTIONAL QUASI-SECOND-ORDER UPWIND
CONVECTION SCHEME

A pair of input coefficients in KIVA
permitted the use of the interpolated donor cell
dlﬂ'erencing, which is second-order accurate in
space and time on a uniform mesh, donor cell or
upwind differencing, which is first-order accurate,
or any amount of u%\;ind differencing between
these two extremes. is choice was tnade a priori
for the entire mesh for every time-step during a
particular computer run. Interpolated donor cell
differencing introduces undesirable dispersion
errors in regions of sharp gradients in the mesh.
Donor cell ﬂ'erendnggreurvn monotonicity but
is more diffusive, theredy wrearing the gradients.
A difference acheme for convection has the
monotoniclty property when the following is true:
if convected quantity p is such that pin lies
between pi.1" and pi+ " in value and x;n ' ! lics
between xj.10 and x;+)°, then pjn+1 liew between

pi-1" and m n.

In KIVA-U, we have added another option
that combines the best features of interpolated and
donor cell differencing. Ln particular, this option
provides a means of effectively calculating the two
con‘rolling coefficients in a space- time- and
direction-dependent faghion so as to maximize tne
amount of interpolatad donor cell differencing and
minimise the donor c¢ll while retaining the
monotonicityrproporty of the latter. hen
wavelen of the computed solution are long
com to the mash spacing, the scheme reduces
to Interpolated donor cell. hen the computed
solution has wavelengths comparable to the mesh
spacing, che scheme reduces to donor cell, which
ltron(]y demps the shorter wavalength
compnnents and Is monotons.

‘The metnod we uso is a mociflcation of the
{deas proposed by Van Leer (23). Van Leer givesa
necessary but not sufficieat condition for
monotonicity of a certain class of difference
schemas for the convection equation. 1lis condltion
gives a prescription for limiting the gradicat of a
convected quartity. By adopting a mpre
aggressive ent-limiter than he proposes, we
have devised a scheme tnat has giver us monotone
resulta in ali our test calculations,

‘To [llustrate the properties of the old end
new convaction schemcs, we celculute the
convection of & square-shaped region of species 2
through a mesh of square cells otherwiey occupied
by sgecies 1. The geometry and computational
results of this sstreme example are shown in
Fig. 2. Species 1 la Initlally locuted in the lowar
left slde of the computaticnal region. Inaido the

uare-gshaped region, whoss sides have lenyth
ﬁl, the mess frection of gpecies 2 is . 0 and
outside it is 0.0. The region Is convected at . 45°
angle to the upper right by a uniform, stendy
velocity fleld. a problem (s run to a time 88x/u,
where u is one component of the velocity. At this
tims, the exact solutivn .3 the tranylation of the
square of matarisl exactly the length of its side in
each coordinata direction.

Contonrs of constant maes fraction from the
Interpolated donor cell wolution are vhown at the
uppot right, In the wako of the square they show



the dispersive ripples that are characteristic of the
interpolated donor cell scheme. The maximum and
minimum calculated mass fractions have the
unphysical values 1.41 and -0.35. The donor cell
solution is shown at the lower left. Because the
donor cell scheme is monotone, there are no
dispersive ripples, and the maximum and
minimum values of 0.65 and 0.0 lie between the
original maximum and minimum mass fractions.
There has been considerable numerical diffusion of
species 2, however, so that the original square

ape is now nearly circular. Finally, the quasi-
second-order upwind solution is shown at the lower
right. The maximum and minimum mass fraction
are 0.87 and 0.0, evidence of the monotonicity of
the scheme. In addition, there has been
congiderably less numerical diffusion of material
than in the donor cell calculation. To quantify the
error in each solution we calculate

B=vV—Su-vy #,
285 = "
where Y| ; is the mass fraction of material in cell
(i,)) and L{u sum is over the twenty-flve cells for
which the exact solution is Y = 1.0. The values of
E for the donor cell, interpolated donor cell, and
8uui-nconcl order upwind schemes were 0.532,
411, and 0.358, respectively.

One pays a price for the accuracy of the
quasi-second-order upwind scheme; in test
calculaticns, use of the method required fifteen to
fifty percent more computsr time, depsnding on
the number of convestive subcycles. For this
reason we have included it asd an option to the user.
‘The decision to use yuasi-second-order upwind
differencing will depend on the cell Reynolds
numbers in one's problem (20), and the purpose of
the calculations. on all cell Reynolds numbers
Resx = pudz/p are less than two, then one should
use the old convective differencing of KIVA. This
is because the physical viscogity ls no | that the
numerical diffusion of even pure donor cell
differencing will be dominated by physical
diffusion. It would be a waste of computar time to
use the new schame. When Res, = 2, then 2
possible approach is to use the old scheme for faster
calculations whose purpose is to obtain qualitative
flow features and trends and to use the new scheme
when one wants to obtain the most accurats resulla
possible for a given mesh spacing.

THE k-e TURBULENCE MODEL
A standard k-¢ turbulence model has been
installed in KIVA-II. The option to use the subgrid

scale (848) turbulence mode!l has also been
retained. The equations of the k-¢ model are

] 2
®2 + % (puk)+ —phV-u
o 3

=a:Vu +V-(p.r/a"hi—pt+ W. (N

and

apu 2
—-+V-1puu)+(-C. - )pu'-u
o 3 5 Yy

C (@Vu)+ V- (uf’oEVu)
“1

»|o

- : 8,
“C okt C =W (
I:2 l* v

With the exception of the dissipation term, the
turbulert kinetic energy equation is the same as
the SG® turbulent kinetic energy equation. In
particular, the forms of the mqomentum stress
tensor o and spray source term W, are the same.
An additional transport equation, Eq. (8), is now
solved for the dissipation rate ¢. The turbulent
viscesity of the k-¢ model is given by

‘2
bp=Cp = (9)
The quantities C,, C¢,, C¢,, Cs and C, are
constants whose values are determined from
experiments and some theoretical considerations.
Standard valuer of these constants are often used
ineaginecalculations.
The k-c aquations are solved together with
the following standard boundary conditionas:

Yaon_ =0 (10)
and
e
cm28C¥ I~ (11)
vy

The vector nNu,j is the unit normal to the wall,
The boundary condition on ¢ iv applied at the
centers of computational cells adjacent to walls
and whose centars are distance y from the wall.

The production, diffusion, and decay terms
are differenced in Phase A of KIVA-II in an
analogous fashion to the differencing of these
terms in the SGS turbulence model. The
compresaion (¥ « u) terms are differenced in Phase
B, and the convection tarms are calculated in
Phase C. In numaerical comparisons with analytic
solutions, we found It is more accurate to convect
length scale L = k3/%/¢ rather than c. This is
because there are normally large gradients in ¢
sincec ~ 1/y near walls. Incontrast, L ~ynearwalls
and L s thus a smoother variable than ¢.

THE SPRAY MODEL IMPROVEMENTS

In this s-ction we describe three changes to
the spray model that improve its numerical
accurecy: the spray particle splitter, the atochastic
spra;, particle mover, and an extension of the
method for calculating turbulent droplet
disparsion. When the mass associnted with a
~umptational :prl{ particle exceeds u reference
reess, which s twice the mass of an injected



Earticle. the splitter routine replaces that particle
two particles composed of drops with the
identical properties, but with half the number of
droplets of the original. Tha two now particles
then follow different trajectories bacause of the
method for calculating turbulent dispersion of
droplets. This splitter is effectively a means of re-
sampiing rom Lﬂe droplet distribution function at
downstrcam locations. It improves aceuracy in
calculations where there are frequent droplet
comlescences, and because the method for
calculatjn& coalescences deletes computational
particles, there may be large statistical sampling
crrors,

The stochastic particle mover allows one to
use time-steps that are !arger than the time-step of
the Courant condition based on the droplet
velocity. This condition is that a droplet can travel
no more than ooe computational cell in one time-
stec 1\nd was necesaary in KIVA so that droplets
co' 1exchange mass, momentwm, and energy with
ali cells along their trajectory. With the stochastic
particle mover, the computational particle position
18 atill advanced by the formula

‘nvl: l" +U~6‘,

1 4 » 14

but unlike the old algorithm, where the exchanges
of mass, momentum, anu energy were with the cell
contmning&ouit.lon xpn+1, the stochastic particle
mover has these sxchanges taking place in the cell

containing the position fp, where

X ax"+Rw"8p
» 1 4 [ 4

and R is a random number equidistributed in the
interval (0,1). Thue, on the average a particle
exchanges mass, momentum, and energy with all
cells along its trajectory, even though it may travel
across many cells in one time-step.
The stochastic paricle mover s usaful in
steady-state spray calculations or where there are
uasi-steady regions in time-dependent calcula.
tlons for which the dro%:t velocities greatly
exceed the gas velocities. This is oflet: Lrue neara
spray Injector where droplets have large injection
velocities end are still not in velocity-equilibrium
with the gas. Farther downstream of the injector
where the droplet velocities nearly equa! those of
the gus, the condition up 8t/8x < 1 will be satisfled
because this condition i{s enforced for tha gas

veloclt%.
he extension of the method for calculating
turbulent droplet dispersion is intended to allow
for situstions where the computational time-stap
8t exceeds the droplet turbulent correlation time
. No allowance was made for these situstions in
s KIVA code, nd as a result when 8t > large
unphysical turbulent dispersion of droplets was
calculated. The problem arises becauss a droplet
“sees” more than ons turbulent gas velocity u', and
as a result, recelves more than one random change
Lo its valocity in one time-stap. In the new method,
when 8t ~ .4, the particle positicn and velocity are
updated using

4 P n,_n+l n+l w'
= A" (u u )+ g + —
8¢ » f §¢
and
l-‘lfl_ln .
LA U ol
8t ¢

where ugn+1 18 the advanced-time gas velocity at
the position of the particle, A,n is the particle dyra
funection, g is the acceleration due to gravity, an
x' and w' are turbulent position and velocity
changes that are randomly chosen from certain
probability distributions for these changes. These
robability distributions, which are derived in
f. 24, depend on the time-step 8t, the turbulence
correlation time ty, and the druplet drag time
1/Apn. Because of the large range of these times
t.hnr we have seen in our spray calculations, no
restrictive assumptions are made concerning the
relative magnitudes of these times in KIVA-II.

SUBCYCLED CONVECTION

In many applications, the time-step At in
thr original A was limitad by convection. This
was particularly the case in high-swirl engine
geometries, whare for a considerable portion of the
calculation the convective limit was far more
restrictive than the diffusive limit.

I'o alleviate this situation, KIVA-II
subcycles the palr of subroutines that calculate the
fluxes of un.i,momcntum. and energy. This i
accomplished by removing the convective limit
A as a choice in the calculation of the new At
each cycle. The number of fluxing subcycies
NFLUXS is then calculated as the ratio At/Ateon
rcunded up to the next intager, constrained to a
minimum value of 1 and some maximum value in
the range § to 10. A limit of 5 is recommended for
transient celculations, wuch ay internal
combustion engines, while a limit of 10 Is more
efficiont for steady-stats calculations, where the
flow fleld changes gradually over timo. With
NFLUXS determined, the subcycle time-utap AL, iv
givenby Aty = AUNFLUXS,

8 an example of the ofMiciency that can be
ained through subcycled convection, consider the
A calculations of the UPS-292.-3C engine (25).
Untl spray and combustion commaence near TDC,
swirl velocities ovar 6000 cmv/s controlled the time-
stop. The portion of tho calculation from IVC at
118° BTDC to 39 * BTDC originally required 2404
computational cycles in about 1h 24 min CPU time
on & Crey X-MP, When repeated with the
subcycled convection of KIVA-IT, these dropped to
828 cycles in 46 min, a reduction to 22% uw many
computational cycles in 55% as much CPU time,
running at the limit of § subcycles virtually
throughout. Despite such a grcat difference in
cycle and At history, the results do not differ
significantly between the two runs.



GENERALIZED DIFFUSION

The diffusion subroutine in the previous
version of KIVA was designed to take advantage of
the area projection arrays that are also for
calculating viscous stresscs and prcssure
accelerations. This was efficient from a
calculational standpoint, but would only give
correct resulta in a truly orthogonal grid. While it
is desirable to construct grids with as much
orthogonality as practical, this is clearly
imposgible in modeling curvilinear geometries
found in many applications, and for which the ALE
concept is ideally suited.

Accurate caiculation of diffusion requires
the use of actual distances between vertices, rather
than distances projected in the x,y, and 12
directicrns. To accomplish this, KIVA-TI contains a
generalized 19-point diffusion scheme “hat
employs a set of geometric factors based oa true
distances.

To illustrate this difference, consider the
nonorthogonal mesh shown in Fig. 3. If we impose
an adiabatic wall condition and a temperature
discontinuity, say T = 400 K in the left half and
T = 300 K in the right half, the previous version of
KIVA gives the temperature profile at some latar
time as shown by the x's in Big. 4. In contrast,
KIVA-L gives the profile shown by the circles, in
close agreement with an approximate analytic
snlution for the heat diffusion, shown by the solid
line. The agreement is excellent except at the left
boundary, where the effect of difterent wall
boundary conditions for the analytic solution is
manifestad. While the code is constrained to make
dT/dx = 0, the mnl{vﬂc solution asgsumes that T =
400 K is inflnitely far away, and is asymptotically
heading toward that value.

he generalized scheme in KIVA-II was
further tested in a variety of multidimensional
curvilinear geometries, with and without
combustion. As indicated by the above heat
diffusion test, the diffusion of mase, enthalpy and
turbulence are likewise more aecuratsly calculated
for nonorthogonal grids in the new code.

INFLOW AND OUTFLOW BOUNDARIES

Originally, KIVA was developed with
applications to laternal combustion engines
lpociﬂc.l‘l{ in mind, and we restricted the code to
conflned flows with a moving bottom boundary to
simulate piston motion.

As the code hecame moro widely used by
ourselves and others, many diverse engine and
nonengine applications emerged. Often, these
aﬂwu“u‘ou have tries that require the use
of inflow and oud‘low boundaries. We considersd
code options that would allow any portion of any
boundary to be rigid, inflow, or outflow. While this
sounds attractive, the added complexity is not
practical for a release code version. Accordingly,
we offer some limited options that will guide users
in adapting the code to their own specific needs.

T.n addition to retaining the basic conflned-
fMlow mesh from before, KIVA.-O o.Ters an optional
inflow bottom boundary, and optional outflow
boundarics along the top and/or right side of the

logical mesh. For an inflow bottom boundary, t
user specifies the inflow velocity and densities
the various species. For un outflow boundary, or
an appropriate ﬂa? requires specification.

An added feature for outflow beundari
that the user may specify is the point at which t
ambient pressure i3 applied. This may be on t
boundary itself, or some dirtance beyond. I[n t
latter case, the boundary more readily absor
acoustic waves, thus reducing any tendency |
such waves to be reflected back in. This featu
has proven useful in establishing stcady-sta
flows, by reducing both the problem time and t
average number of pressure iterations required p
cycle.

DOMED CYLINDER LIEAD

Originally, KIVA applications focused ¢
DISC and diesel engine designs, whose geometri
are charactarized by having a distinct bow! in tl
piston face, and a flat cylinder head. A met
gonerator was included in the code thi
concentrated on the piston geometry, an
simplified the task of deflning its shape. 'l{l.roug
the use of tabulsr input data, the user defines gr:

ints along the piston silhouetts, starting at tt

wl axis and ending at the cylinder wall. Tt
silboustts may contain a bow| or be flat. In a 3-
mesh, the bow] shape [s then rotated azimuthell
smuming that the bowl is circular about its ow
axis. If desired, the bowl could be subsequentl
offset from thy cylinder nxis in a 3-D mesh.

While this generator has proven useful,
assumes a Nat head. llowever, a number ¢
designs for combustion chambars are distinguishe
by cylinder heads that are arched, or perhap
dist{octly domed. To meet this need, the generate
in KIVA-U has been extended to include a
optional second tabla for nonflat heads.

Although we presently still constrain th
piston bow| to be rotationally symmetric, w
provide for head domes that mn[y depart froc
rutational symmetry. An example is shown [n Fi
5, in which the domae (s not only offset to one wi
but, when viewed from above, is seen o be partl
circular and partly ellipsoidal. Again, optiona
tabular input data provide ‘he necessar:
information for the generator to make this yhap
adjustmant. At the bottom of the mesh In thi
example, the piston silhoustte data are used in th
previous manner., Here, we define a siightl
domed piuton top, which coincidentally rnatche
;ha arch in the cylinder head surrounding th

oma.

NUMEZRICAL EXAMPLE OF A KIVA-L
CALCULATION

In an earlier SAE p:'per (25), we presentec
an analysis of three-dimensional KIVA
calculations of the spray, mixing, and combustior
in the UPS-292 stratified charge engine for thred
different operating conditions. We reported thaf
pressure histories compared well with
experimental measurements at the highest loac
condition, and that computed wull heat louses were
approximately two-thirds of the mcasurcd values



for all test conditions. These earlier calculations,
using a mesh of 10,000 computational cells,
required approximately three hours of Cray X-MP
computer time to run from IVC at 118° B‘T{)C. out
to 92° ATDC.

Subsequent to the publishing of that paper,
we have rerun Case 3, using KIVA-II. This was
the lowest-load case, and the one that exhibited the

atest discrepancy with experimental pressure
ata. Thiscasc had the latest injection of the three
cases, and as a consequence the spray, mixing, and
combustion events occurred closer to TDC than in
the higher-load cases. We hypothesize that this
case would therefore be the most sensitive of the
three to any error in compression ratio. Accord-
ingly, we Lave made slight adjustments to our ap-
proximation of the piston geon stry, bringing our
compressior ratio down from 13.44 to 13.04,
mau:hjn%t.he experimental value of 13.0. In addi-
tion, we have increased our wall heat loas coeffi-
cient by 50%, as suggested by the earlier runs.
'l:r:t 6 gives the computed and measured
pressure histories from Case 3, and includes the
curve from the new KIVA-II calculation. In addi-
tion to agreeing favorably with the experimental
curve, the new result exhibits a pronounced drop in
the rate of pressure rise durin ?u.cl injection, then
a strong increass in the rats of rise, still dwring ils-
nition. This effect ia also apparent in the experi-
mental curve, although less markedly. A possible
explanation for this behavior is that during the
injection period, fuel evaporation is cooling tke
gd:.-, the rats of chemical heat releass is smali, and
e rate of pressure rise decreases because the up-
ward motion of the piston is slowing. Then after
injection there is a largu incremse 1n the rate of
chernical heat release.

One of the principal results form our earlier
calculations remains unchanged, however, and
that is the presence of hydrocarbons on the cylin-
der walls at 92° ATDC, illustratand by the tempers-
ture and fuel vapor mass fract/on contour plots of
Fig. 7. In all our calculations of the UPS engine,
tl:a combustion occurs in two phases: a short pre-
mixed burn during which a small frastion of the
fuel is consumed, followed by a longer diffusion
flame phase. The {lames are not mt.[onnrg.. but
are convected around the combustion chamber by
the swirl, and into the squish region as the piston
withdraws. If combustion is incomplete, unbumed
fue] will ba lsft on the cylinder walls.

The rerun of Case 3 with KIVA-II required
1.77 hours on s Cray X-MP, in comparison with
3.32 hours for the earlier KIVA run. The reduction
to nearly half the time s due mainly to wubcyelin
the convective flux subroutines, which dramatical-
ly enhances efficiency in high-swirl applications
such as the UPS engine. The rerun was made with
partial donor-cell erencing, as in the original
run. Tests indicate that the quasi-second-order
upwind differencing option pro%ucu virtually the
same results in tﬁll application, but [s
significantly slower. The conjugate residual
pressurs iteration in KIVA-I is about 10% slower
than the acoustic subcycling of the sarlier KIVA
runs for the UPS epp icttﬂ)n, at least at early
times. This lows iy far outweighed, howevaer, by the
more efficient convective fluxingin KIVA-I.
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FIGURES

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Velocity vector plots from cycle 1 of the
iterating- and subcycling-code solutions
to the rlroplet slug problem.

In the convection test, a block of one fluid
is convected to the upper right through
ano! ar fluid by a uniform, steady
velocity fleld. The results are shown ata
later time for three differsnt convection
schemes, described in the text.

A pnoncrthogonal grid tilted at 45°, as
usad for the heat aiffusion test described
in the tert.

The generalized diffusion scheme in
KIVA-TI compares favorably with the
analytic solution for the heat diffusion
m.:,hporforming well in & nonorthogonal
mesh,

A KIVA.II mesh with an arched and
domed head and an arched piston face.
The overhead view illustretes the semi-
ellipsoidal shape of the dome.

Pressure histories from the UPS-292
stratified charge engine, test condition
Case 3. The baseline case was run with
the carlier version of KIVA, thc
corracted case was rup with KIVA-II.

Temperature and fuel vapor mass
fraction contour plots at the end of the
KIVA-ITrun of UPS engine Case 3.
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