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USE OF THE CHEBYSHEV-LEGENDRE QUADRATURE SET
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by
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ABSTRACT

The Chebyshev--Legendre (G-L) quadrature set has been
implemented in the neutron transport section of the
TWODANT code. The C-L quadrature set has two ad-
vantages as compared to other quadrature sets. First, it is
possible to easily generate Sy orders up to S;,, with weights
that are positive. TWODANT has been used to carry out,
calculations with as many as 10,000 discrete directions with
the C-L quadrature set. Second, a product C-L set or or-
der N will integrate exactly all the terms in the scattering
source arising from Py.; scattering. For example, the S,
set. will correctly integrate all scattering source terms if a
P, scattering approximation is wused. In TWODANT, users
normally use the current Sg quadrature set in the belief that,
P, scattering will be treated correctly. The Sz set consists of
some 40 directions and many times results in problem mod-
els that require excessive computer memory. The C-L S, set
integrates exactly all the source terms associated with a P;
expansion and consists of only 16 discrete directions. The
results of test calculations, using both the current set and
the C-L set in TWODANT, indicate that when high-order
scattering is not significant, the two sets give answers that,
are in good agreement.
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I. INTRODUCTION

Despite all the work that has been published on discrete ordinate quadrature
sets, the criteria used to judge if one set is "better” than another has never been
unambiguously established. In this paper, the requirement that. the quadrature be
capable of integrating the greatest number of spherical harmonics and products of
spherical harmonics will be shown to be critically important for the exact. treatment.
of forward peaked anisotropic scattering. This type of scattering occurs for fast.
neutrons and for gamma- ray photons. The Chebyshev-Legendre quadrature set.
examined in Refs. | and 2 will be shown to be efficient for the integration of the
spherical harmonics; and hence, the quadrature set of choice for highly anisotropic
scattering. Two simple sample problems exhibiting forward peaked scattering are
examined. The results obtained from these sample calculations point out clearly the
need for this type of quadrature set for this class of problem. A third test. problem,
a uranium cylinder. is studied and it is found that the new quadrature set is
superior for this simplc problem also, This quadrature set has been implemented
in the unclassified code TWODANT.?

II. BACKGROUND

The coordinate system used in this discussion is indicated in Fig. 1. This is the
system for a cylindrical problem. In x-y geometry, n is the y—direction cosine, j is
the x-direction cosine, and £ is the z-direction cosine.

If the scattering transfer probability is assumed to be reprcscntcd by a finite
Legendre polynomial expansion
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Fig. 1. Coordinates in (r,z) Geometry.

The expansion coeflicients z/;fl are given by

/dr,/dwn,’:z
e

Now, if the transport equation is multiplied by R’ and integrated over all angle,
the analytic-balance equation for the an moment is obtained. The orthogonality
of the spherical harmonic functions R reduces the scattering sum on the right---hand
side of the transport equation to

G
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Now, the an moment equation will be obtained using the discrete-ordinate-
transport equation in place of the analytic form. In order to generate the fef
moment-balance equation, the discrete-ordinate-transport equation is rnultiplied
by

’
w, e, (np,wp) ,



and summed over all discrete directions p. If the discrete representation is to
correctly model the analytic result, then the discrete directions must be chosen
such that all the products

R:flr‘.’i nm<N : k<n ; £<m ,

m

arc integrated correctly! If this is the case, then the orthogonality of the R functions
is preserved.

I11. CHEBYSHEV-LEGENDRE QUADRATURE SET

The integral operator for integration over all solid angle is given by

s

2T
/sin ) dd)/dw
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If cos ¢ = n and cos w = y, then the integral becomes
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1
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It is well known that the y integration can be accomplished accurately with the
equal weight Gauss-Chebyshev quadrature set. In fact, polynomials in y up to
y™, where m < 2n. — 1, are integrated exactly (here n. order of the Chebyshev
quadrature). In a similar fashion, the 7 integral is exact for polynomials up to n’
when the Gauss-Legendre quadrature set is used. ¢ < 2ny — 1 where ny, is the
order of the Legendre quadrature set.

In the y integral, the quadrature points are given by

(20 - 1) .
Y =COS Wy, Wi = —F—— , 1=1,--,m
2n.
The equal weights are
Vs
Wey = —
nC

The weights and quadrature points for the Legendre quadrature set are well known
and are tabulated.

Notice that the values of w are equally spaced between 0 and 27. If the weights
for the y integration are normalized by dividing by 27, and the weights in the 7
integration arc normalized by dividing by 2, then the normalized Chebyshev weights
w. and the normalized Legendre weights wy, are given by

Wei = e y WL a2} y o t=1ne 0 g= 1,000y,
ne 2
The point weights associated with the two-dimensional integration is then the prod-
uct of the j-th n level Legendre weight and the i-th Chebyshev weight. For a true
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product sct that is consistent, we take n, = ny = n,. ng will be chosen an even
integer. This is the square or product Chebyshev-Legendre quadrature set.
Will this quadrature set correctly integrate

1 s

27
/dn/dwh’.ﬁ(n,w) an (n,w) = - il bambre
-1

2n -+ 1
0

for all n, k, €, and m < N where N is the scattering order? The answer is yes!
Integrals of the form

b4
/cos kw cos buwdw k-+£<2N
0

can be written

o

1 9
/ayl + by~ +~--+cyk“dy

NI
Notice that the integrand is now a polynomial in y of maximum order k + 1. This
can be shown by noting that

~1

cos kw = a(cos w)* + blcos W) TF+ .+ c(cos W),

and since y = cos kw

cos kw = ay* + by*? + . . . + cyM

Here, M = 0 for k even and M = 1 for k odd.
Since the integral over w leads to a 8¢, the integral over n has the form

1

[ PEePEman . wem< N
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The highest power of n appearing in the integrand of the integral above is n™*™,
and the integrand is a polynomial in 7.

Now, if the quadrature nq is related to the scattering order by ny = N + 1, then
the integration is exact for polynomial integrands of order 2n, — 1 or 2N + 1. The
integrands involved are polynomials of maximum order 2N; hence, the integrals
are computed exactly! This means, for example, that an S4 Chebyshev-Legendre
(C-L) sguare or product quadrature will treat exactly P3 scattering.

IV. RESULTS AND CONCLUSIONS

The square geometry and the cross sections for each of the two sample problems
is shown in Fig. 2. The leakage problem has a small absorption cross section while
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the average flux problem is a pure scattering problem. A plot of the differential
scattering cross section for both problems is shown in Fig. 3. Notice that both
differential cross sections arc strongly forward peaked.

Figure 4 is a plot of the average flux in the system as a function of the number
of discrete-ordinate directions for the average flux cross--section set. Figure 5 is
a plot of total leakage as a function of the number of discrete-ordinate directions
for the leakage cross sections. In average flux problem, the current production set,
which is the default set in TWODANT, yields divergent results for both S4 and
S6 ordinates. Convergence finally occurs at S8 or forty directions. The square
C-1, quadrature set yields a reasonable value with only 16 directions (S4 square
set). The triangular C-L set is similar to the square C-l1, set but uses Chebyshev
integration of order 2 (2 points) on the n level with the largest value of n, Chebyshev
integration of order 4(4 points) on the n level with the next largest value of 7, and
so on. In two dimensions, an SN square set has N® points and an SN triangle set has
(N)(N + 2)/2 points. The triangular set can rigorously only yield correct results
for Pl scattering. It can be seen from the results; however, that the triangular
set, result approaches the square set result as the number of directions becomes
large. The current production set, which is also a triangular set, seems to exhibit
a constant offset with respect to the C-L sets even for a large number of directions
(up to S16). Similar observations apply for the leakage results shown in Fig. 5.

Scm
|
v
\SOURCE
LEAKAGE PROBLEM AVERAGE FLUX PROBLEM
=1 £,=0 X, =1 £,=95
Ew=zt1=212=£.3=1' £'2=9£’J=85

Fig. 2. Test Problem Geometry.
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Fig. 5. Leakage vs. Ordinate Directions.

In Fig. 6 and the excess reactivity, multiplication constant -1, is plotted versus
the number of discrete directions for a pure uranium cylinder. P3 scattering is
assumed. In Fig. 7, the transport correction to the self-scatter cross section has
been used to make the comparison easier. The transport correction has little or
no effect on the C-L set, but results in a smoother result for the TWODANT
production set. Again, the C-L set approaches the asymptotic result more quickly
as the angular mesh is refined as compared to the production set. A constant offset
is once again seen between the two sets.

The new square C-L quadrature set yields results in agreement with the default
quadrature set in TWODANT when anisotropic scattering is small. The C-I, set
is seen to be significantly better than the default set in problems where forward
peaked scattering is large. If there is any question that high-order P3 scattering is
important, the S4 square C-L set should be used instead of the S8 default set. The
4 sguare C-L set consists of 16 directions while the default S8 set consists of 40
directions. This difference will result in a large savings in storage and a decrease
by a factor of 2.5 in the neutronic run time.
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