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THE HYBRID MONTE CARLO ALGORITHM AND THE CEIRAL TRANSITION

Raan GUPTA

J Robert Oppenheimer Fellow, Theoretical Division, Los Aiamos Nat.onal Laboratory. Los Alamos NM 37543

I th:s talk [ describe teets of the Hybrid Monte Carla Algonthm for QCD done n collaboration w:.th Sreg
K.lcup and Stephen Sharpe We find that the acceptance in the global Metropolis step for Staggered fermuzrns
can be tuned and kept large without having to make the step-size prohibitively smali. We present resuits 15r
the firite temperature tranmtion on 4% and 4 x 63 lattices uung thuis algorithm.

INTRODUCTION

The Hybnd Monte Carlo algorithm tHMC) [1] is
an exact fermuon algorithm of the kind proposed by |2]
The basic evolution through phase spaca is cantrolled by
the Hybrid aigonithm (HA) [3] The HA s an efficient
blend of molecular dynamics (fast movemant through
piase space) (4] and the Langevin algorithm (ergodic-
ty) I5] (6] It has the major drawback that the eqra-
tions of motion have to be discretised. The ensuing
irute difference squations invoive a finite step-sise ¢ 1n
fictitious evolut:on uume. So to get the final answer one
has to take the limit ¢ — 0. This extrapolation can be
poteatially disastrous since the velocity through phase
tpace tends to 1ero in thig limit. The solution v to use
the Hybnq evoiution to propase iink changen of the en-
tire lattica and then do a global accept/reject (Monte
Carloj The potantial achilles heal in such glabal Monte
Ta.o’s 1 that the acceptance rates can tend to zaro,
and careful tasts are needed. The tests we have carried
out so far on QCD show promise. [n this talk [ describe
the method and present our data-

1) Hybrid Moante Carlo for QCD with Fermions

The partition fuaction for QCD in Euclidean space
cen be wntten n & dumuver of equivalent forma:

¥4 =/‘DWDV"DU ezp(Sqg + 4D+ miv) (la)
Z = / DU det(D + m) ¢e23(3g) (1)

z -/DUD\oDo'up('Sa - \a'.a-l—m-al (le)

S is the gauge action {which in the present study :s

the simple Wilson action). D is the fermion covarant

denvative. U’ the link variables and m the quark mass.
For staggered farmions
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This operator i not positive definite ('n the hout ™ —
0. M' = -M). s0o we work with the effective fermion
action

. 1
traet a1t ' .
S.” = o (M m O = O T_’ 7 ¥ 13}

where M & (D + m) s the Dirac operator and 5 are
the pesudo-fermions. However. since

/ Do Do* ¢« MM » . dutMdat M (4]

usins MM corrmponds to twice the number of flavors
For staggered fermions this doubung s removed by not-
:ng that

/DpDo' MM e et M (5

where v, 18 defined only on even sites Thaere stll re
mains the standard doubling problem so0 even with eqn
{3). the fermion contnbution correaponds to four Aa-
vore. We prefer staggered fermions because our first
goal u to investigate the chiral transition



The bottleneck in fermion simuiations is that di-

rect evaiuation of either des(D + m) or _—.:L:: 18 pro-
hibitiveiy siow In Ref |7] we describe our resuits for
the -:.;al transition using an exact method based on
form 1b (EDA) The largest lattice that can be han-
diad with this method on a Cray-XMP s 4* This s
because six coiumns of M ~! (the :nverss of the Dirac
operator) have to be calculated at each Lnk update to
get the change 1n det(D + m) The posaibility that Hy-
bnd Monte Cario algorithm is (aster arises because in it
we are required to calcuiate -_-3-;1:_‘—.-uun| on a vector
only once per sweep of the entire lattice. However. there
is a catch. What one reaily geis is an unbiased estima-
tor of the fermion contnbution. Thus, one may need a
much larger statistical sample to get accurate results.

Our goal s to compare the two exact algorithmas
and to subject the HMC algorithm to detaled tests
The present study s limited to the & version of the
Hybnd algrnithm proposed by Gottlieb ¢t al.[8] . Since
the details of the ®-algonthm are published, we just
wrnte jown the answer and discuse it.

2) The #-Hybrid Algorithm

To set up a moleular dynamics evoltution to sim-
ulate a systern iescribed by a Hamitonian H. one dis-
creuses Hamilton's equations of motion. For QCD. we
need to firmt identify the variables conjugate w U and
9.

The Hamitonian for the #-algorithm 1s

1 s .
He = ETrZP.’_ - ﬁrrZu-u,;
+~ ol (M'MY ' o, (o)

whare P, , are the momsenta conjugate w U, . and U,
18 the plaquette The v Yeds have no dynamics in this
algrithm and thus no conjugate moments. [a the mod-
ifed partition function

2 - /DpDUDP e (1)

the conjugate momenta ssre gaussiaa variables and can
be .ntegrated over. Thus currelation functions of U and
o are the same as with eqn. (1)

To preserve U as an elament of SU'(3). the evolution
of U must take the form

Ult+¢) « & PU() (8)

where P s a traceless antihermition matrix From th.s
it foilows that
Ul =P LI 191

where P. the momenta conjugate to I’ are represented
by

L)
Pio= 3 e 10
aml

Here ), are generators of SL(3) rormalized to Tri4,1,)
= 26,, and r}  are eigh: independent resi gaussian .an-
dom variables with varisnce ;. Thus gives the demired
distribution for P1e. e~ ¥T"°

The effective farmuion action s represented by gaus-
san nowe (6| Let

o = M- (11

where {r} aro again gausman variabies with vanance §.
ther. the w have the desired distribution

P(r) m ¢~ = P(p) = ¢ ®''M'MIT'e (g

As pointed out by Gottlleb ¢t ai.[8]. for a viable
molecular «-rnamics update it sifBces to write the evo-
luticn equatious for U and P kesping v fixed These
equations should preserve H¢ and the d:fferentiai voi-
une edamant In configuration phase space. Thin s sat-
wfled by the equation of motion for I/ given in eqa (9)
The equation for P is detarmined by 'he requrement
that H¢ be a constant of motion The answer is as
follows. For links starting at «ven sites.

WP, o= (- ‘;U._v.,

TN AN O N /R A
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whila for links rtarting at odd mies

IP._ - [— ';U._V._

« W (Y Tl
- Z T|-.|--U.'_,)Ir4 114}
where X & (M'M)'v,, T,, ® X, X7 ani T4

steads (or the L7ucelems rniisymmesric part Also the
clagncrod fenaion hases are impiicit 1o the [



Given eqns. (9,13,14), the discretized leap-frog up-
date scheme we use is as follows (it differs from that
given in (8] in the order in which P and U are updated):

[1] At time ¢ = O, refresh the momentum P and gener-
ate the o fields. The U are assumed to have some
initial value.

(2] Update U(t) to U(t + %) using

Ut + %) = POy

We spproximate the exponential by a fourth oxrder
polynomial and reunitarise the resulting matrix.

[3] Calculate P st t+ § using eqns. (13) and (14). This
is the most time consuming part of the calculation
because it requires calculating (M'M)~'p,. We
do this using the conjugate gradient algorithm.

(4] Calculate P(t+¢) = P(¢) + Pe

(5] Update U to t+ 3§ using P(t +¢). This is the same
as step 2. Thersafter steps 2 to 5 are repeated
n = nmd times, At the end one has P(¢ + ne) and
U(t + (n - §)¢). To cownplete the leap frog step,
calcrlate

Ult+nt) = SHPEROT(E 4 (= 2)e)

One now has U(t + ne), P(t + ne) and the pseudo-
fields © which were held constant throughout the eve-
lution. At this time the P and o are refreshed and the
evolution repeated. To muke messurements, all expec-
tation values are calculated as time averages after the
system has equilibrated.

Starting with an equilibrium coafigurstion, the
molec ular dynamics evolution ;reserves the equilibrium.
The refreshirg of P makes the algoniti= ergodic and
aleo pushes an arbitrary starting configuration towardo
equilibrium.

To summarise, the errory in the ®-Hybrid algo-
rithm arise in the discrete approximations to eqna.
(8,13,14) and from the incomplete convergence in the
coningate gradient iterstions. They can all be vystem-

atically reduced; the f{inite step sise error Ly going to
higher order difference equations end the exponentia-
tion error by including more terms in the axpansioa. [n
our tests, we limited ourselves t0 the lowest order leap-
{frog integration and approximnate the exponential by a
fourth order expansioi. This algorithm has the desired

property of being reversible i.e. atarting with U’ - P’
and evolving back gives U, — P. This, as is shown later,
is essential in the Monte Carlo algorithm.

3) Global Metropolis Step

In the Metropolis method (9] one proposes small
changes in the configurations, and accepts these changes
with a probability

Vs [ e— H(U")
prob = min (1 P(U’ =~ U)e ) (15)

"PU = U')e-H(O)

Here U’ is the tris! configurstion, H(U’') ite action,
P(U — U') is the probability of proposing the ch» ‘ge
given that one is at U, aad P(U' — U) is the re-
verse probability. If these two probaoilities are equal, as
ther are in most algorithms for pure gauge SU(3), then
changes which lower the action are always accepted,
while those which increase it arve accepted only condi-
tionally.

For the #-Hybrid algorithm described above the
“Action/Hamiltonian" is He(U,P) given in eqn. (6).
Thus the Hybrid Monte Carlo algorithm consists of
the following steps: Given a configuration U, refresh
the momeutum P and generate the peeudo-fields .
Then evolve to U’, P! using the Hybrid algorithm. Ac-
cept/reject the complete changs with probability
PR L L kil (18)

at the end of a leap-frog sequerce.

There are two key points that allow the use of the
Monte Carlo step. 1) for the leap frog algorithm de-
scribed avave

P(U'P—‘U'P') = P(U'v"P' "‘Uv"P) (l7)

because the evoluticn is reversible and it is area presarv-
ing. We have ignored errors arising from apprrximating
the exponential by & poiynomial since these can be made
arbitrarily emall by going to higher ordars. 1) Since una
needs to calculate § Hy for the giobal accept/reject, the
fermion dynamics should te representsble by an effec-
tive fermion action, like w'(M'M) ' here. For atag-
gered (arrnions this last point. s satisfied only for a mul-
tipie of four lavors. Thua we do not haveany =2 or 3
exact algorithm based on a global Metrnpolis step ye'



4) Tuning the & Hybnd Mon.e Carlo Algorithm

In the Monte Carlo step. 6Hg consistc of three
pieces The first two ~ AP? and ASg - are calculated
to machine precision. The change 1n the fermion sction
8 g1ven by an unbiased estimator with a single pseudo-
field. However. since the same .~ fieid 18 used to calculate
both the oid and the new 5,;,. we expect the fluctua-
tions to ba correlated and reduce the vanancen A S5,yy.
[a fact we bel.eve that one gets rcasonabie acceptance
rates ony for changes (vaius of ¢) which preserve the
correlations. We are currently making tests to check
thus. Second. in the calculation of S,7y. biased error
creeps 0 because the conjugate gradient algonthm s
run to hmited precumon. Again we would iike to quan-
ti{y whether the bias canceis n AS5,;.

The final distnbution of conflguratinns is deter-
muned by the two parametars 3 and m, used in calculat-
ing § H¢ Ths Monte Cario step 1s totally independent
of the parameters 3, and (m,)s used in the Hybnd
evslytion Ths freedom leads to a posmbility for optr
musation in the paramatars 8y and (mg)s [1]. The final
goal 15 [ast decorrenation with the correct equilibrium
dustnbution. Thus errors due to 1) finite step se. and
2) incomplete convergence of conjugate gradient can be

regarded as simply shufting the cptumal valuas of Jx and
(mq)a. Showing that th.s is true is a major goal of thus
study. In the zext sections we show our results for op-
t:muzation 1a the pure gauge theory and n; = ¢ QCD

4-1) Pure Gauge

A naive critarion for optimisation s the acceptance
rate. Wy find that in the ®-Hybrid algorivhm, the ¢ w-
ror tends to order the system i ¢. < plag >4p4na = <
PIag > amutremoise YW would like to stress that. zontrary
to popular belief. small atep sise error does not always
lead o disordering. The direction of error depends oa
the sigonthm and ths model baing mudied and con-
caivably alao on the coupilngs. In our runs so far we
find that the peak in the a~ceptance occurs for 8, < 8
ss shown i1n Fige. | and 3. We uged lattices of nine
4' and 6* at 5§ = 56 and data was accumulated over
2500 Metropolis steps ctaniing from the same thermal-
1sed lattics. The noteworthy features in the data are
1] The acceptance psek moves towards 5, = § when
the number of steps (nmd) :n the leap frog algo-
rith are 1nceased for fixed ¢
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[2] The neight of the acceptance peak decreases siowly

with nmd. )

The shape of the acceptance curve depends on

nmd [t becomes more sharpiy peaked as nmd s

increased.

|4/ The height of the acceptance curve falls rapudly
with ¢

13

This test suggests that a giobal Metropolis sigo-
rithm 18 practical for QCD We are now esting opti-
m.zstion with respect to decorrelations by using a 9¢
lattuice ard measunng the correlation coefficients for
block ioops. The acceptance at 3 = 3, = 6.0 with
e=004 and nmd = 5 s w 38%.

4.7) QCD with Fermions

Wae have getred our tests and optimuszation of the
exact ® algorithm towards reproducing the ny = 4 re-
sults for vhe chiral transmtion |7]. This was done for
two reasons; i) we have a large body of data to com-
pare against and 2) i1t would be a very stringent test
to reproduce muetzstable phases. The resuits presented
are part of an ongong study of the flnite temperature
tranmtion. So conclumons are preliminary.

The dats for how to optimuse 3, and (my)s wes
collected by dividing the run at a given 3 and m into
sections of ai least 500 time steps (s time step 18 )
<weeps). The resuits ar» similar 1o the pure gauge case.
Acceptance peak occurs when both 8, and (mg)s are
chosen to disorder the sywtem 1.6. Iy < 3 and (my)a >
m Since 1t is & two parameter optigusation. we cannot
show a figure but a rough estimate of the location of the
peak s 8y = §-0.02 and (my)s = m+0.008 for 5 in the
range 5.2 to 3 8 and m in the range 0.2 10 0.5 on a 4 x 68
lactice. The acceptance varied betwean ~ 85% and 87%
11 our ‘esta. A notable feature of the acceptance rate 18
that it showed an intaresting phase dependent behavior
atra = 01 We discuse this later.

8) Resulta for the ¥ aite Temperature Transition

The resulta for the finite temperature transition are
of two Kinds; |) to make comparisons between the two
cxact algonthme we repeated the calculations done with
EDA at m = 005, 01 and 0.2 on a 4 lattice using
AMC. 2} To study the finite volume dependence, we
looked for the chiral truns:ition at m = 01 and 02 on
4 x 6’ lattices using BMC
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Fig.3 Time history of a} 1 x 1| Wilson loop and b}
¥x) on a 4 lattice at J =2 Iy, = 504 and
m = my » 01. This data s using the &-
Hybnc upnuun.
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5.1) m=0.1

In Figs. 3 and 4 we show tho time history data at
m = 0.1 for the two a'gorithms on 4* lattices. We find
that the $ HMC algorithm reproduces the discontinuity
in the chiral order parameter (Yx)and Wilson loops.
There is a difference is the numbaer of sweeps the system
sperids in a given phase. This, however, is not a phvaical
parameter.

The behavior of the chiral transition on 4 x 6? lat-
tices is shown in Fig. 5. The run paramstars were
m =my = 01and § = 5.13 = 8, + 0.92. The data
again sapports the presence of a first order transition.
Flip-Bops are present and a histogram shrws a clear 2-
peak structure. The diacontinuity in Wilson loops, (L),
(Xx) and in the convergence after a fixed number of con-
jugate gradient steps is correlated. Note that increcsing
the spatial volume to 6* gives 5, » 5.13.

The difference from the 4* data is that the discon-
tinuity in (¥x) is somewhat smaller. The main change
is to increass the value in the symmaetric phass from
2 .5 to w .6, We have not yet determined whether this
is a finite volumae effect or whether the couplings need
tui.'ng becyuse they are not set at point of maximum
discontinuity. Howevaer, if true, then we expect much
smaller discontinulty at higher masses based on extrap-
olations of data as shown in fig. 6. This feature is very
relevant to our m m 0.2 data discussed below.

The acceptance rate shows interesticg bahavier in
the two phases in our 4 x 6% run. It is 5356% (33%) in
the hot (cold) phass. This can be due to two ressons:
1) the « dependent shifts in the couplings (in the hybrid
prenrocessor) are different in the two plases and 2) we
are not axactly at the transition eo the free energy in
the two phases is not equal. We are maxing further runs
to clarify this featurc.

5.2) m =02

The data on the 4 lattices for ihe two algorithms is
similar as shown in Figs. 7 and 8. The data on the ¢ x6?
(fig. 9) lattice is substantially diferent. Even though
there are indications of Aip-flops, the discontinuity is
too small to ellow an unequivoca) statament.

These regults suggmet that if the Bip flops are real
(iv atill is & fret order transition) then our previous -
timata of m .gg (the value of m up to which the chirnl
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Fig.5 Time history of ) 1 x 1 Wilson loop b) Wilson
line and ¢) (Yx) on a ¢ x6? [attice at § = 5.13,
dy = 5.1l andm = m, = 0.1.

nature of the transition dominates) from 4* lactices is
changed significantly or incressing the spatial volume
at heavier quark masses. This interpretation of a large
finite voluma effect is supported by the dataat m = 0.1.

From thest testa we also lcarned a resson why
(Xx) may not have been & good probe of the order of
the transition when using approximate algonthms. In
particular, in simulations using moleculsr dynamics or
Langevin algorithms, s noisy estimate of (Yx) is made
using pssudofermions. This ahould be compared to the
exact algorithm, where during each sweep (Yy) is celeu-
lated O times on each rite. [n tewts on our 4* lattices we
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Fig.8 Plot of .Yx) versus my at the transition from
4 lactices using EDA. We also show data
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find that the nowy estimator gives a distribution cen-
tered about the exact (¥x). but with a variance which
ncreases with decreasing mg. For mea = 01 the stan-
dard deviation 18 & 0.28, which is comparable to the
discontinwty. Thus for this and larger masses, large
statistics would be required to resclve a firut order tran-
sition using the nowsy estimacor. The cure s that one
needs to make & more accurate measurement of obeerv-
ables ike (Yx) by umng man: v flalds. An example of
this » shown 1n Fig. 10 where we show a) (¥x) evulu-
ated mith a single v fleld; b) the same data ss 10 (a) but
avaraged over bins of 8 measurements and ¢) (YY) eval-
uated using 25 v flalds. The noise in a) and b) makem
it hard to distinguish flip-flops from fuctuations.

To summarise, we feal that the systematics of the
HMC algorthm are sull not fully understood. There-
fore, we are at present making more detailed tests to
understand the algonthm and to determine whether the
metastability at m, = 0 2 survives in the :nfinite volume
Lmat.
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8) Status of the Finite Temperiture Transition

There is a consangus that for Ny = 4 and 4 lavoen
of staggjered fermioas, there is a strong frst order chi-
ral transition at small masses, i.e. m = 0.025. Gn 4
lattices this transition has been shown to survives up to
m = 0.2 and there is preliminary ¢vidence that it exists
for all masmes {7). In this talk 1 have shown evidence for
a first order transition at m = 0.1 on a 4 » 6 lattice.
Thesignal et m = 0.2 iy not clear.

Data on 4 x 83 [attices is debared, Fukugita et
al. 10| , show evidence for metastability at m = 0.1
while Gottlieb et al.[11] and Kars:h et al[12] see a
clear signal only at m = 0.025.

Lastly, on a 6 x 10° lattice, Kuvacy et al[13] find a
first order tzansition at m = 1.025 bat not at m = 0.05.

The status of the chiral transition using approxi-
mate algorithms for ny = 2 is one of conflicting ev-
idenca. For ny = 2, Gottlinb et all1] see no clear
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Fig.10 Tiroe history of (Tx, evaluated with a) a sin-
gle scalar Leld o b) same data as in (a} but
in bins of 5 and ¢) with 25 scalar field 0. The
comparison highiights the sizse of luctuations
in the unbiased astimator.



evidence of a transition for mea = 0.0125 - 0.2. In
contrast, Kogut aud Sinclair [14] find a first order
transition for m,a = 0.0125, but no transition for
mqa = 0.025. However, Gavai et al.[15| do find a tran-
sition for mga = 0.025, while Fukugita et al.[16] see
one for mya =: 0.1. We should also me ition that Gavai
et al.[17] find that the transition is fi st order along an
interpolaticn beiween ny = 2 and ny = 3 where two
quarks are held at mya = 0.02S, while the mass of the
third is varied between 0.025 and co.

Calculations for n;, = 4 with an exact algorithm
have oaly been done on a 4* lzttice at m = 9.02. We
again find a strong first order transition 7).

To end on an optimistic note, [ believe that we
should have much .ieaner data by the next meeting.
The nature of the finite temperature transition for two
lizht and one strange flavor will be resolved in the near
future.
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