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BOLTZMANN-FOKKER-PLANCK CALCULATIONS USING STANDARD
DISCRETE-ORDINATES CODES

by

J. E. Morel
Radiation Transport Group, X-6
Applied Theoretical Physics Division
Los Alamos National Laboratory

ABSTRACT

The Boltzmann-Fokker-Planck (BFP) equation can be
used to describe both neutral and charged-particle trans-
port. Over the past several years, the author and several col-
laborators have developed methods for representing Fokker-
Planck operators with standard multigroup-Legendre cross-
section data. When these data are input to a standard
S, code such as ONETRAN, the code actually solves the
Boltzmann-Fokker-Planck equation rather than the Boltz-
mann equation. This is achieved without any modification
to the S, codes. Because BFP calculations can be more de-
manding from a numerical viewpoint than standard neutron-
ics calculations, we have found it useful to implement new
guadrature niethods and convergence acceleration meth-
ods in the standard discrete-ordinates code, ONETRAN.
We discuss our BFP cross-section representation techniques,
our improved quadrature and acceleration techniques, and
present results from BFP coupled electron-photon transport
calculations performed with ONETRAN.




I. INTRODUCTION

Fokker-Planck operators are asymptotic approximations to the Boltzmann scat-
tering operator that apply in the forward-penked eclastic scattering limit.! Highly
forward-peaked scattering kernels are often quite difficuit to numerically approxi-
mate, whereas Fokker-Planck operators. which are differential operators, can often
be approximated using straightforward differencing techniques. Hence charged-
particle transport, which is dominated by highly forward-peaked eclastic coulomb
scattering, is often described with a transport equation that has Boltzmann opera-
tors describing the “large-angle” scattering and Fokker-Planck operators describing
the "small-angle” scattering. Such an equation is known as a Boltzmann-Fokker-
Planck (BFP) equation. Much atiention has been given to BFP equations over the
last several years.!?? These equations have beea used for both charged-particle and
ncutral-particle transport calculations. Several years ago, we demonstrated that the
Fokker-Planck equation for charged-particis transporting in fully-ionized plasnias
can be solved in 1-D slab and spherical geometries using standard discrete-ordinates
codes.! No code modifications are necessary. The Fokket Planck operators are rep-
resented in terms of multigroup-Lezendre cross-section coefficients. Thus, one need
simply input appropriate cross-section data to perform a Fokker-Planck calculation.
Over the last several years, we have been investigating the generalization of existing
discrete-ordinates codes to allow both Fokker-Planck and Boltzmann-Fokker-Planck
calculations in all grometries. In addition, we have songht to improve our multi-
group cross-section representations for the Fokker-Planck operators. The purpose
of this paper is to briefly review our Fokker-Planck operator representations and
the new Sy methods that we have developed, and to demonstrate the effectiveness
of our approach when applied to coupled electron-photon trans; ort calculations.

II. MULTIGROUP REPRESENTATIONS FOR FOKKER-PLANCK
OPERATORS

In this section we derive simple representations for two Fohher-Planck < perators.
Our primary purpose is to convey the basic approach used in deriving such repre-
sentations. A Fokker-Planck equation that can be used to deseribe the transport
of charged-particles in plasmas is given by:!

0/ ('a 2 0 0 ;
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where 2 is the space coordinate, p iy the direetion cosine of the transport parti
cle relutive to the z-axis, 4 iy the angular Hux, a is the momentum transfer, S is
the stopping power, and Q is the sonrce function. We refer to the Fokker Planck
angular and energy operntors in Eq. (1) as the angular diffusion (AD) opericoor
and the continmous slowing down (CSD) operator, respectively. The AD operntor
approxinmtes the Boltzimann seattering operator in the limit n: the seaitering eoose
section goes to infinity, aud the average cosine of the senttering angle goes to unity
i steh noway that the avernge change in the particle divrection per unit pathlength
is conntant and s given by the momentum tennsfer (sterndizns/pathlength). The



momentum transfer is commonly referred to as the transport-corrected cross section
in the neutron transport literature. The AD operator causes a particle to contin-
uonsly diffuse in direction space rather than discretely scatter. The CSD operator
approximates the Boltzmann scattering operator .n the limit as the scattering cross
section goes to infinity and the average energy less per unit pathlength goes to zero
in such a way that the average energy loss per unit pathlength remains constant and
is given by the stopping power (energy/pathlength). The CSD operator causes a
particle to continuously lose energy rather than lose it in discrete-scattering events,
The multigroup Boltzmann equation solved by standard diserete-ordinates codes
is:?
9 G L
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where m is the direction index, g is the group index, N is the total number of direc-
tions, G is the total number of groups, L is the degree of the Legendre cross-section
expansion, ¢4 is the total cross section for group g, or_q.¢ is the {'th Legendre
mornent of the cross section for scattering from group k to group g, ®r¢ is the
('th Legendre moment of the angular flux for group k, and P(x) is the Legendre
polynomial of degree ¢, To solve Eq. (1) using Eq. (2), we must appropniately de-
fine the cross-section coefficients. We first consider the AD operator. Note that
this operator changes the particle direction, but not the particle energy. Thus,
the cross-section coefficients corresponding to this operator must be within-group
scat tering coefficients. The key to approximating the AD operator with the Boltz-
mann scattering operator is found because hoth of these operators have the same
cigenfunctions, namnely, the Legendre polynomials:

(¢ (7 b 0 (2 .
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Legendre expnnsion cocthicients for the AD operator are obtained by equating
the cigenvalues in Eqs, (3) and (4):

m,—rr,:%f(f—{-l) =01 . (%)

The difference between the zero'th and Cth moments is defined by Fq. (5); hut
to obtain a specific definition for ench moment, we must define oy, The value of o
cant be nrbitrarily chosen; but to ensure stability in the source iteration process, it
is requuired that

gl < vy . € 0L . (G)

A simple detinition that satisties Eq. (6) enn be obtained by requiring that o he
setes Specifieally, this requirement gives:

y %l.(I,Ol) . (7



From Eqs. (5) and (7) we obtain the desired definition for each moment:
ce=gLL+D)~€(t+1)] . 6=0L . (8)

It can be shown that if one uses the moments detined by Eq. (8) and a Leg-
endre expansion of degree N-1 in conjunction with Gauss quadrature of order N
in 1-D slab geometry calculations, the resulting Sy solutions will be equivalent to
P v_1 solutions (spherical-harmonic solutions of degree N-1) to the Fokker-Planck
equation.!

Next, we consider the CSD operator. The first step in obtaining coefficients for
this operator is to differcnce this oprrator using a first-order ferward difference.
Neglecting the angular discretization and the AD operator in Eq. (1) and assuming
a uniform group structure for simplicity, we obtain:

[S(Eg—l)ll’(Eg-l)—S(Eg)ll’(Ey)] (9)
AE '
where g is the energy group index, g=1 corresponds to the highest energy group, E,
denotes the midpoint energy for group g, and AE denotes the group width. Next
we relate the multigioup and discrete fluxes as follows:
Uy =V (E))AE . (10)
Using Eq. (10), we transform Eq. (9) from the differential to the multigroup basis:

a Sg-1¥g-1 — Sg¥
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Finally, we re-write Eq. (11) in the following way:
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Equation (12) is analogous in form to Eq. (2). Thus, the cocffizicnts for the CSD
operator can be obtained by direct comparison of Eqs. (2) and (12). Recalling tha.
the Legendre moments of the delta-function are all unity, we obtain:

S
Trg = AE (13a)
S,-
”k—'"’=:§_El . t=0,L , fork=g-1 (13h)

=0 ., otkeruwiae
where a, 5 denotes the effective removal cross section for group g, This approxi
mation is completely equivalent to the forward-difference npproximation ns long ns
the truneated Legendre expansion for the delte-function is “exact.” That is to sny
that the scattering kernel constructed from the traneated delta-function expansion
must act ns the identity;
!,
}:('-’f F O li(pn) = kg (14)
=0
It ean be shown that if Legendre expausions of degree N1 are used in conjune
tion witl an N point Gauss quadeature i either 1T 1) slnb or spherical geometries,
Fo. i 15 will he satisfied.

1



III. LIMITATIONS OF MULTIGROUP FOKKER-PLANCK
REPRESENTATIONS

The derivations of the preceeding scction demonstraie the basic approach that
1s taken to derive muitigroup approximations to Fokker-Planck operators. These
approaches are useful, but limited. For instance, the CSD operator representation
requires that Gauss quadrature be used. Since Gauss quadrature only exists for
1-D slab and spherical geomnetries, this representaticn can only be used in these
geometries. Although it is not obvious, the AD operator renresentation cannot be
expected to be accurate under all circumstances unless Gauss quadrature is used.
Thus, further extensions of this approach clearly require an improved quadrature
treatment. We have developed such a treatment and it is called the Galerkin
quadrature method.>® We shall not describe this metihod in detail here. Instead,
we simply note that it offers many advantages relative to the standard quadrature
method. Most importantly, it can be applied in both one-dimensional and multi-
dimensional problems, and all “Galerkin quadratures™ give an exact treatment for
straight-ahead delta-function scattering when they are used in coniunction with
Legendre expansions of appropriate degree. Thus, the Galerkin quadrature method
allows us to use our multigroup BFP approach in all geometries. Finally, we note
that it can be important to use Galerkin quadrature whenev-r highly forward-
peaked scattering is preseut in a problem because it has been found that stan-
dard quadrature techniques can lead to unstable scattering matrices under such
conditions.’

We have lerived a first-order approximation to the CSD operator, but higher-
order approximations can be used. In particular, the second-order diamond-
difference scheme can be applied to the CSD operator and represented in multi-
group form.” When this is done, certain of the cfective group-to-group transfer
cocfficients are negative, These coefficients appenr in such a way that they do not
interfere with the convergence of the standard source iteration method, but they
can cause problems with the negative lux fixup schemes that are implemented in
many discrete-ordinates codes. Thus it is best to perform Fokker-Planck caleula
tions with higher-order spatial difference schemes such as the linear-discontinuous
scheme employed in the ONETRAN?® code, that can be used withont negative flux
fixup. The linear-disconc.. ious diflerencing scheme can also be applied to the CSD
operator aud represented in multigroup formn. However, this approximation not
only leads to negative coefficients but to upseatter as well.? Unfortunately, the
infinite-medium spectral rudius of the outer iteration operator is unity with this
type of upseatter, and the convergence rate in most practical problems is waneeept-
ably slow. A synthetie aceelerntion scheme has been developed which roduces the
speeteal radius to 0.1.7 but this aeceleration scheme applies only to the upsentter
resulting from the LD-CSD operator. Since it cannot be applied to general types
of upseatter, it is not suitable for a general purpose S, code Thus, the best rp
proximation to the C'SD operator that one can obtain with standard Sy codes s
the dinmond difference approximation.  If one is willing to explicitly inelude the
C('SD operntor in an S, code nnd modify the basie algorithm, the LD CSD opreator



can be cfficiently solved by treating it like an extra spatial derivative and explicitly
sweeping the space-angle-energy mesh.!?

If the stopping power in Eq. (1) is small and the system is optically thick, the
spectral radius of the inner iteration process approaches unity. Thus. accelera-
tion is required under these circumstances. In the limit as the scattering be-
comes increasingly forward-peaked, standard diffusion-synthetic acceleration be-
comes ineffective.!! Improved performance can be obtained by usirg the P, equa-
tions as the low-order equations in the synthetic scheme rather than the diffusion
equation. This approach represents a straightforward modification of the stan-
dard DSA scheme and is referred to as two-moment DSA. This nomenclature arises
from the fact that only the zero'th moment of the scattering source is acceler-
ated in standard DSA, but both the zero'th and first moments are accelerated in
the two-moment scheme. Like standard one-moment DSA, two-momeat DSA be-
comes ineffective in limit as the scattering becomes increasingly forward-peaked.
but two-moment DSA is always significantly more effective than one-moment DSA
in the forward-peaked limit.!! Thus, while two-moment DSA does represent a sig-
nificant improvement relative to standard DSA, it does not represent a complete
solution to the problem of accelerating the S, equations with highly anisotropic
scattering. Testing of the two-moment DSA scheme has shown that negative flux
fixup schemes are much more likely to destabilize the DSA algorithm if the scatter-
ing is very forward-peakeu rather than isotropic.!! This difficulty can be avoided
by using higher-order difference schemes that do not require negative flux fixup.
However, DSA with higher-order spatial difference schemes presents a problem in
itself because the derivation of the spetially-differenced diffusion equation from the
spatially-differenced S, equations (required to ensure unconditional stability of the
DSA method) can be quite difficult even in 1-D slab gcometry.!? To avoid this
difficulty, an S,-synthetic acceleration method for the 1-D S, equations has been
developed.!31 The central idea of this method is straightforward. Rather than
use the Py equations directly as the low-order equations in the synthetic scheme.
use a sinularity transformation to put the Py equations in an S, form and differ-
ence the resulting S, equations the same way that the S, equations are differenced.
Consistency between the spatial differencing of the S, equations and the low-order
equations is thus trivially achieved. Although it is considerably more expensive to
directly solve the S, equations than the diffusion equation, the 1 D S, equations
nre relatively inexpensive to directly solve. For instance, the diffusion equation
derived from the S, equations with linear-disrontinuous spatinl differencing gives
n three-dingonnl matrix equation with one -inknown per spatial cell edge, wherens
the Sy equations with linear-discontinvous spatial differencing give a seven-diagonal
matrix equation with four unknowns per spatial cell.

The wmoment representation for the AD operetor ean yield negncdive angular Hux
solutions under certain circumstrnees, These negative angular fluxes are nsually
sutficiently small that they do not affect the accuracy of the scalar ux solation,
But if accurnte angular luxes in all directions are reqguired, these negative angular
Huxes can present a problenm. One-dimensional slah and sphierical geometry finite
difference sel mes for the AD operator have been developed which e exact in the
ditfusion limnt and give unconditionally positive angular Hux solutvms ' However,



finit~-difference AD operators cannot be representad with a diagonal matrix in the
Legendre basis, thus they cannot be represented in terms of effective cross-section
moments. These, then, can only be implemented in S, codes through modification
of the codes. Furthermore, the development of AD differencing schemes for standard
multidimensional triangular quadrature sets is not straightforward. Conversely. the
moment representation for the AD operaior is very versatile in that it can be applied
(in conjunction with Galerkin quadrature) in multiple dimensions.

IV. MODIFICATIONS TO ONETRAN

We huve implemented the Galerkin quadrature method and the S;-synthetic ac-
celeration method ia the discrete ordinates code, ONETRAMN ® We stress that al-
though these methor's were developed for BFP calculations, they represent «-neral
Sn mnethods that can be applied to standard neutroni: and photonic calculations as
well. We have also implemented a new angular differencing scheme for the streaming
operator in ONETRAN that eliminates the classic “dux-dip” problem.'® However,
this improvement is of much greater significance for neutronics calculations than
for charged-particle calculations.

V. COMPUTATIONAL EXAMPLES

In this section we present coupled electron-photon transport calculations per-
formed with the new version of ONETRAN. The multigroup BFP cata used in
the calculations was generated with the CEPXS code.!” This code was developed
in collaboration with Dr. Leonard J. Lorence, Jr. of Sandia National Laborato-
ries. All calculations presented in this section were performed by Dr. Lorence in
support of experimental projects. Thus, realistic rather than ideal calculations are
presented.

The frst problem considered consists of “fission-spectrum” electrons isotropically-
incident from the left upon a 2-em-thick aluminum slab. The “fission spectrum”
is that characteristic of beta particles emitted by fission products and contains
clectrons with energies from about 8 MeV to 50 keV. The ONETRAN calculation
for this problem was carried out with 50 spatial celly, Sy Gauss quadrature, P7
cross-section expansions, 50 electror groups linearly spaced from 8 MeV to 10 keV,
and 39 similarly spaced photon groups. For companson. a Monte Carlo caleula
tion was performed with the ITS-TIGER code.'® A sufficient number of Monte
C'arlo histories was run to obtain a one-sigma relative devintion of no more than
20 pereent in the energy deposited in each spatinl cell. The energy deposition pro-
files cadeulnted with the diserete ordinates and Monte Carlo codes are compared in
Fig. 1. The agreement is excellent. However, the ONETRAN caleulition required
appeoximately 37 minutes of CPU time on a VAX 11/780 compnter whereas the
TIGER enlenlation requived approximately 1230 minutes of CPU time on the same
computer. Thns, ONETRAN/CEPXS gives the sune acenracy as the Monte Carlo
code, but 1s approximately 35 tines fuster for this problem.
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Fig. 1. Energy Deposition Profile for Fission Electrons Isotropically Incident
Upon a Slab of Aluminum.

The second problem consists of the same spectrum of electrons isotropically in-
cident from the left upon a 1-D slab model of a shielded integrated circuit chip.
This model is referred to as the RADPAK model.!® The RADPAILL geometry is
shown in Fig. 2. The energy deposited in the silicon region per electron entering
the slab was calculated with both ONETRAN and ITS-TIGER. The ONETRAN
caley 'ation ga 2 3.92 x 10~3 MeV and ITS-TIGER gave 5.7 0.3 x 10~ MeV. Note
that the calculations agree to within the one-sigma Jeviation quoted for the Monte
Carlo calculation. The ONETRAN calculation required approximately 62 minutes
of CPU time on a VAX 11/780 computer and the TIGER calculation required ap-
proximately 1835 minutes. Thus, ONETRAN/CEPXS gives the saine accuracy as
TIGER for this problem, but is about 30 times faster.
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Fig. 2. RADPAK 1-D Geometry.,
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The third problem is identical the the second except that we performed an adjoint
calculation with ONETRAN to calculate the energy deposition in the silicon as a
function of energy for both electrons and photons isotropically incident from the
left. The group-dependent response values are plott.d in Fig. 3. Each histogram
corresponds to a group. Let Rj and R} denote the - iectron and photon respounses
associated with electron group g and photon group k. respectively. The energy
deposited in the silicon per electron in group g entering the slab is given by 1R{.
Sirnilarly, the energy deposited in the silicon per photon in group k entering tiwe
slab is given by 4R%. Thus, the response curves obtained with a single ONETRAN
adjoint calculation allow one to obtain the energy deposited in the silicon for an
arbitrary electron or photon source spectrum. This adjoint calculation required
about 90 minutes of CPU on a VAX 11,780 computer. Standard coupled electron-
photon Monte Carlo codes such as ITS-TIGER do not offer an adjoint capability.

10°
10°F e TR ——
10

10

RESPONSE (MeV)
S

10 ———  ELECTRONS

10_. ................... PHOTONS

10°°

10" P EEPUE SRS B S SR R SR
0 1 2 3 4 5 6 7 8

ENERGY (MeV)

Fig. <. Adjoint Solutions for Electrons and Photons [sotropically Incident
Upon the RADPAK Configuration from the Left. The dose to the
silicon chip in the RADPAK configuration can be calculated for any
source spectrum of electrons and/or photons with these curves,

The fourth problem consists of a plane wave of 100-keV photons incident from
the left upon a slab of graphite. We have calenlated the photoeriission efficiency
{electrons emitted per photon entering the slab) at the right face of the slab with
both ONETRAN awl ITS-TIGER as a function of slab thickness. The efficiencies
are plotted in Fig. 4. The agreement between the calculations is excellent. The CPU
times required by each code as a function of slab thickness are plotted in Fig. 5.

The ealeulations were performed on a CRAY XMP. Note that the ONETRAN CPU
‘)



times are constant at about 60 seconds whereas the ITS-TIGER CPU times steadily
increase from about 100 seconds to about 10000 seconds. Thus. ONETRAN gives
the same accuracy as ITS-TIGER but is over 100 times faster. A constant CPU
time was achieved with ONETRAN by using the same total niumber of spatial cells
in cach calculation and varying the spacing such that the right edge of the slab was
always well resolved. The ITS-TIGER calculations were carried out with a special
version of TIGER called IFS-TIGER, which was developed specifically for this type
of problem.
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Fig. 4. Transmitted Electron Photoemission
Yield as a Function of Slab Thick-
ness for 100 keV Electrons Normally
Incident Upon a Slab of Graphite.
The slab thickness is given in pho-
ton mean-free-paths.
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Fig. 5. CPU Times for Monte Carlo and S,
Methods for Photoemission Calcu-

lations as a Function of Graphite
Slab Thickness.

The fifth problem consists of a plane-wave of Co-60 gamma-rays incident upon
a two-layer slab of lithium-fluoride and lead. We have calculated the energy depo-
sition profile for this problem using both ONETRAN and ITS-TIGER. The corre-
sponding curves are plotted in Fig. 6. The ugreemem between the calenlations is
quite good. The ONETRAN calculation required about 2 minutes of CPU time on
a CRAY-XMP and ITS-TIGER required about 20 minutes of CPU time. This eal-
culation was performed with a version of ITS-TIGER that was modified specifically
for this problem to achieve the highest efficiency possible. The charge deposition
was also calculated for this problem with ONETRAN and ITS-TIGER. However,
we were unable to obtain reasonable statistical accuracy with ITS-TIGER after an
hour of CPU time on a CRAY-XMP. All charge depositions values were estimateed
to have one-sigma relative doviations of over 100 percent. It was estimated that
at least 10 hours of CPU time would be required to obtain reasonaly! - statistical
pecuracy. Thus, even though the Monte Carlo method is reasonably eflicient for
caleulating the energy depostion in this problem, it is prohibitively expensive for
caleulating chorge deposition. Conversely, ONETRAN provides both the energy
and charge depostion profiles with equal officiency. Considering the results whieh

1



Lit' - Pb Detector Problem
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Fig. 6. Dose Profile for Co-60 Gamma Rays Normally Incident from the
Left Upon a Sandwich of LiF and Pb. The left and right portions
of the slab are LiF and Pb, respectively.
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we have obtained, it seems quite fair to expect that ONETRAN would run on the
order of 1000 times faster than ITS-TIGER on this charge depestion caleulation,
however, we cannot confirm this because of the expense of performing the Monte
Carlo calculations. The charge deposition profile calculated with ONETRAN is
plotted in Fig. 7. Note the rapid vanation of the solution in the boundary layers
near the material interface and the outer faces. A very non-uniform spatial mesh
was used to resolve this behavior.

VI. CONCLUSIONS

Our results clearly demonstrate that coupled clectron-photon BFP calculations
~an be efficiently and aceurately performed with standard discrete-ordinates codes
designed only to solve the Boltzmann equation. For a large class of realistie prob-
lems, the discrete-ordinutes method is very much more efficient than the Monte
Carlo method. In the near future, we hope to apply our BFP method to other
types of transport calculations. In particular, we intend to compare the discrete
ordinates method with standard Monte Carlo methods for ion transport problems
of interest to materials scientists.

The accuracy of the approximations for Fokker-Planck cperators that can be
used with standard discrete ordinates codes is limited by the restriction that these
approximations be representable in multigroup-Legendre form. These approxima-
tions appear to be adequate for a wide range of coupled clectron-photon transport
problems, but greater nccuracy is desirable for other types of caleulations. This
can only be achieved by explicitly writing discrete ordinates codes to solve the
Boltzmann-Fokker-Planck equation rather than just the Boltziann equation. We
believe that the results that we Liave obtained for coupled electron-photon BFP
caleulations justifies the development of such codes. In the near future, we hope to
develop such a code for 1.D slab geometry ealeulations and use it to test the acen
racy of our BFP methods for ion transport caleulations of interest to the materinls
seience enmunity.
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